WNANYJOWIW 1VDIINHDAL

l am
4

27

An evaluation of the GKS
proposal for standards in
graphics with respect to the
GSPC core proposal

A. Lemaire, H. Watkins,
A. Ducrot and E. Saltel

Operations Department

April 1981

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

AN EVALUATION OF THE GKS PROPOSAL.FOR.STANDARDS

y IN GRAPHICS WITH RESPECT TO THE GSPC CORE PROPOSAL

BY A. LEMAIRE & H. WATKINS (ECMWF)
AND A. DUCROT & E. SALTEL (INRIA)

INTRODUCTION

In order to implement a basic 2-D device independent graphics package at the
European Centre for Medium Range Weather Forecasts (ECMWF), an evaluation was made
of the West German GKS proposal for standards in graphics £T1_7-with respect to
the ACM-SIGGRAPH GSPC CORE proposal./ 2 / / 3 7/.

Both proposals have been based on the concepts and methodological principles which
have emerged from the IFIP SEILLAC I WORKSHOP on methodology for graphics 1?4_7.

Yet they differ in many aspects and are both subject to criticisms.

GKS was chosen as a guideline for thiskevaluation because it is basically a two-
diﬁensional graphic system whereas the CORE proposal is basically 3-D. Although
weather forecasting deals essentially with a three dimensionalkworld, the viewing
transformations which are used, e.g. polar stereographic projection; cannot be

performed by the CORE 3-D viewing system.

In the following we shall go through the GKS proposal version 5.2 (document

DIN 00 66 252) extracts given in Annexes 1 and 2. In order to make referencing

easier, the section titles and numbering have been kept identical to those of the
DIN document., In the case of a reference to the CORE proposal, the version

numbexr, i.e. 77 or 79 and the page number will be specified.

1. SCOPE OF APPLICATION AND PURPOSE

Graphic software concerns a wide range of applications and has to inter-
face to a large variety of graphical devices. Any attempt to design
standards for graphics should aim to be usable and efficient for "most

applications and most devices" as stated by the GSPC.

Let us first consider the application side. Both GKS and the CORE perform

two distinct tasks namely, a viewing transformation and, conceptually, the

basic functions of a "model" graphical workstation. It has already been
mentioned that the 3D viewing transformations provided by the CORE are not
appiioable in most meteoroclogical applications. Unfortunately this also
applies to the simpler 2D window to viewport transformation provided by

GKS and the 2D subset of the CORE For meteorological applications it is
often more efficient and memory saving to perform the clipping operation
at the early stage of data generation than when the graphical output is
produced. For instance it is preferable to contour only a part of a big
array than to contour the whole array and then clip to the restricted area.
Also,non rectangular windows are sometimes required. Of course meteorology
only represents a limited area of computer graphics‘applioations but the
argument surely stands in other cases. The point is that although the basic
graphic functions defined in GKS and the CORE are suitable for most appli-

cations, the proposed viewing transformations are less widely applicable.

rom a methodological point of view the SEILLAC I workshop has recommended
the valuable approach of identifying‘and clearly setting apart the concepts
encountered in computer graphics applications. This approach has been
adopted by GKS and the CORE. The "modelling" system has been separated from
the graphic system. In so doing the "modelling" transformations have been
distinguishedkfrom the viewing ttansfo;mations, although they imply the
same mathematical operation. However, a major confusion still remains in
both proposals with respect to the output primitives and the segment
concept. This is due to the fact that no distinction has been made between
the viewing system and the basic graphic system. As a result, the output
primitives are in fact means of describing objects to the viewing system
in a world coordinate system and not means of describing true graphical
entities’on a view surface. Similarly segments are associated with a snap-

shot of an object and not with the view surface management.

From the application programmer's point of view it is very useful and
natural to directly access the view surface. Recalling the GSPC synthetic
camera analogy, why shouldn't it be possible to edit a "synthetic" family
album by positioning pictures and adding text and drawings in order to

comment or enhance the presentation of the page?

Separating the viewing system from the basic graphic system would result
in a much cleaner, less confusing and more flexible graphic system. Access
to the view surface is possible in GKS and the CORE by setting a "trans-
parent" viewing system and is indeed the default setting. This solution

however is not a clean one with respect to the methodology and it might

-2 -

result in unnecessary overheads.

If we now turn to the device aspect, one guestion arises : should the
standard consider raster devices? The "device independence" principle'
certainly implies that raster devices should be considered. However, when
it comes to the specification of output primitives one should avoid the
introduction of concepts which are‘eitherhighlys?ecific to one particular
type of device or do not fit well inside the global system. In other words,
only those primitives which can reasonably, if not efficiently, be repre-
sented on any device and have clearly defined relationships with related
concepts of the system, e.g. other primitives,‘coordinate‘system, etc...,
should be introduced. To this respect the GKS "fill area" primitive is
acceptable, whereas the "pi#el array" is not. This will be discussed in more

details in section 3.1.

THE GRAPHICAL KERNEL SYSTEM

Graphical output

The concept of current position(s) has been quite rightly rejected by GKS.
As stated in the GSPC report ZTV9,P II—111;7 :

"(the use of) no CP is cleaner, more consistent, and less confusing”.

© Since this matter has already been argued so many times it will not be

discussed any further.

In principle, TEXT and DRAW could be the only output primitives which need
be defined. The generalised drawing primitive DRAW would then be‘'defined
as an ordered set of definition points (geometry) plus extra information
(morphology) such as interéretation e.g. polyline, polymarker, spline,...
and substance e.g. pen number, as described in 173_7: Not only does this
approach follow the methodological principle of separating the coﬁcepts but
it has also the practical advantage of allowiné'solid areas to be limited
by circles, splines, etc... Needless to say the GKS "DRAW" primitive does
not correspond to this proposal'as it is in fact a "hook"™ for allowing
access to special features of existing devices. This point will be further
discussed in section 3.5. See also section 3.4 about the primitive DRAW,

the NDC and clipping.

As regards the TEXT primitive, it is clear that this.concept is much more
significantly and conveniently defined on the view surface than in any user-
defined world coordinate system. Texts are normally used to comment, label

and communicate with the operator. Whenever a text is really part of an

-3 -

3.2

3.2.

1.

object, it should loose its identity at the basic graphic level and be
described in terms of lines or solid areas to which the viewing transform-
ation applies. To be consistent, GKS and the CORE which present a viewing
system interface to the user, have to define the text in the world coordin-
ate system. This problem is easily solved by providing a viewing system
function returning the view surface coordinates of a point defined in the

world coordinate system.

As stated before, the primitive "PIXEL ARRAY" should not be included in the
standard system. The pixel'array corresponds to a very specific utilisation
of raster devices which violates the "device—iﬁdependence"principle: Further
more, GKS lacks the associated functions for making it a usable feature.
Even so, due to the lack (oi the too large variety) of experience in the
area, it is doubtful that any agreement could be reached on these functions
at the moment. Finally, the coordinate systems in GKS are certainly unsuit-—

able for pixel arrays.

The GKS pen and text attributes are concepts which somehow correspond to the
philosophy of separating geometry and morphology. They allow more device
independent programming and flexible adaptation to the capabilities of the

device in use.

Just as a matter of terminology, the word "graphical" shouldn't be associated
with input since most input primitives and input handling techniques are not

of a graphical nature. ' {

Input classes and types

To be consistent with the coiresponding output primitive POLYLINE, the

input primitive IOCATOR should return a sequence of positions rather than
one single position. Using the input technique "request tuple of locatoxrs"
to perform this function is not equivalent. Indeed, entering P successive
positions each being carefully adjusted and validated is not equivalent to
entering a single hand-drawn curve. It should be noted that defining an
input primitive polyline (or¥ curve) to replace LOCATOR would still be
compatible with the "reguest tuple of" function and would correspond in this

instance to entering a hand-drawn symbol, i.e. a series of input curves.

