WNANVHOWIWN 1VDINHD4L

3

23

The vectorisation of
the vertical interpolation

D. Robertson

Research Department

April 1981

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

1. Introduction

This note is a brief explanatlon of the method used to vectorlze the vertlcal 1nter—
polation in the post process1ng of the ECMWF model output It is hoped that it will
be of some use to anyone working on that section of the code and also it provides an
example of the use of the "gather'" operation to vectorize and hence materially speed up

a calculation.

2. Original formulation

The model outputs data on o leVels, (NLEV = 15 of them) and output is desired at some
pressure level P, which, in general, does not coincide with a o level. At some

particular point in space one has a situation such as

§§§§§§§§§§ Ground

(here NLEV = 4)

A sophisticated formula is used to calculate the value of a given quantity at the pressure

level, namely

(X-k(I+3)) o | {X-k(I+3)}- A(I+1)
RESULT = 1 (x(145)-k(1+3)) = = {X-k(I+5)}-A(I)]
(X-k(1+4)) | o P {X-K(I+2)}-A(I)
(k(I+4)-k(I+2)) -'{X-k(1+4)}-A(I—1)]
//(K(1+4)-k(1+3)) . 1)
where | |

A(I) = (X-k(I+2))-S(I+2)-(X-k{I+5)) S(I+1)
K(I+5) - K(I+2) .

Here RESULT is the answer at a pressure level which has a ¢ value of X, The quantities
K(1), K(2), K(3) are real numbers which are the values of the model ¢ levels, and
S(1), S(2), S(3) are quantities which are calculated previously from the data
values at the o levels. The origin of this formula is discussed in Appendix 1. (It is
not necessary to understand the theory to follow the reét of this note.) However, let
us note that an evaluation at a point involves 27 additions/subtractions, 14 multipli-
cations, and 7 divisions (in the domain of real numbers), as weli as indexing

calculations. In addition, when the evaluation routine is called, with X, S(1)+S(N)

and K(1)+K(N) as 1nputs it must locate X relat1ve to the o levels, (determine the
relevant value of I in the above formula) In the orlglnal formulation this
calculatlon was done by a routine E¢2BBF from the NAG llbraryu VEQZBBF used a binary
search to 1ocate X. k :

3. Vectorized formulation

The output ¢ level data is presented on circles of constant latitude, (LINE = 194
points per circle). The above interpolation is embedded inside a loop around the

circle e.g.
DO xxx 'J = 1, LINE

CALL E@2BBF(.....)

XXX ceuns

It is natural to try and reformulate the problem to interpolate all points on a circle
at the same time. If the task was to interpolate to an intermediate g value, this
would be trivial. All the points on a latitude circle would lie between the same
o levels, e.g.

91
O2

intermediate X X X X X
value of o o ey Oqg
Iq

11117717777

and the J loop could be taken inside immediately, The’coéefficients, S, have two
indices, I for level and J for position on the circle and the J loop vectorizes

immediately.

However, when one is interpolating to a pressure level, things are more complex,
The relation between P and o depends on-horizontal p051t10n and one has a situation
like :

points of
constant P x X x X X X X X X X X 02_
T T
o o
//////A//, ,
e
o] L L
// A 7 TN 4

4 s .
7 1////
7 . fa ; Ay
/;7/ : 7 . >ground

Here the location of the P level relatlve to the ¢ 1evels changes as one changes
position, and different values of I are found by the blnary search at different places.
Hence the data points used in the formula are not unlformly spaced in memory and the
vector instructions of the CRAY- 1 cannot be used 1mmed1ately.

Preliminary work must be done to organlse the de51red data 1nto convenlent regularly
spaced locations before d01ng the 1nterpolat10n ' Such an operatlon 1s called a
"gather" and corresponds to a loop of the form o " ‘

DO xxx I =1 , N

,A(I)'= B(INDEX(I))

Here arbitrarily located data; selected from B by the vector INDEX, are collected into

consecutive locations in A. *+

The gather operation is not a hardware primitive on .the CRAY-1, but an efficient CRAY
VECTOR FUNCTION, GATHR, is available in ECLIB to perform this operation. The list of
pointers, INDEX, holds the integers which locate the pressure level relative to the

¢ levels, as a function of J (the index which moves around a latitude cirecle).. The
original binary search algorithm to .determine INDEX is a difficult one to adapt to the
CRAY-1 hardware. It turns out that a simple algorithm can be used which exploits the
architecture of the CRAY-1 and is substantlally faster than a‘blnary search for the
problem in question.

