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The simulation of index cycles of the atmospheric circulation is a very important
and complex problem tespecially for long term weather forecasts).  Beginning
from pioneer publications by Rossby (1939) and Blinova (1947), many articles
considering this problem have been published. We do not give here the full
description of all investigations on this problem; ‘we should like to point

out only those works which have a direct relationship with the subject of

this paper.

Monin (1956) has analyzed a time spectrum of oscillations of zonal circulation
of the atmosphere and he has found 15 and 24 day periodicities of index .cycles
oscillations. - Monin has expelled a basic component of annual variations of
index cycles of the circulation. -The annual oscillation of index has been

analyzed by Marchuk (1958).

Miller (1974) has used a spectral analysis of selected components of the
atmospheric cycle of the energy and he has shown that there is a relative
maximum at 14-16 day periods in corresponding distributions of energy (both

kinetic and available potential) and its conversions as well.

Webster and Keller (1975) and McGuirk and Reiter (1976) have investigated
approximately 24 day oscillations of energy components and of zonal index, -
which have been introduced as a relation of eddy kinetic energy to zonal

kinetic energy.

It should be noted that in all the above mentioned papers, the measure of
circulation index is different (wind velocity, energy components, etc.) but
these quantities have been averaged over large enough areas (up to the
hemisphere). We should also like to mention that, in all these works,

observation data from different sources have been used.

We should like to point out especially the paper by Kurbatkin and Lenskinov
(1968) where an attempt to simulate a cycle index has been made. In this
work, i1t was shown that in the presence of especially chosen forcing
("climatic source") in a barotropic model of the atmosphere, there might be

auto oscillations with periods of 14 or 24 days.
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A difficulty of the problem is, .that in order to reproduce nonlinear oscilla-
tions of such a system as the atmosphere, we have to reproduce tict only
generation level of eddy kinetic energy (which is. determined by adequate
description of the thermodynamics of the atmosphere) but also the redistribu-

tion of this energy in spatial spectrum, which is especially important.

Let us assume that a basic generation of eddy kinetic energy has occurred in
the middle latitudes in spectral range of synoptic scales by means- of realiza-
tion of the baroclinic instability. The atmosphere is approéimately barotropic
and geostrophic and, therefore, in this case, there must be ‘an energy trans-
port into side of more smaller wavenumbers. ' At the same time, there is an
enstrophy transport into side of more larger wavenumbers, giving well known

"-3 law" in the spectral distribution of the kinetic energy.

If a model of the general circulation of the atmosphere is constructed so

that it has (for example, in barotropic case) the' laws of conservation of
energy and enstrophy at the same time (of course, we bear in mind the finite
difference approximations in finite dimension space to these laws); it seems

to us that laws of spectral distribution of energy have to be got automatically
and non linear oscillations (its amplitudes and phases) will be determined
mainly by levels of generation and dissipation of the energy. (We bear in
mind only baroclinic source of the energy when eddy ﬁransferring heat to-

pole decrease a level of available potential energy and, therefore, take away

the source itself).

In the opposite case, we have to think not only about levels of generation and
dissipation of energy but on construction of corresponding gradients in
spectral distribution of energy as well. Of course, we assume that mean profile

of zonal component of velocity has been reproduced sufficiently.

In order to check the assumptions described above, numerical experiments with
a model of the general circulation of the»atmosphere developed in the Computer
Centre of the Siberian Branch of the USSR Academy of Sciences have been
carried out. In this article, a brief description of the model and problems

has been given and some results of numerical calculations have been discussed.



1.

1.1

DESCRIPTION OF THE MODEL

Hydrodynamic equations

If one takes the pressure normalized to its value at the Earth's surface to

be the vertical coordinate and used the guasistatic approximation, the

hydrodyanmic equations can be written in spherical coordinates as follows:

where
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Here the following notations are used:

t =  time

A = longitude

6 = latitude

o = p/pS (p being pressure and Py - its value at the Earth's
surface) = the vertical coordinate.

u,’v,5 = wind components in A, ¢ and ¢ respectively.