For the sake of consistency and for practical reasons, én input primitive
equivalent to the output primitive DRAW should also be defined. The same

arc or spline generator could advantageously be used for echoing while the

-4 =

.3

definition points are entered and eventually updated.

Unlike the CORE, GKS does not restrict an input device to be either a sample
or an eyent device. Although this results in some rather loosely defined
sampling functions such as for CHOICE, PICK or STRING, it is a more general
solution which avoids having constantly to refer to the manual in order to

verify the class of a given device.

GKS does not provide for aésociating sampling with events whereas the CORE
does. This facility appears essential in the case of a remote workstation.
However, when a remote workstation is used the best solutjion, if not the
only satisfactory one, is to implement on the satellite computer a signi-
ficant part of the application's command language interpreter. From the
hardware capability and cost point of view, the present development of
microprocessors’makes this solution a perfectly reasonable one. With respect
to the programming of highly interactive applications, the CORE association

feature appears rather misleading.

The question of which coordinate system to use for input will be discussed

in section 3.4.

The segment concept

In relation to the discussion in section 1, the segment concept may corres-
pond either to a snapshot of an object or to the grouping of graphical output
primitives which could eventually originate from various sources, i.e. view-

ing systems. :)
In the case of a snapshot, the following rules should apply :

i) No output primitives outside segments, i.e. an image cannot be

produced without a camera;

ii) The viewing transformation cannot be changed within a segment, i.e.

the camera must not be moved while taking a snapshot;

iii) A segment cannot be appended, i.e. after a snapshot an advance f£ilm

takes place.
In the case of grouping output primitives for an easier and more efficient
way of updating the image, the previous restrictions are irrelevant. GKS has

choosen this latter definition while the GSPC has opted for the former. This

-5 -

confusion in defining the segment concept is a direct consequence of the
confusion between the viewing system and the basic’'graphic system. In fact
both- definitions are acceptable, very useful and compatible. Provided that
they are cleanly and separateiy defined, the snapshot concept and the segment

concept could indeed coexist in a combined viewing and basic graphic system.

The segment concept defined as the grouping of output priﬁitives is a set
described by extension, i.e. through the enumeration of its components.
There is conceptually no objection to allow the extend (or append) function.
Indeed, since the create-close functions are just syntactical short-cuts,
the segment name could be associated with each érimitive as another attri-

bute. This property does not apply to the snapshot concept.

The INSERT function, which is clearly a modelling function, should be
removed from GKS. Surely this function is a very useful feature which should
be bffered to the programmer one way or another but, in no case, through the
graphic system. An explicit and dedicatéd segment‘storage workstation could
advantageously be used for perfoiming the insert function outside the

graphic system.

As a result, the segment storage should also be removed from GKS since the
INSERT function is its only justification. The fact that a workstation
implementation makes use of an internal segment storage for performing

the transform function is irrelevant to the programmer. The fact that the
same software is used for implementing the segment storage on many work-
stations is also irrelevant but should be recommended as good implementation

practice.

Both GKS and the CORE define a three level coordinate system, namely :

i) One world coordinate system (WC)

ii) One normalized device coordinate system (NDC)

iii) One device (or screen) coordinate system (DC)

However, the CORE is more restrictive in that it does not provide a work-
station transformation. The problem when defining which coordinate system

to be used on the viewing surface is that it is an application dependent

choice. In some cases, mainly when screens are used, the actual size of the

-6 -

3.5

picture is irrelevant and an NDC system is perfectly adequate. In other
cases, mainly when plotters are used, the size is very important and what's
more the usage of an NDC is confusing even if the NDC can be set equivalent
to a display area defined in metric units. However, this is more a question
of convention than a fundamental issue and there is no reason why a more
flexible and useful solution couldn't be adopted. Iet the user define his
own virtual display surface coordinate system and let the default units be
metric thus allowing the user to think in terms of a natural and convenient
medium for the output, namely a sheet of paper. Later on, the user control-
led workstation transformation could evgntually be used for’adapting to the
actual device display surface. Incidently, in ﬁhe case of'a basic graphic
system as proposed in section 1, some primitive attributes could thén be

defined in metric units, which undoubtedly is far mofe convenient.

With respect to the DRAW primitive, it should be noted that, as its defini-
tion points are not and must not be clipped, this might result in coordinate
values outside the NDC range. Purthermore, in order to properly clip arcs
and smoothed curves, the cliﬁpiﬁg rectangle associated with the vieWing

transformation must be passed to the workstation.

With respect to input, a distinct input surface should be defined. First the
separation between input and output follows the basic methodological
principle. Secondly, fromthe programmer's point of view it would be more
convenient. It is true that, sometimes, the input is related to the actual
picture, but generally the input surface, say a tablet, is given a layout
which is different from that of the output surface. Furthermore, returning
input coordinates in the world coordinate system is very often meaningless
due to this discrepancy between the output and the input layout but also
because more than one window to viewport transformation might have been
used for describing the picture and thus no one could be selected a priori.
Again, not separating the viewing system from the basic.graphic system
causes problem. What is required is a separate input surface. As for the
display surface, the user could define his own coordinate system. The graphic
system should also supply an inquiry function returning the actual size of
the input device and a function converting coordinates from the input sur-

face to the world coordinate system (viewing system function).

The workstation concept

Compared to the CORE where it is an implicit concept, the GKS explicit
workstation concept is more meaningful and bears more capabilities, e.g.

workstation transformation, pen and text representation, etc... considering

-7 -

3.6

3.6.1

3.6.2

the present evolution of microprocessors and the fact that graphical devices
can and are now associated with more and more computing and storage facili-
tieé,'this is obviously a move in the right direction. Indeed, the work-
station is the most convenient and efficient place to perform such functions
as line drawings with various linestyles, generation of arcs, smoothed
curves and low to high quality text, clipping, interaction, etec... However,
as the level of these local functions increases, they become more and more
device and application dependent. If they have to be accessed throuéh the
unique channel of the graphic system, there is a danger that this system
will éither contain a lot of "hooks" or become.itself device and application
dependent. The high quality text and the linestyle specification in the ;g;é
are good examples of what could happen. There is, howewver, an alternative
approach to the problem which, to some extent is the one adopted by GKS.
Observing that most data to be passed to the workstation for performing its
high level functions are parameters e.g. attribute values, rather than
function calls, it is possible to admit that these parameters be passed to
ﬁherworkstation outside the graphic system channel and even be specified
directly at the workstation level. Such an approach leads to a truly device
and application independent standard graphic system and allows device

independent programming with full usage of the workstation capabilities.

Attributes

Attributes for output primitives

Surprisingly markers in GKS are treated differently from pen or text. For
the latter two a pen or text number is used as an entry in the workstation
pen or text attribute description table, whereas for the marker its only
attribute must be set directly, e.g. marker size. A marker numbef should

be provided in GKS.

Workstation attributes

Significantly, the GKS document states that the workstation'attributes may
be different for different workstations. According to the discussion in
section 3.5, the setting of workstétion attributes should not be part of the
standard graphic system. However, the setting of those attributes which are
obviously common to all applications mith remain, e.g. thickness and colour

of lines, text font.

3.7 §torage;9f graphical information

3.7.1 Short term storage

As suggested in section 3.3., the segment storage should be removed

from GKS.

3.7.2 Long_ term storage

It is not evident that a unigue standard format for transporting and
storing graphical information can be widely acceptable. Although related
to the content of a standard graphic system, such a format (or formats)
should be the subject for a separate standard. However, the proposed GKSM

certainly needs to be reviewed.

As many of the levels defined in GKS are based on features which have been
refuted in the previous sections, e.g. segment insert, segment storage,
pixel array, they will not be discussed here. However, it can be suggested

to separate output and input capabilities.
CONCLUSION

Following is a summary of the most important issues arising from this review which,
we think, are worth considering while designing a standard for graphics. Needless
to say we acknowledge and appreciate the tremendous and valuable>work which the

GSPC and the GKS people have put into the production of the CORE and GKS proposals.

i) The viewing system should be separated from the basic graphic

system and the latter be standardized first.

ii) The primitive PIXEL ARRAY should be removed from the standard

graphic system.

iii) The NDC should be replaced by a user defined coordinate system with

metric units.

iv) The segment concept should be reviewed in light of the separation

between the viewing system and the basic graphic system.

v) The insert segment function and the related segment storage should be

removed from the standard graphic system.

-9 -

vi) The setting of non common workstation attributes should be removed

from the standard graphic system.
vii) A standard format for storing and transportiﬁg graphical. information
should be left to a separate standard.
REFERENCES
1_1_7- DIN 00 66 252 : GKS graphical kernel system version 5.2.

L 2;7 Graphics Standard Planning Committee : Status report, Computer
Graphics Vol. 11, number 3, fall 1977.

1_3_7- Graphics Standard Planning Committee : Status report, Computer
Graphics Vol. 13, number 3, August 1979./ ‘

/"4 / GUEDJ, R.A. et al., Report on the IFIP W.G. 5.2. Workshop on
"Methodology in Computer Graphics" (July 1976), North Holland Publ.

/ 5;7 GRAVE M., OUANOUNOU G., "Basic Objects and Operators for Computer

Animation". Proceedings Eurographics, 1979.

- 10 -

ANNEX 1

INFORMATION PROCESSING
GRAPHICAL KERNEL SYSTEM (GKS)
TERMINOLOGY

In the description of the Graphical Kernel System (GKS), commonly
accepted computer graphics terminology 1is used as far as possible.
This clause gives the definition of the important terms.

1

attribute:
A particular property that applies to a display element
(output primitive) and a display group.

Example: Low intensity, green colour, blinking status.

Note: In GKS this definition is also used for workstations.

choice device:
An 1input device providing integer numbers specifying alter-
natives.

clipping (see scissoring)
coordinate graphics; Lline graphics:

Computer graphics in which display images are generated from
display commands and coordinate data.

Graphical Kernel System (GKS); Version: 6.2 1

Terminotogy

5

10

1"

12

13

14

15

16

17

cursor:
A movable, v1s1ble marker used to 1nd1cate a position on a
display space.

dev1ce coordinate (DC):
A coordinate expressed in a coordinate system that is device
dependent.
Note: In GKS this def1n1t1on is restricted.to cartes1an coordinates
- measured in meter, used for spec1fy1ng the display space.

dev1ce driver:
The device dependent part of a GKS 1mplementat1on intended
to support a graphics device. The.device driver generates
device dependent output and handles dev1ce dependent inter-
action.

display device; graphics device:
A device (cathode ray tubes, plotter, etc.) on which display
images can. be represented.

display element; graphic primitive; output primitive:
A basic graphic element that can be used to construct a
display image.

Example: A dot, a line segment, a character

Note: The element can itself be the complete display image.

display group; segment:
A collection of display elements that can be man1pulated as
a unit and that can be further combined to form larger
groups.
Note: In GKS this def1n1t1on is restricted to an ordered collec-
tion of display elements (output primitives) dafining a
~display image.

d1sp[ay image; picture:
A collection of display elements or display groups that are
represented together at any one time on a display space.

display space; operating space; workstation viewport:
' That portion of a display surface available for a display
image.
Note: The d1splay space may be all or part of the d1splay surface.

display surface: :
In a display device, that medium on which display images
appear.

GKS level: :
A number describing the set of functional capabilities
provided by a specific GKS implementation.

GKS metafile (GKSM):
A sequential dataset that can be written and read by GKS,
used for longterm storage of graphical information.

graphics device (see display device)

graphic prihitive (see display element)

Graphical Kernel System (GKS); Version: 6.2

18

19 .

20

21

22

23

24

25

26

27

28

29

30

31

32

Terminology

highlighting:
Emphas1z1ng a display element or d1spLay group by mod1fy—
ing its visual attributes. o

Note: In GKS this definition is restr1cted to d1splay groups
(segments) :

input device cLass T : :
One of the following f1ve types of 1nput primitives:
locator, valuator, choice device, pick device, string device.

input primitive:
A basic graphic eLement from an input dev1ce (such as key-
board, function keys, joy stick, control ball, or a light
pen) '

line graphics; coordinate graphics:
* Computer graphics in which display images are generated from
display: commands and coordinate data. :

Locator: :
An input dev1ce prov1d1ng a coord1nate pos1t1on as its
result. ~ :

marker:)
A glyph with a recognizable appearance which is used to
identify a particular location. I

normalized device coordinates (NDC)

Device—independent cartesian coordinates in the range 0 to 1
used for specifying the viewport and the workstation window.

Operating space (see display spece)

~output primitive (see display element)

pen table; colour table:
A Llist associating predefined pen number, l1netype, line—
width, and colour with a pen number., :

pick device: : ‘
An input “device to 1dent1fy a d1splay element or a d1spLay
group.

pick identifier:
A number for identifying primitives within a segment by the
pick input function. The same pick identifier can be assign-
ed to different primitives.

picture (see display image)

picture element; pixel:
The smallest element of a display surface that can be inde~
pendently assigned a colour or intensity.

polyline:
A display element (output primitive) con51st1ng of a set of

connected lines.

Graphical Kernel System (GKS); Version: 6.2) 3

Terminelogy

33

34

35

36

37

38

39

40

41

42

43

44

45

4

polymarker:
A set of markers.

raster graphics:
Computer graphics in which display images are generated on a
display surface composed of a matrix of pxxels arranged in
rows and columns. >

rotation: , S ,
Turning .all or a part of a display image about an axis
perpendicular to the display surface.

Note: In GKS this def1n1t1on is restricted to display groups

(segments).

scale: : w :
- Enlarging or reducing all or part of a display image by
mult1pty1ng the coordinates of that image by a constant
value. i
Note: For different scaling in two (three) orthogonal d1rect1ons
two (three) constant values are required.
Note: In GKS this definition is restricted to display groups
(segments).

scissoring; clipping:
Removing parts of a display image that l1e outside a bounda-
ry, usually a window or viewport.

Note: Clipping guarantees to include all parts of the display ele-
ments that lie within the bhoundary where sc1ssor1ng does not.

segment (see display group)

segment attributes: : . .
Attributes that apply only to segments: visibility, high-
Lighting,- detectab1l1ty, segment priority, and segment
transformation. C

segment transformation:
A transformation which causes the d1spLay elements defined
by a segment to appear at varying positions (translation),
sizes (scale), and/or orientations (rotation) on the display
surface.

shift (see translation)

string device:
An input device prov1d1ng a character string as its result.

text table: :
A list associating str1ng attributes w1th a text number.
translation, shift:

the application of a constant d1splacement to the position
of one or more display elements.

Note: In GKS this definition is restricted to display groups

’ (segments).

valuator:
An input device providing a real number as its result.

Granhical Kernel Svstem (GKS): Version: 6.2

46

47,

48

49

50

51

52

53

54

55

Terminology

viewing transformation (see window/viewport transformation)

viewport: -0
A predefined part of the display space.

Note: In GKS this definition is restricted to a rectangular region
within the normalized device coordinates used for the
definition of the window/vieuport transformation.

window: .
A predefined part of the virtual space.

Note: In GKS this definition is restricted to a rectangular region
within the world coordinates used for the definition of the
window/viewport transformation.

window/vieuwport transformation; viewing transformation:
‘A transformation that maps the boundary and contents of a
window to the boundary and interior of a viewport.

Note: In GKS this transformation maps positions in world coordi-
nates to normalized device coordinates.

workstation:
A console (station) that includes a display device and/or
also one or more 1input devices such as an alphanumeric
keyboard, function keys, a joy stick, a control ball, or a
light pen. '

workstation transformation:
A transformation that maps the boundary and contents of a
workstation window to the boundary and interior of a work-
station viewport (display space).