0] = gz (g being acceleration due to gravity, z - altitude at

sea level) = geopotential of constant o- surface

T = absolute temperature

q = gpecific humidity

T = 20sin ¢ (2 being the angular velocity of the Earth), the
Coriolis parameter '

a = mean radius of the Earth

R = gas constant of air

cp = sgpecific heat of air at constant pressure

E., FV = rates of change of momentum caused by Reynolds stresses

F;, F&x = rates of change of temperature and specific humidity

caused by small-scale diffusion
€ =" diabatic heating rate (e = e, *ef, where o and eg are

radiative and latent heating rates, respectively).
C = term describing the condensation process.

E = evaporation.

The solution is assumed to be periodic, which is also taken as the
boundary condition for (1) in A and ¢ . The underlying surface
is also taken to be a solid body corresponding to the o¢-coordinate

surface ¢ = 1. The corresponding kinematic condition is

[ ]
og=0 ato=1 ()

A similar condition is on the upper boundary of the atmosphere

Pp=0) 6=0 ato=0 G)



If o0 =1, then in addition to (2), we have the geopotential distribution
b =gz = @S at o =1 ' i ' S (4)
where Zs is elevation of the Earth's surface above sea level.

2. PARAMETERIZATION OF SUB-GRID SCALE PROCESSES

2.1 Interaction of the atmosphere and the underlying surface

We define the fluxes of momentum modeul (I?SI), heat (HS) and moisture (Es)

at the Earth's surface by

> + 12 N R k

It | ==pplv l®c, (5a)
— + ' ‘

H, = - cP ph |vh| ('Th - ‘I‘S)CT | : | (5b)

E_ = - Iv | (q, - o, T C, - : - (se)

where p is air density, 3 the horizontal wind velocity, qmax the saturated
value of specific humidity, r the relative humidity, and Cu’ CT the friction
and heat exchange coefficients, respectively. Subscript h refers to values
at the upper boundary of the surface sublayer of constant fluxes, and

subscript s refers to functions defined at o = 1.

Along with the surface sublayer of constant fluxes, above lying well mixed -
layer is considered. We assume that its upper boundary has the same altitude

at the sea level as the nearest to the Earth's surface the calculation level.

Below subscript KL refers to values at this level. We assume also that, in
mixed layer, a module of the velocity vector V is constant along the helght and

thereforelv | Iv I (w1th the constraint |V l 1 m/sec ).

The wind velocity vector is different from the surface stress vector direction
at the upper level of the mixed layer. ~The angle between those two vectors
is chosen as 20° above the ocean, 30° above the land and 10° above ice

(outside the tropical area ‘¢‘ > 20° ).



In the tropical area (I¢| < ZOQ ) this angle is equal to 0°

To calculate the temperature Th and specific humidity Q- it is assumed that

the flux of pseudo-potential temperature
R

1000 mb C

o = (f2%0 1, /S,

L
o (T+Cq)'

p
(L is the latent heat of evaporation)

\

in the surface sublayer is equal to its flux outside that layer

¢} -0
Z KI, h
-0, [V | (6 -0 )cCc,=- p x = X (6)
h h h s T 'H —
Vil T %y ‘

with the relation

94 = r Inax (ps' Th)

In (6) Kv is the vertical diffusion cocefficient (it is assumed that Kv =

o |$h|' o ~ 1 m):If the mixed layer is dry, or moist unstable, algorithm

of the convective adjustment has been used. It is assumed that total amount
of condensed moisture in the mixed layer is evaporating immediately and there-

fore it does not give precipitation.

The coefficients Cu and C_ are chosen as follows. In the case of the neutral

T

« . - - :O
stratification (ar T, T )

N N .
C. =C, C,= C_, where above land and ice
u u T T

N Moo0.002 (143220 .

T u ) : s’ s : A7)

*
(the parameter z has the dimension of length and is equal to 5000 m).

Above ocean (Wu, 1969)

0.0005/T > [ if %] < 15 m/sec
h

&= N
v 0.0026 if |V | » 15 m/sec (8)
1.2 if |§z*h| < 5 m/sec
N_ N
cp=c,/ 1 if 5 m/sec < |\7h < 10 m/sec (9)

0.7 if ]35| > 10 m/gec



In the case of stable or unstable stratification (AT # 0)

N N
c = . _ . ,
L= S £ (Ri) , Cr Cr fT (R1) (10)

where Ri is the bulk Richardson number

'%il (2, - B AT
Ri = - —=577
[Vl

In the present version of the model, a value of (zh - zs) is chosen equal

to 70 m, the function fT is assumed as follows (Arakawa, 1972).

1 + 3RL if Ri < 0 (the stable stratification)
fT (R1) = , L ’ (11)
1 + 0.65 Ri if Ri > 0 (the unstable stratification)

The temperature of the ocean surface is assumed to be either a known function
of latitude and longitude or it is found from the integral model of the ocean

active layer (Kitaygorodskiy and Miropolskiy, 1970):
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Here TS and TH are the temperatures of the water at the surface and at depth H

(in the model H = 300 m):



n is the depth of the mixed ld&er; BS and Bn are heat fluxes at the surface
of the ocean and at depth n(n < H); pr and p, are the specific heat and
density of sea water; Y is the sea water buoyancy parameter; A Cw and dw
.are dimensionless constants equal to 0.7, 30 and 0.98, respectively;

GSB is the Stefan-Boltzmann constant; as is the albedo of the underlying
surface; Sg and Fg are the total fluxes of solar and long-wave radiation
at the Earth's surface; and u, is the friction velocity egual to /l?!/éw.

To calculate the temperature of the ground and the ice, the heat balance

equation has been employed

, 4 '
H +LE_ + Ogg T * By = (1 - ocs) Sg +~Fg (13)

For the ground, it is assumed that B, = 0 in the case of sea ice, the
flux is calculated by the formula Bs = >\i(T»S - TH/H, where H is the thickness

of the ice, Ai is the coefficient of heat conductivity, and T_ is the freezing

H

temperature of sea water. In model TH== 271.5 K, H = 3 m, and,)\i = 0.005

cal/cm2 sec deg. The value of asvis given as follows:

0.1 for the surface of the ocean
o = 0.2 (1+28) for the surface of the ground (14)
0.6 for the ice

with the constraints oy < 0.6.

In (14) S is the water equivalent depth of snow. If ﬁhe temperature of

the underlying surface TS in the regions covered with ice or snow appears
as a result of calculation by formula (13) to be higher than the melting
temperature Tm = 273.20K, we let TS = Tm' and calculate the rate of snow

(or ice) meeting as

i > 0
) EX/LM, if g

Msn (15a)

b'e
0, ifg g O
X

1 )y 8 +F - 'I‘4-LE -8 ]
Ex,—[( _U‘s g g o s s s

T =T (15b)

where Lm is the latent heat of melting.



The depth of snow is calculateé>by

3 _ _ _ . ' . B .
3t 8sn By ~ Moy ‘ (16)

where 6sn is the rate of snowfall.

The relative humidity of air r is taken to be 1 above oceans and regions

covered with snow or ice; in other regions of the earth r is defined by

W/Wér if w g V%r

r = ‘
1 PE WS W (17)
cr
where W is the humidity of the ground layer up to the depth = 1 m,
Wcr = 0.75 wf, and Wf is the moisture capacity of the ground, Wf = 15 cm.
. If the amount of precipitation exceeds Wf, the moisture excess is assumed
to flow either to other regions of the ground or to the ocean:
W _ ;
Yol § - Es' if w < Wf ; (18a)
W _ N .
-3t v ifw-= Wf, § > Es,max (18b)
Here § is precipitation intensity and ES max is the flux of moisture under
14

saturation. The moisture content of snow is assumed to be zero. To calculate

the moisture of the ground under snow cover, we employ the relations

awW

3" Mgn T8 ifW < w, (19a)
M, e

Y I; 1 W>,Wf

(19?)



2.2 Small-scale diffusion

The rates of change of momentum, temperature and moisture caused by small-scale
diffusion consist of two parts, F = FH + Fv, where subscripts H and V denote
the contributions of horizontal diffusion and vertical mixing, respectively.
The vertical diffusion and its parameterization in model have been described

above.