Note: In GKS this transformation maps positions in normalized
device coordinates to device coordinates.

workstation viewport (see display space)

workstation windou:
A rectangular region within the normalized device coordina-
tes system which is represented on a display space.

world coordinates (UWC):
Device 1independent cartesian coordinates used by the appli-
cation program for specifying graphical primitives and
transiormations.

zooming:
Progressively scaling the ‘entire image to give the visual
inmpression of movement towards or away from an observer.
Note: In GKS this definition is restricted to display groups
(segments).

Graphical Kernel System (GKS); Version: 6.2 5

ANNEX 2

INFORMATION PROCESSING
GRAPHICAL KERNEL SYSTEM (GKS)
FUNCTIONAL DESCRIPTION

1. Scope of Application and Purpose

a0 A S S o . W
e it it ad e it e T m n i o e e o e e e e e v m e

This standard specifies a set of functions for graphical -data
processing in a way which is independent from particular graphic
devices, programming languages, or applications.

The capabilities provided'by this standard include:

= tuwo dimensional line and raster graphics
— graphical input and output primitives at one or more graphic work-

stations ;
= provision for storage and modification of one set of graphical
information in a workstation independent manner during program

execution :

= ‘storage and retrieval of graphical information from a long term
graphics file (Metafile)

= means for adapting the application program behaviour to suit
workstation capabilities

- .several upward compatible levels of the standard with increasing
functio?al,capabilities

This standard has emerged from a long process of refinement. In this
process of adapting the GKS system to ISO recommendations and in order
. to reduce the gap betwean GKS and other similar intaernational
standards under development, some parts of the standardisation:
concepts of IS0, ANSI, and ACM-SIGGRAPH (GSPC) have been included in
the GKS proposal. A feu details have been taken over literally.

2. Relafed Standards

DIN 44 300 (IS0 2382) Informationsverarbeitung;: Begriffe
(information processing; vocabulary)

DIN 66 003 (ISO 646-7.73) Informationsverarbeitung; 7-Bit-Code
‘ (information processing; 7-bit~code)

DIN 66 004 (ISO 962-11.74) Informationsverarbeitung;
Darstellung des 7-Bit—Code auf Datentrdger
(information processing;
7-bit-code representation on storage media)

DIN 66 010 Magnetbandtechnik fuer Informations-
verarbeitung; Begriffe
(magnetic tape technique for information
processing; vocabulary)

Graphical Kernel System (GKS); Version: 5.2 1

The Graphical Kernel Systenm

3. The Graphical Kernel System (GKS)

GKS contains two dimensional output and ‘input ﬁrinitives. The output
primitives include 1line drawing, text drawing, and raster graphics
primitives. Five classe of input primitives (LOCATOR, VALUATOR, PICK,
CHOICE, STRING) are supported which can work in REQUEST, EVENT, and
SAMPLE mode. ' ~ ‘

A segment facility allows subdividing pictures into subparts. Segments
may be created and deleted and the segment attributes can be dynami-
cally modified. The segments c¢an be transformed and inserted inte
other segments.

The graphical output can be routed to one or multiple workstations.
A workstation is a conscle that includes one display device and/or
also one or more input devices such as an alphanumeric keyboard,
function keys, a joy stick:, a contrel ball, or a light pen. The
coordinates are transformed in a two-stage transformation process
where the first stage can be set for each primitive and the second
stage can be sat for each workstation. Furthermore the setting of a
workstation 'specific pen and text table allows to control the
appearance of all primitives on the correspdnding workstation.

The GKS Metafilae servas for long term storage of graphical data. It
also provides a standard interface between GKS and other graphics
systems. ' ' ‘ ; .

Not every GKS implementation has to support the full set of functions.
Six GKS levels have been defined to meet the different requirements of
graphical systems.

GKS defines only a language independent nucleus of a graphics system.
For integrating it into a language, GKS should be embedded in a
language dependent layer <containing the language conventions, e.g.
parameter and name assignment.

] - " Other Resources ‘Graphical Resources

[: , OPERATING SYSTEM I
il |
l

Figure 1: Layer Model of GKS

2 Graphical Kernel System (GKS); Varsion:® 5.2

The Graphical Kernel Systam

Tha layer model represented in figure 1 illustrates the application of
a GKS in a graphical system. Each layer may call the functions of the
lower layers. In general the user program will use the application
oriented GKS layer, the language dependent layer, other application
dependent layers, and operating system resources. All workstation
capabilities that can be addressed by GKS functions mu;t only be used
via GKS.

3.1 Graphical Output

The graphical information that is generated by GKS and routed to all
active workstations is built up of basic pieces called ouput primi-
tives. GKS provides three line drawing primitives, one text primitive.,
and two raster graphics primitives:

POLYLINE GKS generates a polyline defined by a point sequence.
POLYMARKER GKS generates centered symbels at given positions.
DRAW General function to address special capabilities of a

workstation like drawing of spline curves, circular
arcs, and elliptic arcs.
The objects are characterized by an identifier and a set
of points. GKS only applies all transformations to thae
, points leaving the interpretation to the workstation.
TEXT GKS generates a character string at a given position.
FILL AREA A polygon is filled with a uniform colour.
PIXEL ARRAY An array of pixels with individual colours.is drawn.

Each primitive comprises

- the geometrical information, text data, and raster information as
specified in the individual function call (what is to be presented)

- the attribute information which = in conjunction with the corre-
sponding control setting of the workstation = controls how the
primitives are to be presented on a specific work station (see
chapter 3.3 and 3.6).

'

3.2 Graphical Input

ot e e S iyt i o .

3.2.1 Input Classes and Types

Graphical input can be obtained from any open warkstation. The
graphical input functions provided by GKS can be grouped into five
classes specifying the kind of input primitives and three input types
that depend on how the input is obtained from the workstation.

Graphical Kernel System (GKS); Version:® 5.2 3

The Graphical Kernel System

The five input classes are?

LOCATOR provides a position ‘in world coordinates
VALUATOR oprovides a real number '

CHOICE selects an alternatives
PICK provides a segwent name and a pick-identifier
STRING" provides a character string

All five classes of input can be obtained from a workstation by use of
three different mechanisms. The three input types are:

REQUEST: GKS reads a tuple of input primitives of cne input class
from the workstation. GKS waits until the input is entered
or an ‘end-of-input ‘action is performed. ‘ o

SAMPLE: GKS inspects ‘the current setting of an input device and
delivers ' back the «current ‘value without waiting for an.
operator action. : k

EVENT: GKS builds up one input queue into which input primitives
from various sources are lined up in the sequence in time in
which they are generated. The queue can be inspected by the
application program in order teo find out whether or not
input primitives are present ‘and from which source they
originated. '

For REQUEST type input GKS oprovides five functions, one for evary
input class, e.g. REQUEST TUPLE OF LOCATORS. Besides the selection of
a specific input device, the maximum number of input is specified as
a function parameter. The operator at the workstation has the possibi-
lity to enter input primitives of the requested class. GKS waits until
the requested number of inputs have been entered or an end-af-input
action is performed by the operator. The REQUEST input behaves in this
way similar to a FORTRAN READ.

For SAMPLE type input the input devices have to be enablad (a.g.
ENABLE VALUATOR). The current valuae of the input device can be sampled
(e.g. SAMPLE VALUATOR) and immediately transferred back to the
application ‘program. If the hardware allows testing of the current
setting of the device, the sampled value is derived from this setting.
as is the case for VALUATOR input by use of a potentjometer. In other
cases the last setting or the undefined value set by e.g. ENABLE
VALUATOR is passed back as the sanmpled value.

For EVENT type input one event queue is present in GKS. After one or
more input devices are enabled (e.g. ENABLE PICK), the workstation
operator has the possibility to enter input primitives into the gueue.
Tuo functions serve for testing the oldest element of the queue: READ
EVENT and AWAIT EVENT. In the case the queue is not empty, both func-
tions behave in the same manner. They deliver the input class and the
input device identification of the oldest element back to the applica-
tion program. Then the value of the tested element can be obtained by
use of a GET-function, e.g. GET PICK. If the queue is empty, AWAIT
EVENT waits until an input is entered while READ EVENT returns to the
calling program immediately reporting that the queue is empty.