The horizontal turbulent small-scale diffusion must not affect the total angular
momentum of the system. This imposes certain constraints on finite-difference
approximations of diffusive terms satisfying dissipative conditions and the

conservation of global angular momentum if these terms are represented as

u
H 1 [a Ju P} 3 cos
F = 55 |a; Po X, o7 T o Pg Ky €05 ¢ :| , (2Qa)
u a2c052¢ps A "S "H BX. -3¢ " S : 3¢ ‘
H 1 3 3s p) ' 38
F =—F—F55—— |7/—pP . aT tcos¢p T/ P_K_ COSp ——]
s a2c0s2¢ps [” s % 2 9 S H 8¢ (20b)

where S = v, T, g. In (20) KH is the horizontal diffusion coefficient, which

has been chosen as follows (Smagorinsky, 1963):

K = o 2 2 2
= WKy +1 Dy + DL ] (21)
where
_ 1 au _ cos iL_( v )
DT T acosy A a 3¢ Cosd (22a)
b oL v, cos¢ 3 (u_
S acos¢ oA a 3¢ COS¢ (22b)

2 2 2 2 2
1 = 0.08 a" (cos ISR YD)
¢ ¢ (22¢)

(AX and A¢ are parameters of the grid domain)

K; = const = 50000 m/sec (224d)
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W is a parameter which gives the possibility of changing the model dissipation

level in numerical experiments.

2.3 Large—-scale condensation

The large-scale condensation process is described by

22 c-m |

‘ “p (23a)
g _ _ -

Y ) (23b)

This sytem of equations is solved using the following eguations:-

a. The process of evaporation in clouds may be neglected.
b. All condensed moisture falls onto the surface of the earth.
c. The specific humidity in clouds is equal to the saturated

specific humidity, g = Dax”

d. Clouds occurring during the calculation fill the whole

computational cell.

The difference approximation of this problem for time step n is

L 1 ' 24
E___(qn+ B qn) _ (Tn+1 - Tn) (24a)
p
n+1 _ (Tn+1
K B qmax ) ' ' (24b)

which is solved by an iterative method.

2.4 Parameterization of the amount of nonconvective clouds
‘and ‘of dry and moist convection

To calculate the amount of nonconvective clouds in the model, the linear
relations between the cloud amount (C) and relative humidity (r) have been

used (Smagorinsky, 1960):

d
v C=oar + 8 (25)

11



Cloudiness is assumed to be of three layers: the upper layer is between

p = 300 mb and p = 550 mb, the middle layer is between p = 550 mb and p = 700 mb, {
and the lower layer is between p = 700 mb and p = 850 mb. For the ﬁpper layer,

o = 1.73, B = 0.43, for the middle layer o = 2, B = 0.7 and for the lower level

o = 3.33, B =-2.

Algorithms of the parameterization of dry and moist convection are as follows.

Dry convection arises if

T - T RT L
k+1 k > ) k+% (26)
PR+t k TPy 4y
where
T * Trpg

Ya is dry adiabatic lapse rate, and k the number of the level. The equations

of dry convective adjustment are

T -
k1~ Tk Ya Ry
Prer ™ Fx TPy 43, (272)
Tieag ™ Teap) + (e - [) = 0 (27b)
(Here and below the wave over a symbol refers to redefined values).
The condition of moist convection is expressed by
- T
ket "k Yo Ry (28a)
Pre1 7 P TPy 3,
>
x Eor ,rk+1 Yer (28b)
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where

I
r = —— =
% r T = 0.7 (29a)
Tnax (Pk’Tk) cr -
1 -% T Tor (29b)
= —_— —_—
Yo T Ya 1 -x Yea T C r '
cxr cr
Tk T T
T 2 (29¢)
and Yba is the moist adiabatic lapse rate.
The equations of moist convective adjustment are of the form
- ~ B (30a)
gy = Geyg) * (G~ g) tm =0
- _ - : L _ (30b)
T ™ Tpp) + (B =T —Fm =0
b
U = Tor Tmax Px’ T’ Uwr T Tor Tnax Cretr Tkt (30¢)
Tee1 T T BTy v
- -7 SR (304)
k1~ k¢ TPriy

In {(30) m is the total amount of condensed moisture.