Two further functions are provided for handling input originated by a

4 Graphical Kernel System (GKS); Version:® 5.2

The Graphical Kernel System

specified workstation: READ WORKSTATION EVENT and AWAIT WORKSTATION
EVENT. They behave in the same manner as READ EVERT and AWAIT EVENT
with the restriction that they inspect only the subset of the queue
originated by the specified workstation leaving unchanged entries in
the queue originated by other workstations.

FLUSH functions are provided for deletion of the input pr1m1t1ves of a
given class or all input primitives in the input queue.

An input device can be either enabled for SAMPLE or for EVENT type
input. REQUEST type input can be obtained only from disabled devices.

3.2.2 Prompting and Echoing

Prompting and echoing are input device characteristics that can be
controlled by the application program. An ache of the input can ba
switchad on and off (SET ECHO) and its position can bae specifiad (SET
ECHO POSITION). SET LOCATOR and SET VALUATOR are functions for
initializing LOCATOR and VALUATOR input devices. These functions
affect the values returned by thae SAMPLE type input, if tha setting is
not changed after the initial calls.

The function SET CHOICE PROMPT sets the prompting of a CHOICE input
‘device. The input device that are most commonly used to implement the
CHOICE input functions often have built—in prompting capabilities
(e.g. lamps on function keyboards). The SET CHOICE PROMPT function
allows the application program te invoke this prompting capability.

By the function SET CHOICE STRINGS a text string can be associated
with every alternative of a CHOICE input device. These text strings
may be used for several purposes?

-~ Prompting or Help:
Each text string gives a keyword or short description of the corre-
sponding alternative. The text string can be displayed above the
functions keys on the display surface or can be used to explain the
meaning of the alternatives via a help function.

- Modelling of a CHOICE devica:®
The driver has the possibility to create a string menu.at an imple-
mentation dependent location from which the operator can choose the
desired alternative.

~ Keyboard as a CHOICE device:
The operator can type in the textstring of the desired alternative.
In this case a correspaonding CHOICE device number must be prede-
fined for the workstation.

The function ASSIGN SEGMENT TO CHOICE allows the application progran
to define a segment that has been created previously as a menu for
choice class input. After a segment has been assigned to a CHOICE, it
will be activated by using a pick device passing back the pick identi-
fier of the indicated primitive as choice value.

All coordinate values for input functions (e.g. LOCATOR input, SET
ECHO LOCATION, SET LOCATOR) are expressed in world coordinates. If

Graphical Kernel System (GKS); Version: 5.2 5

The Graphical Kernel Systewm

normal ized coordinates are desirad the application program must sat
the window/viewport transformation ' to identity before calling these
functions. ‘ : ‘ '

3.3 The Segment Concept

In GKS, graphical output primitives can be generated outside segments
or they may be grouped in segments identified by a segment name.
Primitives outside segmants are sent to all active workstations, the
application program has no access to them any more after they have
been generated.
Segments may be

- “delaeted

= renamed ‘ :

= made visible and invisible

- made detectable or undetectabla

~ "highlighted

= transformed

=~ inserted into the open segment

Only primitives contained inside Segments are affected by thesa
operations. Furthermore, the INSERT function applies only to segments
created while a (virtual) segment storage workstation has been
activated. ' .

Every primitive within a segment has a pick identifier associated with
it which establishes a saecond level of naming. The sole function of it
is the identification of primitives, it cannot be used for manipula~
tions. This. level of naming has been introduced to reduce the segment
overhead for applications where a great number of picture parts_should
be distinguishable and where the manipulation possibility is less
important. '

SET PICK IDENTIFIER (1)

- Output functions not pickable
CREATE SEGMENT (1)

Qutput functions -==> segment=1, pick-id.=1
SET PICK IDENTIFIER (2)

Output functions -==-> segment=l, pick—-id.=2
CLOSE SEGMENT (1) :

Output functions ‘ not pickable
CREATE SEGMENT (21

Qutput functions -==> segment=2, pick-id.=2
SET PICK IDENTIFIER (1)

Qutput functions -==> segment=2, pick—id.=1
SET PICK IDENTIFIER (2)

Output functions -==> segment=2, pick~id.=2

CLOSE SEGMENT (2)

Figure 2: Example for the use of segment names and pick identifiers.

6 Graphical Kernel System (GKS); Version: 5.2

The Graphical Kernel System

Whereas segment names must be assigned uniquely the pick identifier
can be assigned arbitrarily to single output primitives or groups of
output primitives within segments.

When a segment is closed, primitives cannot be modified nor can
primitives be added to or deleted from the segment. No function is
provided to extend a segment after it has been closed. However,
geometrical transformations, changes of the segment attributes and of
the workstation specific pen and text tables are possible.

The segment attributes (VISIBILITY, HIGHLIGHTING, DETECTABILITY, and
SEGMENT PRIORITY, see chapter 3.6.2) describe the segment as an
entity. All values describing the state of a segment, i.a. name,
segment attributes, and workstations active at creation time, are
stored in a segment state list that GKS keeps during a segment's
lifetine. ’

Every segment is stored on all workstations active at the time it is
created (OPEN SEGMENT). It can be deleted on all workstations by the
DELETE SEGMENT function All segments stored on a specific workstation
can be deleted by the DELETE ALL SEGMENTS function.

Furthermore, segments as an entity can be transformed by the TRANSFORM
SEGMENT function i.e. scaled, rotated, and translated (in exactly this
saquence). The segment transformation is stored and applied to the
segment before displaying it.

Segments stored on a special workstation called segment storage work-
station can be inserted under transformation into the open segment by
“the INSERT SEGMENT function. When inserting a segment into the open
segment, the specified transformation is carried out and the trans-
formed segment is copied into the apen segment. '

3.4 Coordinate Systems and Transformations

GKS regards three levels of coordinate systems (see figure 3):

= One world coordinate system (WC)
= One normalized device coordinate system (NDC)
~ Device coordinate systems (DC)

Two transformations are applied to an output primitive routed from the
application program to the display surface:*

- A window/viewport transformation that maps the world coordinate
space onto the NDC space.,

- A workstation transformation that is used to map the NDC space
onto the DC space individually for every uorkstation.

The application programmer defines all graphical output primitives in
two dimensional cartesian coordinates called world coordinates. By
means of the window/viewport transformation the graphical output
primitives are mapped from WC onto normalized device coordinates, they

Graphical Kernel System (GKS); Version: 5.2 7

The Graphical Kernel Systam

: worketatlion
wlndow/ 1rens formatlon

viewport for each
tranaformat lon worketatlon
/___/L.__\‘ /__A__\
o
B N
output o trans formed 5l @ wor k-
primitlves t primltives 8. ctation
at. cl§ display
215 x 9- spoace
ofn cl @
N = 5= I
LA | > Phcaur
- o> el c 1nput from
input 3 alo | work~
x -
primlllves Tlo eterion
5~
z| @
-
3
<]
=
world normal lzed davice
coordlnates devica coordinates coordinates

Figure 3: Coordinate Systews and Transforwations

are in the range (0,1)x(0,1). The window/viawport transformation is
applied to every output primitive individually. It can be reset at any
time after GKS has been opened. The window is specified by two corner
points of a rectangle parallel to the coordinate axes in world coordi-
nates. The viewport is specified by the two corresponding points in
NDC.

The normalized device coordinate system will be mapped onto the device
coordinate system, that describes the display space of a workstation.
The device coordinates are measured in meter. This workstation
transfarmation can be set individually for every workstation, allowing
the same graphical primitive on different display surfaces in differ—
ent , application program controlled, scales. In this way it is
possible, e.g.» to use the full display space of an interactive
workstation and to have simultaneously a drawing in correct scale on a
plotter. The workstation transformation is set by specifying a work-
station window in NDC and the workstation vieuwport size in DC space.