2.5 Radiation

Long-wave cooling of atmosphere layers is calculated by the well-known formulae

B
d * * *
Ft =B+ Ty - y)dB+ (B -B (31a)
Poop 1£ N Bar = By (uy)
5 ‘
o
*
Fils = BP - f T({u - u*)dB - (B - B)) T(u_* - u*)
| B P < 1t p (31b)
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4 .
where Ba =0 Ta is black-body emission; T the integral transmission

function; uEBthe effective amojnt of absorbing gas from the underlying surface
up to level p; Bgr and Bg are introduced to denote the raidation of the
underlying surface and of the atmosphere above it, respectively, allowing for
a possible jump in temperature; Bc and B1 play a similar role for downward

radiation at the upper boundary of the atmosphere.

Integrals of the type

B
g

* *
t(u_ - u )dB

B p

b
over layers nonadjacent to level p are calculated by the ordinary trapezoidal
formula, and the three-point method of Gauss is employed in the layer of the
largest change of the integer (level p being one of the boundaries of the layer).
This ensures at least one correct symbol following the comma in the value of

the heating rate. !

In the short-wave region of the spectrum, fluxes are determined separately

for a cloudy and cloudless atmosphere. In the region of wavelengths, less
than 0.94 4in a cloudless atmosphere, absorption by ozone and Rayleigh
scattering are considered (Lacis and Hansen, 1974). 1In the case of a cloudy
sky, absorption by ozone in the atmosphere above clouds and dissipation in
clouds are taken into consideration, whereas Rayleight scattering is neglected.
In the region of wavelengths greater than 0.9u, Xatayama's method has been
used (Katayama, 1972). 1In addition, the model contains an algorithm of the

method of layer doubling from Lacis and Hansen.

3. NUMERICAL REALIZATION OF THE MODEL

A grid domain is selected, on which the unknown functions are defined. 1In

the vertical, the analog of vertical velocity o is shifted half a step with
respect to the other unknown functions. The horizontal grid is so constructed
that the components of the wvelocity vector u, v are shifted half a step in

¢ and A with respect to other unknown functions (the grid point for u and v

is not a polar point).

The system of equations (1) is reduced to a so-called symmetric form by
transforming the dependent variables (u, v, T, gq) into (u /5;, v /5;, T /5;, q /5; ),
where P is the surface pressure. The main purpose of this symmetrization is

to obtain relatively simple and absolutely stable difference schemes for the

14



solution of multidimensional equations for the transfer of substances along

trajectories and also for satisfactory finite difference approximations to

the integral laws of conservation.
method (Marchuk, 1974).

of transfer, diffusion and adaptation are considered separately.

3.1 Solution of transfer equations

If ¢ is any component of the vector (u /5;, v /5_, T /5;: g

and v = vcos$, one can write the transfer equation for ¥, as follows:

In (32) a
1

[

0

S

1L, 8w, 1w 1oy 1awy 1.3y
= u o+ = = + = + S0+
acoss 2% T2 t2V3 23 Y3%%0
}.M:O |
2 90
value of the quantity (y¢,y), which equals

w/2 2w ‘
2 2
¢ a” cos¢ dx 4y do

-1/2 0

The problem is solved by the splitting-up
At every time step (At) the solutions of the equations

(32)

has been retained. This means that a spatial operator in (32) has a skew-
symmetric form. Also the symmetrization of the transfer equations gives a

skew-symmetric form for one-dimensional equations.