The default setting of the workstation transformation will map one of

the sides of the unit NDC square onto the shorter side of the display
space. The same workstation transformation is valid for all graphical

output primitives on an individual workstation. A resetting of this

transformation changes the scale of all segments stored on the respec-

tive workstation.

The current values of the window/viewport transformation are kept in
the GKS state list, a basic data block that reflects the state of GKS.
The settings of the workstation transformation are contained in a
workstation state list present for aevery open workstation.

The window/viewport transformation may be accompanied by clipping at

8 Graphical Kernel System (GKS); Version: 5.2

The Graphical Kernel System

the window which can be switched on and off by the application
program. Even if <clipping is switched off GKS takes care that the
result of the window/viewport transformation does not exceed the unit
square and that the result of the workstation transformation does not
exceed the display space. ;

Locator input data is transformed back by the inverse workstation
transformation valid when LOCATOR input is generated and by the
inverse window/viewport transformation valid when LOCATOR input is
read by the user progranm. '

The segment transformations (TRANSFORM SEGMENT, INSERT §EGMENT, see
figure %) are a third type of transformation provided by GKS. They
apply to segments only and map NDC onto NDC. However, parameters are
specified by the application program in WC and transformed into NDC by
the current window/viewport transformation. By this concept a GKS user
always specifies coordinates 1in MWC space with the exception of the
vieuport parameter for the window/viewport transformation and the
paramneters for the workstation transformation.

Segment transformations are not actually performed in the segment
storage but only saved in the segment state list. In this way a
segment transformation cannot lead to a loss of information.

After the segment transformation is applied to primitives within a
segment the warkstation transformation will be applied to them. In an
implementation all transformations may be united to a single trans-—
formation matrix. C

segment segment storage

/ storage worfstatlion

x L /
primitlves g g_ (IINSER"E o
— scale,raot ,shif?
Inslde = ° o _l __________
gegments E r . A
. P e g8
| 53 233—; work— | |
segmen' |2 |e9fe.| statloni
srTorage 2 g b I S e
| <q f;f% space | |
| =3 S |08 l
. @«
- >
L. _ workstarion __ _ _ | __ _ _
| WC NOC oc [
< |

Figure 4: Segment Transformations

Graphical Kernel System (GKS); Version: 5.2 9

Thae Graphical Kernel Systaew

3.5 The Workstation Concapt

3.5.1 MWorkstation Charactarlst1cs

GKS is based upon a concept of an abstract gtaphical workstation with

capabilities as described below. For every kind of workstation presant

in a given GKS implementation (a. g. refresh display, storage tuba,

plotter), ‘an entry exists in a workstation description table. It

describes the capabilities and characteristics of the workstation. For

every open uorkstat1on its state is kept by GKS in a workstation state

11st '

The fully ‘equipped abstract workstation

- has one addressable display surface

~ permits the use of smaller display spaces than the maximum while
guaranteeing that no display is generated outside the specified
display space. An installation dependent ("paper"™ or "background")
qual ity may be specified. ‘ '

= 'supports several linestyles, text fonts, character sizes, etc.

= ‘has one or more input devices for each class of input primitivae.

- permits request type, event type, and sample type input.

In actual installations the workstation may or may not be equipped
with all of these capabilities. E.g., the input capabilities of a
workstation may range from no input to several input devices of every
class. The application program may inquire via GKS which capabilities
are available and adapt its behaviour accordingly. If capabilities arae
requested which a particular workstation does not provide, a standard
error reaction is defined.

Actual workstations may provide more capabilities than those listed.
These cannot be wutilized by GKS. However, if the workstation itself
provides sufficient intelligence, the additional capabilities may well
be wutilized locally by the workstation operator. As an example, if a
workstation has two display surfaces, the operator may switch locally
from one to the other without notifying GKS or the application
program. More than one display surface at one workstation can be
controlled by GKS only by defining a separate work station for every
display surface.

3.5.2 Selecting a Workstation for Output and Input

The workstations are identified by thae application program by use of a
workstation identifier. Output primitives are sent to all active work-
stations. Segment manipulation and input can be performed with all
open warkstations. Input devices at a particular workstation are
identified by the tripel:! workstaticn identifier, input class, input
device number. The latter selects one of the input devices of one
class at a given workstation. E.g. a workstation may have a light-—
pen and a tablet for locator class input. For EVENT type input the
input device at a given workstation must be enabled.

10 Graphical Kernel System (GKS); Version: 5.2

The Graphical Kernel Systeam

OPEN WORKSTATION (N1, ddnamel, workstation typel)
OPEN WORKSTATION (N2, ddname2, workstation type2)
ACTIVATE WORKSTATION (N1)

Qutput functions --~> generated on Nl

REQUEST input input allowed only from N1,N2

SAMPLE input input allowed only from N1,N2
ACTIVATE WORKSTATION (N2) ‘

Output functions -——=> generated on N1,N2
DEACTIVATE WORKSTATION (N1)

Qutput functions ; --==> generated on N2

ENABLE (Nl,class:nr?

EVENT input input allowed only from input

device 'nr' of class 'class' on Nl
DISABLE (Nl,class.,nr)
CLOSE WORKSTATION (N1)
DEACTIVATE WORKSTATION (N2)
CLOSE WORKSTATION (N2)

Figure 5: Example for selacting workstations for input and output

3.5.3 Deferring Picture Changes

The display of a workstation should always reflect the actual state of
the picture as defined by the application program. To use the capabil-
jties of a wuorkstation efficiently, it may be desirable to allow a
workstation to defer the actions requested by the application program
by calling GKS functions for a certain period of time. During this
period the state of the display may be undefined. E.g., data sent to a
plotter may be blocked to optimize data transfer.

All functions leading to an implicit regeneration of the whole picture
on a workstation may be suppressed until a regeneration is required
explicitly. An implicit regeneration is necessary, e.g.: when picture
changes require erasing the display of a storage tube workstation or
to put new paper on a plotter. When functions are invoked, that may.
require an implicit regeneration, all primitives outside segments will
be deleted from the display surface. _

The function SET DEFERRAL STATE allows to choose that deferral state
which takes into account the capabilities of the workstation and the
requirements of the application program.

The following deferral states can be specified:

State 1 The visual effect of each function has to become visible as
soon as possible.

State 2 The visual effect of each function has to become visible
before the next interaction (i.e. no deferring if an input
device is enabled; update before 'ENABLE input primitive' or
'REQUEST input primitive' is executed).

State 3¢ The visual effect of all functions may be deferred.
State %: As state 1l but implicit regeneration is suppressed.
State 5! As state 2 but implicit regeneration is suppressed.
State 6: As state 3 but implicit regeneration is suppressed.

Graphical Kernel System (GKS); Version: 5.2 11

The Graphical Kernel System

11 21314]51]6]

I'f Addition of graphical data Lol idlx!lolilxl

e e ——— e [= l

'l Implicit regeneration el i dx 111171
Legende ~ no deferring

o

1 - may be deferred until input
. 'X ~— may be deferred

1 - must be deferred

Figure 6: Deferral states

The deferring applies to faollowing functions:

Functions genaerating output:
POLYGON, POLYMARKER, TEXT, DRAW
FILL AREA, PIXEL ARRAY
INSERT SEGMENT
READ AND INTERPRET NEXT RECORD FROM GKSM
Functions that may imply an implicit regeneration:
SET PEN/TEXT REPRESENTATION)
SET WORKSTATION WINDOW/VIEWPORT
SET VISIBILITY/DETECTABILITY/HIGHLIGHTING/SEGMENT PRIORITY
DELETE SEGMENT, TRANSFORM SEGMENT '

The concept aof deferring refers only to visible effects of GKS-
functions. Effects on the segment storage aor in the state of the
workstation are (conceptually) not deferred.