Applying (32), the method of component-by-component splitting and the Crank-

Nicholson scheme, we shall have a system of one-dimensional equations:

n+1/3 n+l/3 + lpn ) (33a)
—‘L——J+A£——P—— =0
1 2
n+2/3 n+i/3 n+2/3 n+l/3
¥ il +a ¥ * Y =0 (33b)
At 2 2
2 1 +2/3
Qﬁ+1 _ wn+ /3 . l’)n+ + lpn L/ o
At 3 2 (33c)

where Al' A2 and A3 are difference analogs of transfer operators on A, ¢ and g,
respectively, which possess the property of skew-symmetry (A1 ¥,9) = 0. A dot

product in finite-dimensional- space is defined, as follows:

15



W,L). =,

Ll
w1

5y ..i : i’ s .
kK ifk o ik a’ cos%;‘AXQA¢'A0ku

where AX, A¢, and A¢K are the parameters of the finite—differenoeﬂgrid.‘ A
construction of finite-difference analogs of symmetrized operators is not
difficult; a skew-symmetric property of Ai automatically gives a relation

n+1 n+i.. n . n

(I\b r¢)=(1P:1P)

Transfer in A (along circles of latitude) is carried out by the cyclic
factorization method and is -identical for: all unknown:functions (the dlfference
belng in defining "transferring" ve1001t1es) The algorlthm of transfer

along o is also identical for all unknown functions (scalar factorizetion).

It is more difficult to treat the transfer in ¢ (along meridians).

In the present model, the oethod Oflformetion of‘cy6115511y olosedholroleek‘

of meridians shifted by 180° with respect to one another has been"used‘ The
components of vector quantities change their 51gn to an opp051te one when
pa551ng through the pole while scalar values do not change thelr 51gn Slnce
the polar p01nt is not-a point of deflnltlon of u and v, there is’ no problem
in transferring the ve1001ty vector components along such closed clrcles (theyn
transfer is carried out by cyclic factorlzatlon) Here skew—symmetry of the

operator guarantees conservation of guadratic values.



3.2 Solution of diffusion equations -

To solve the diffusion équations, the'method of épatial component—by¥compqhent
splitting and the Crank-Nicholson scheme in time has been used. It ié &ery"
simple to construct the finite-difference analogs of corresponding operators,
which would have a property of dissipativity: To solve a system of finite-

difference equations, similar methods as described above have been used.

3.3 Solution of adaptation eguations

The system of hydrothermodynamic equations at the stage of adaptation can be -

written, as follows:

9 Vp u- v p ' 9ln p
s utg¢ — s 3¢ s :

e EF ) Ve Vi TR e 0= 0 (34a)
8/57v vV p 9ln p ' , ' .
s utggp, . ,— s (@ — 8y _ (34b)
e P EFTTT) Ve ud = Gt RT ——) =0

8 PsT RT (Bps - u Bps + v Bps\ RT /5;0 =0 ) (34¢)

- ) PacRA : . [

ot c Voo ot a cosd 23X ?¢ c_ o
p °s » :

8Py P! ( 9p u . 8pg cos¢v. P TURT U o (349)
3t = acosé EPN 3 7 T 3 Ps
9 _ _ RT ‘ ‘ (34e)
90 o . -

During this stage, the second-order accuracy scheme for the approximation of

the equations in space, and the Crank-Nicholson scheme for the approxiﬁation

of the equations in time have been used. The resulting finite difference scheme
reduces to two eguations with respect to temperature and surface pressure which
are solved by Richardson's iterative method. To accelerate convergence of the
iterative process, filtering of the short waves is performed for the surface
pressure, geopotential and zonal velocity zonal gradients in regions with

|¢| > ¢cr (a value of ¢cr is dependent on space resolution of the model and

is equal to 37.50, when AM = A¢ = 50). Moreover, at every time step, filtering
of the waves with length equal to two steps of grid in zonal direction has been

used for fields of u, v, T, g and Ps'
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Finally, to smooth a sharp contrast at the boundaries between ocean aﬁd
continents, a correction of sensible and latent,heat surface fluxes has been
done by formula of type ’
- —l +_1._( ’+ + ‘+ ‘ )
Vi3 T2 V9 T 17 Waog, g T Viag,g P s e T s 4!

1 : : \(35)

57 Wait, g1 PV, gen T Ve, 5o Y Vi, 941!

In (35) ¢ is H  or E_; the wave over a symbol refers to smoothed quantities.

Note that the described filters are single in the model and, practically, it
does not change the total energy of the system. Therefore, alsymmetriZed
form of transfer equations and the use of implicit schemes (of the Crank-
Nicholson type) would in time give the possibility to construct a finite-
difference scheme, which gives the exact conservation of integral quadratlc
invariants. Employlng this method, it became possible to take off a problem
of the computational instability and to do without a very strict stability
criterion, replacing it with an "easier" and natural approximation criterion
(Marchuk, 1974). Thus, there is a possibility tqychange*widelykin numerical
experiments the coefficients in terms describing the small—scale turbulent
diffusion and viscosity (practically, from zero to 1nf1n1ty) and to form a

necessary spectral distribution of the klnetlc energy

It is necessary to note that the use of dissipation and diffusion terms

in the equations for momentum and temperature exerts an influence not only
on the level of the eddy kinetic energy in high wavenumber diaposon but also
mainly.on the rate of growth or barodlinically instable modes of the synoptic
scales as well. It is changing strlctly the eddy transport of heat to pole
and, thus, a merldlonal gradlent of the temperature and the profile of zonal

activity.

4. NUMERICAL EXPERTMENTS

Tet us discuss some results of three numerical experiments on the simulation
of the mid-January circulation of the atmosphere. In all experiments, the
temperature of the ocean's surface was assumed to be a known function of

latitude and longitude and equal to climatic mid-January item.

18



In horizontal coordinates, the declination of the sun was fixed at mid-January
too, the locations of sea-ice and continental ice were defined and the relief
was absent. The following spatial resolution was used: 5° in latitude and
longitude and three basic levels in the coordinate o(cy1 =1/6, o, = 1/2 and

2
3 = 5/6, which, in the absence of mountains correspond approximately to

g
the isobaric surfaces Py - 150 mb, Py ~ 500 mb and Py - 850 mb). " The time
step was chosen equal to 1.5 hours at stages of solving the transfer and
diffusion equations and it was equal to 30 minutes at Stage of adaptatidn.
(Note that in this model a splitting-up method is used). All diabatic sources
have been calculated once in 1.5 hours (except the radiative one, whichrwas

calculated once in 6 hours).

In the initial experiment (say, experiment 0), integration was carried out

for 95 days from the initial state of the model atmosphere as followé:

u(0, A, ¢, 0) = v(0, A, ¢, 0) =0 . : . (36a)

[}

' ° o
(0, A, ¢, 0) = T(0) = 287°k +60 (o - 1) K S (36b)

q(0, A, ¢, 0) =0.8q _ (P T (o)) (3,c)'

ps(O, A, ¢) = const = 1013 mb (364)

During this integration, Arakawa's method (Arakawa} 1972) has been used to
calculate the geopotential field from quasi-static equation. ' In further
experiments (particularly those discussed below), it was useful to take for

this aim a method from Corby, Gilchrist and Newson (1972).

The solution, corresponding to 95 day experiment O was. taken as an initial‘
state of vector (u, v, T, q, ps) for the next three experiments I, II and III.
Below, we discuss some results of these three experiments which are different
only in coefficient y (see formula (21)). 1In experiment I, u = 0.1, in

experiment II, it was equal to 1 .and, in experimentAIII u'= 10.
In these experiments, the integration was carried out for 90 days with the

time average made for the last 30 days. It was spent about 80 sec pro one

modelling day on the computer Cray-1.
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In Tahle 1, some globally averaged characteristics for -experiments I, II and III.

are given. -

Table 1

K X, z Kﬁr | K:;r Dzr D;Clr | Gt

Experiment‘ I 3.91 5.66 - 3.84 2.78 1.80 © 2.49 - 0.97 "3.40
Experiment IT  10.43  3.88 e 2.79 1,03 1.62  1.54  3.48
Experiment IIIX 22.36 1.96 3.84 4.73 .0.40 3.24 .0.94 .. 4.03

Here the féllowing noﬁations arérused:

Kz .= zonal kineticvenergy

KE = eddy kinetic eneggy

Z = absolute potential enstrophy

KEr = kineti¢ energy of zonal component of wind

Kzr = kinetiq energy of meridional component of wind

Dzr = dissipation of the kinetic energy in the planetary boundary layer

D;r - dissipation of kinetic energy by subgrid-scale processes

Gtr = generation of the kinetic energy

- t -
Units for K , KE’ Ktrand Ktr are 105 J m 2; units for D r’ Dtrand Gtr are Wm 2
z Uo7 -1 -2 tr 2 tr tr tr tr

and units for Z are 10 mb “sec . 'The quantities DH ' Dz , G ,~Ku and Kv
were calculated in the tropospheric layer. (from Earth's surface to height equal
to nearly 300 mb), the item Kz, KE‘and Z have. been got by integration on . whole

atmosphere.