There 'is no state provided where the addition of graphical data must
be deferred. Such requirements should be handled with the segment
storage facility and the visibility attribute. By this restriction the
buffer for deferred actions can be chosen implementation dependent.
Deferred actions can be made visible at any time by the use of the
UPDATE-command or by appropriate change of the deferral state.

3.6 Attributes

3.6.1 Attributes for Output Primitives

- PEN NUMBER, an index referring to an entry in a pen or colour
table in which pen attributes are specified.

- TEXT NUMBER, an index referring te an entry in a table in which

' text attributes are specified.

- MARKER SIZE specifying the size of centered symbols.

- PICK-IDENTIFIER for identifying primitives in segments when the
segment is picked.

12 Graphical Kernel System (GKS); Version: 5.2

. The Graphical Kernel System

The' current value of these attributes can be set modally and is
recorded in the CGKS state list. During generation of an output primi-
tive this wvalue is. copied into the primitive and cannot be changed
afterwards.. PEN NUMBER and PICK-IDENTIFIER .- apply to all output
primitives, TEXT NUMBER appllas only to the TEXT primitive, and MARKER
SIZE only to the POLYMARKER pr1m1t1ve. ~

i

3.6.2 Segment Attributes

- VISIBILITY (a segment is displayed or not)

- DETECTABILITY (a segment can be selected by the pick lnput
primitive or not) :

- HIGHLIGHTING (a segment is blinking or not)

~ SEGMENT PRIORITY (if parts of segments {(pixel array, filled area)
overlap, the segment with higher priority will
be displayed)

- SEGMENT TRANSFORMATION (a segment is transformed before display)

Thae segment attributes are unique for each segment and may not vary on
different workstations. Each segment is assigned the default values of
these attributes when the segment is opened. The attributes may be
reset for the open segment and for any existing segment.

The segment transformation hps been described. in chapter 3.%.

3.6.3 Workstation Aftributes

- s et i S s e G it it i i i it N i L

PEN REPRESENTATION, pen table (also referred to as colour table)
every entry containing?
predefined pen number.,.linetype, linawidth.,
intensity, colour(red/green/blue intensity)
- TEXT REPRESENTATION, text table, every index containing?
predefined text number, text font.,
text quality, character size and spacing.
- DISPLAY SPACE QUALITY, e.g. kind of paper on a plotter.

- DEFERRAL STATE, controlling the deferred or immediate visi-
; bility of picture changes.
- WORKSTATION TRANSFORMATION (see chapter 3.4)

These workstation attributes control the appearance of output primi-
tives on a specific workstation, the quality and size of the display
space, and the immediate visibility of primitive generation and
picture manipulation.

The representation of a symbolic PEN or TEXT NUMBER on a specific
workstation 1is defined via a pen or text table in the workstation
state list. Some standard definitions for table entries are contained
in the workstation description vector and are used as default. The
application program may set the tables by copying a standard defini-
tion or by specifying explicitly the attributes of a specific entry.

The workstation attributes may be different for different workstations

Graphical Kernel System (GKS); Version: 5.2 13

The éraphical Kernel Systenm

and wmay be changed. '

If the change affects the display of segments already stored on th
workstation this will be called a dynamic attribute change. This faa.
ture is demanded only in GKS level % and is intended for workstation,
having appropriate facilities (e.g. - raster displays with coloy,
table). ‘

Otherwisa the resetting of work station attributes is only allowed iy
no graphical data is present on the workstation e.g. immediately afte,
OPEN WORKSTATION or RESET WORKSTATION (static attribute change).

The deferral state is explained in more detail in chapter 3.5.3.

3.7 Storage of Graphical Infermation

3.7.1 -Short Term Storaga

As already pointed out in chapter 3.3 the sagmant wmanipulation
facility requires the storage of all segments for reuse on the sanmg
Workstation. GKS does not prescribe the manner and format of storage
as long as all segment operations can be performed. For the purpose of
transferring segments from one workstation to another or for inserting
segments into the open segment a (virtual) segment storage workstation
is used, where segments are stored in a device independent way for the
purpose of the INSERT function. MWhether the segment storage work-
station is realized within the GKS nucleus or by utilizing the capa-
bilities of an appropriate physical workstation is left to the imple-
menter.

3.7.2 Long Term Storage

For the purpose of long term filing of graphical information GKS

provides an interface to a sequential file called GKS Metafile (GKSM).

It can be used for: ,

= transportation of graphical information between systenms,

~ transportation of graphical information from one place to tha othar
(e.g., by means of magnetic tapes)

~ storage of ‘graphical information frow one GKS-application to tha
next one. A

= storage of accompanying non-graphical information.

The GKSM behaves like a workstation. It can be thought of as simulat-~
ing a passive output device (e.g. platter). For cutput to the GKSM and
input from it two different workstations with appropriate workstation
sequence numbers must be defined. In order to preserve consistency of
the file contents, the GKSM may only be written and read under GKS
control. For this purpose special functiens are provided. Figure 7
shows the relationsship between the application program, GKS and the
GKSM.

14 Graphical Kernal System (GKS); Version: 5.2

The Graphical Kernel System

Writing the GKSM Reading the GKSM
application pbogrdm | application program
A e I
oKS CKS |
GksM |) GKSM

Figure 7: Relationship betwaaen GKS and GKSM

Input - from the.GKSM is processed by a special GKS .input. driver under
the control of the application program. Reading and interpreting a
record-. from the Metafile is not corresponding to an input function:
but. it has the same effects as if the GKS function uwas called, that
previously generated this GKSM record. E.g. reading and interprating a
polyline record will cause the same effects as if the polyline
function is called. In order to be able to reconstruct graphical
objects from the GKSM, besides primitives also attributes and state
information must be stored on the Metafile.

Following functions are related to the GKSM:

Output to GKSM: OPEN/CLOSE WORKSTATION | applied to a
ACTIVATE/DEACTIVATE WORKSTATION || GKSM output
All output functions | workstation
Attribute setting functions I
WRITE USER INFORMATION TO GKSM
Passes user data to the GKSM
Input from GKSM: OPEN/CLOSE WORKSTATION | applied to a
ACTIVATE/DEACTIVATE WORKSTATION_| GKSM input workst.
READ RECORD TYPE FROM GKSM
Passes the type and length of the next GKSM record
back to the application progranm
READ RECORD FROM GKSM
Passes the next GKSM record to the application
program (graphical or user record)
SKIP NEXT RECORD ON GKSM
Reads and ignores the next GKSM racord
READ AND INTERPRET NEXT RECORD FROM GKSM

Graphical Kernel System (GKS); Version: 5.2 15

The Graphical Kernel Systam

Reads thae next GKSM recerd and generates thae sawme
effects as if the functions contained in it werae
called by the application program..

3.8 GKS Level Concept

i o b bt S ok s B G ot ot ot e S

The GKS system has to be usable by a wide range of applications, frowm
static plotting to dynamic motion and real time interaction. In
addition, mwany display devices lack features (such as picking) that
would require considerable implementation effort to simulate with
software. It is therefore desirable to have GKS implementations that
must not include all of the functional capabilities defined in this
standard.

The functional capabilities of GKS can be grouped into four major
areas® basic, output, input, and segmentation. Basic features are
those that are essential for any GKS implementation. The areas output,
input, and segmentation can be subdivided further based on levels of
complexity, treatment of attributes and capabilities of the: input and
output devices and the segment storage wechanisnm.