Table 1 shows that the level of eddy kinetic energy in experiment I is higher and
in experiment III, it is lower than in experiment II (it is naturally); under
this, a total dissipation is .changed not so significantly. The "tropospheric”.
part of kinetic energy of zonal component of wind velocity (Ktr) varies from
experiment I to experiment III in significantly low limits than it is for

total zonal kinetic energy of the model atmosphere Kz)' An analysis of the
temperature field at the first calculation level corresponding to the

stratosphere has shown that in both experiments I and III, a new thermodynamic
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regime at this level has been obtained. 'This new regime is warmer than in
experiment II and the temperature gradient in meridional.direption has a v
smaller zonal average. At the same time, the kinetic energy of mexiaional
component of wind velocity varies from experiment I to experiment III in

large range at all levels.

Fig. 1 presents spectra of the meridional component of kinetic energy as a
function of wavenumber in experiment I (dashed line), IT (solid line) and

III (dashed-dotted line). One can easily see that, in experiment I, the

energy transfer from synoptic scales to higher wavenumbers is conéiderably
faster than in experiment II. At the same time, this.kind of energy transfer

is totally absent in experiment III. As a result, another angle of incline is
obtained in experiments I and IIT than in experiment II. Figs. 2 - 14 illustrate
the spectral distribution of eddy kinetic energy at 45°N in experiments I, iI
and IIT, respeﬁtively. Here one sees that in experiment II withinkWavenumbers,

6 to 14, there is "-3 law" distribution. Meanwhile, the same distribution in

experiment I has occurred within wavenumbers 16 to 25.

In experiment III, one can see that there is not a clearly expressed "-3 law"
distribution. Though a potential enstrophy of the system does not change

(an initial value of Z, corresponding to conditions (36) is equal to

3.55.10__7 mb_1 sec_z), however, in experiment I, an additional transport of
energy to higher wavenumbers has been realised. At the same time in experiment
III, a quite opposite situation has occurred. 1In this case, there is an
additional transport of energy from synoptic scales to lower wavenumbers.
Therefore, one éan expect a decreasing energy exchange between zonal flow

and eddies in both experiments I and III in comparison with experiment II and,

of course, it must cause decreasing amplitudes of nonlinear cycles of circula-

tion indices.

As indices of the atmospheric circulation, two characteristics have been
chosen. The first index is a zonal kinetic energy KZ, the second one is an
eddy kinetic energy KE. Figs. 5 - 7 show time variations of these character-

istics for experiments I, II and III, respectively.

In order to make clearer an analysis of these curves, Figs. 8 - 10 present
time spectra of Kz and KE for the last 72 days in all experiments I, II and III.
One cas easily see that, in experiment II, there are cycles with periods which

equal approximately 14 and 24 days. It is especially noticeable for the
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distribution of eddy kinetic energy. More exactly, the energy contribution
of these cycles is ‘the largest in time spectral dlstrlbution. In experiments
I and III, two week and 24 day cycles are practically absent for both indicesi
KZ and KE and only 18 day periods have occnrred in time spectral distribution

of KZ in experiment I.

In conclusion, we should like to point out that excessive extension or; quite
the contrary, the excessive narrow1ng of spatial spectrum of kinetic energy (by,
in other words, a raised "turbulization“ of the modelling atmosphere) might be
one of the main causes of absence of the well-known "natural synoptic periods"

of the atmospherlc Circulatlon.

The authors thank the administration of'ECMWF for the possibility of carrying
out our numerical experiments and Drs. L. Bengtsson, A. Hollingsworth and'

M. Tiedtke for nseful discussions.
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