If an arbitrary combination of capabilities was considered a valid
GKS implementation, an almost unlimited number of different standard
dialects ‘would result and one of the major goals of this activity
would not be achieved = that is program portability. Therefore six
valid levels of the GKS system have been defined, in order to address
the most common classes of equipment and applications®

The indentation in the following table has the meaning?®
Capability present ‘
Capability partially presant
Capability missing

Level 0: (Minimal capabilities)
) Minimal workstation control

No setting of workstation attributes
Only one workstation at a time

Minimal output
No raster output, no DRAW function

Output to a metafile workstation possible
No metafile input and no user data
Nao input
No segment mechanism

Lavel 1: (Passive output)
Workstation control
Static change of workstation attributes
Full output
All metafile functions
No input
Ho segment mechanism

16 Graphical Kernel System (GKS); Version: 5.2

Tha Graphical Karnael Systam

Level 2a: (Passive output and segment storage, no input)
Workstation control
Static change of workstation attributes
Full output
All metafile functions
No input
Segments stored for TRANSFORM and INSERT
Segment attributes highlighting, visibility, priority
No pick idéntifier

Lavel 2b: (Passive output and simple input, no segments)

Workstation control L

Static change of workstation attributes
Full output
All metafile functions

“Request type input

No pick input’
. No segment mechanism

Lavel 3: (Passive output, simple input, and segment mechanism)
' Workstation control ‘
Static change of workstation attributes
Full output
All metafile functions
Request type input
No pick input
Segments stored for TRANSFORM and INSERT
Segment attributes highlighting, visibility. priority
No pick identifiers ‘)

Level 4: (Full set of GKS capabilities)
Full workstation control
Dynamic change of workstation attributes
Full output ' ‘
All metafile functions
Request, sample, and event type input
Pick input included '
Segments stored for TRANSFORM and INSERT
All segment attributes including detectability

A complaete listing 1is given in chapter 8.5. It must be pointed out.
that the lavel concept refers to a GKS implementation, not to tha
features of one of the workstations connected to it. Of course, at
least one workstation must be able to realize the functional capabili-
ties of a GKS implementation.

In figure 8 the functional capabilities ' present with each GKS level
are summarized.

Graphical Kernel Systam (GKS); Version: 5.2 17

The Graphical Kernel Systan

level]
f] 2a 2b 3 4
featurs
bas) winn_jow‘/\ﬂ/ié‘wpor“r transformation !]
eslc lminimall full control, workstartion tramsformatlon
features con?r*ol' inqulry, GKSM
no ‘r?a—;‘TéF“ R e T e R e e e =T
output (Do BRAV_| __ __ full ourpurt B
267G | stfatlc oTIzlbuTe chonge) dynamic
segmen- segments ~ |segmentsl all
not noT ment
rafton detectablef defecteb! e}oir lbutes
PN request lnpur~' full
P no plck } input

Figure 8: GKS lavel concept

3.9 Tha States of GKS

it i s ot i s it s e e s o

Five different aperating states may occur in tha GKS (see figure 9):

GKS closed;

GKS open;

At least one workstation open;
At least one workstation active;
Segment open

S HN - O
H o nouan

These operating states differ for the user in so far as individual
calls to GKS are allowed only in certain operating states as indicated
in the functional description in chapter %. At each instance between
two calls of GKS the overall state of GKS is defined by a set of stata
variables having specific values. These state variables are charactar-
ized by the fact that they allow a complete description of the effects
of the functions. The total set of GKS state variables cantains the
following subsets:

- GKS state list

- Segment state list for every existing segment

=~ lWorkstation state list for every open workstation
= GKS error state list

On the basis of individual functions these state subsets are allo-

cated, made available and cancelled.
When allocating these state subsets they will be initialized with

18 Graphical Kernel System (GKS); Version: 5.2

The Graphical Kernal Systewm

default values. When initializing a workstation state list, some of
the default values will be taken from a workstation description table
where an antry is present for every kind of workstation supported by
a GKS implementétion. The variables of the state subsets are modified .
by the GKS functions and can be queried by the application progranm.

When an error <condition is - detected during execution of a GKS5
function, GKS calls an error procedure. During execution of the error
routine GKS is in an error substate which corresponds to the operating
state in which the function was called upon. In this error substate
GKS allows only inquiry functions but no modifications to any of the
state lists except the error state list. .

CKsS
closed

open close
GKS

CKS
open

wor lon
b

workstation inpurt)
open segment maplpulation

open flrst close last
ksta

open w.sT.
close w.st.

actlvate first deacrivare losT
workstafilon

sneratlon

primitiv
tting

attribute
Input

At least one
workstatlon

activate w.st.
deactlvate w.st

active segment mapipulatlion
open close
segment segment
primitive~sgenerafion
Segment attribute sgtting

Figure 9: Possible Transitions between Operating States

Graphical Kernel System (GKS); Version: 5.2 19

The Graphical Kernel Sgstel

3.10 Error Handl ing

For each GKS function a finite number of error situations is listed
which will cause the errar handling routine to be called. The name of
the error handling routine is supplied to GK5 by the application
program. The error handllng routine -(unless a standard one is used)
provides an interface between - GKS and the application ‘program. The
error handling routine may interpret :the information about the error
(supplied by GKS in the error state list) and may store data in a data
area for subsequent interpretation by the application program after
return from the erronecusly called GKS function.

The GKS error handling strategy is derived from the following error
classification:

I Errors resulting in a precisely defined reaction
II Errors resulting in an attempt to save the results of previous
operatians
ITI Errors which cause unpredictable reactions including the loss

of infarmation

Regarding the location where an error is detected GKS distinguishes
the following situations:?

A Error detected in GKS procedures

B Error detected in procedures callad from GKS
(driver procedures, operating system procedures)
c Error detected in other areas of ‘the application program
If errors are detected outside GKS (situation €) either tha

application program may regain control over the execution or program
execution will be terminated abnormally. In the latter case results
are unpredictable (case III) and in the worst case all graphical
information 'produced so far in this job may be lost. If, however, the
application program obtains control it may attempt to close GKS
properly or at least attempt an emergency closure by calling the GKS
emergency closure procedure. Similarly, if the error occurs in
procedures called by GKS and control is not returned properly to GKS,
effects are unpredictable. k

The GKS emergency closure procedure is an implementation dependent
facility. Its purpose is to save as much of tha graphical infeormation
produced as possible. The effects of this procedure on the work
stations are left wundefined in this standard. The emergency closure
procedurae may be called directly from the application program. It is
also called from GKS itself as a standard error reaction. Errors of
this type belong to class II.

Finally, all errors which are listed explicitly as part of the
definition of GKS functions belong to «class I. They are either
detected within GKS itself (situation A) or a procedure called from
GKS (situation B) has returned control to the corresponding GKS
procedure with the appropriate error information. In all these cases
of class I GKS calls the error handling procedure whose name is passed

20 Graphical Kernel System (GKS); Varsion: 5.2

The Graphical Kernel Systesm

to GKS when it is opened. The user may either provide his own error
handling procedure or may use the standard error handling procedure
provided as part of GKS. Any error handling procedure must have access
to the following information?

- The identification of the GKS function which calls the error
procedure

-~ The identification of the error condition

- A record wuhich 1is .passed from the GKS function to the error
handl ing procedure, containing all supplementary information
regarding the error condition.

- A record which belongs to the address space of the application
program and which may be used to exchange information between the
application program and the error handling procedure.

The standard GKS error handling procedure performs the following
actions?®

~ Print an error message on the error message file
- Return to the calling program

Example of an user supplied error handling procedure

Errorhandling: PROCEDURE
Interprete GKS procedure and error identification in order to
saelect the following cases:
- CASE "special treatment™:
Interpret GKS error record; Store information for application
program in user data record; Return to calling GKS procedure;
- CASE "standard treatment™:
Call standard GKS error handling procedure with all above
parameters; Return to calling GKS procedure:;

All GKS procedures after detecting an error condition perform the
following actions: ’

- Store procedure identification, error identification, and
supplementary error data into the GKS error state list.

= Set error state.

= Call error handling procedure.

-~ Reget error state.

- Perform built—=in error reaction.

The user supplied error handling procedure has access to all
accassible GKS state table information in accordance with GKS
operating state prior to the GKS function call which caused the error.
However, no modification of GKS state is possible during error
handling. I.e. only GKS inquiry functions may be called by the error
handling procedure. This is achieved by setting and resetting the

error state indicator prior and after calling the error procedure from
GKS.

Graphical Kernel System (GKS); Version® 5.2 21