Examining the formula 1), we see that 6 o level positions and 4 data values,
(K(I+1)...K(I+6), S(I),..iS(I+3))'enter'into the final result. 'Thus 1@ invocations

of the gather operation which are needed (with trivially different values of INDEX

for each). This looks like a substantial amount of overhead in moving data around

but the vector instructions are so much faster that the new formulation is substantially
faster than the old one. After performing the gather operations the calculation is

done by a loop ' h ' R

DO xxx J =1, LINE

where the calculation is done by using'an analogue ofll), where each gquantity
appearing there has a subscrlpt J added to it and the I subscrlpts in K and S have
disappeared because of the gathering done. Overall the new method was about four

times as gfast as the original one.

4. Some general remarks

First of all, it should be noted that this method does require some extra. storage space,
to hold the gathered circles of data.- In the problem in question, this was not a
serious difficulty but in other cases it might become so. It could be desirable to
explicitly subdivide the original loop into loops 64 long, thus obtaining maximum .
hardware speed from the CRAY-1, while shortening the temporary vectors.

+ The "inverse" operation, distributing contiguous elements to irregular
locations, o ' - o
o DO xxx I'=1, N
" A(INDEX(I)) = B(I)
is called a "scatter" ‘operation. There are gather and scatter subroutines
available in ECLIB.

As presented, work was done in organi?ingkthe data but no exfra, pbssibiy irrelevant,
floating point calculations are done. In fact the situation is more complicated. . In
a mountainous region, the desired pressure level may not really exist but would be

below the earth's surface.

The: original code had an IF test,
"IF (above ground) CALL EQ@2BBF

IF (below ground) CALL extrapolation routine

Since the test depends on position (J), it would prevent vectorization of the loop.
In the vector formulation all points were calculated by the vector analogue of
E@2BBF. Then, din a subsequeﬁt scalar loop, extrapolation was performed to overwrite

those points below ground.
DO xxx- J = 1, LINE

XXX IF (point J is underground)
use extrapolation formula to recalculate
the value .at point J

This raises two questions of interest. The original formula is being used in regions
where it was not applied before. Although the output of these calculations is later
over written and is never used, one must be sure that a spurious arithmetic error does
not occur; (overflow, divide by @ etc.) which would abort the job. In this case, one
is merely making a different extrapolation and no problem arises. Secondly, it is now
clear that the vectorized method is performing more calculations than the séalar method.
As a result the overall speed up depends on the pressure level desired. At pressure
levels well above the ground, little or no extrapolation is done and the scalar loop
does almost no calculation. Nearer the ground, more and more extrapolation is done.
The overall speed increase was found to vary from a factor of 5 at the top of the
atmosphere to 20% near the surface of the earth. The performance near the ground could
probably be improved by a merging technique, where both the interpolation and the
extrapolation are done by vector calculations and the conditional merge functions are
used to select the desired answer. Unfortunately the method of extrapolation depends
on the physical quantity in question, so this would require a lot of new code for
probably not all that much improvement. On the other hand, for pressure levels near
the top of the atmosphere, the scalar extrapolation loop could be simply by-passed as
the test will never be satisfied and no calculations need be done.

A sample code showing both methods of calculation follows:

Sample Code

In this code, PS(*) is a vector holding values of surface pressure around a latitude
circle. R(LINE,NLEV) is an array which holds the B spline coefficients. R(J,*)
describes the spline which fits the vertical cblumn of data at horizontal point J.
ZINS is the o value of the desired pressure level, at point J. XXSIG holds the o
levels, XXKNOT the knot positions. R ‘

The original code was something like:

C INTERPOLATE ONE LATITUDE CIRCLE

DO 1¢¢ J = 1, LINE

C EXTRACT COEFFICIENTS FOR THE COLUMN

DO 2¢ K = 1, NLEV

2¢ WK(K) = R(J,K)

C FIND SIGMA VALUE OF PRESSURE.LEVEL.

ZLNS = ALOG(P) - ALOG(PS(J))

c INTERPOLATE OR EXTRAPOLATE
IF(ZLNS.LE.XXSIG(NLEV))

? CALL E@2BB¥(NLEV+4 , XXKNOT, WK, ZLNS , RESULT, IFAIL)
IF(ZLNS.GT.XXSIG(NLEV))

3 CALL EXTRAP(ZLNS, ...uveceanenan)

ANSWER(J) = RESULT
199 CONTINUE

C ANSWER(*) NOW HOLDS A CIRCLE OF VALUES
C AT PRESSURE LEVEL P.

In the vectorized version, ZLNS is conceptually best thought of as a vector of
coordinates. The positions of these pressure levels are found by INDEX.

CDIRg . VFUNCTION INDEX
IPXKN = LOC (XXKNOT)

C THE FOLLOWING LOOP VECTORIZES
DO 209 J =1, LINE
ZINS(J) = ALOG(P) - ALOG(PS(J))
IDX(J) = INDEX(ZLNS(J),IPXKN,NLEV+4) - 2
200 CONTINUE

In fact, the CRAY FORTRAN compiler is able to automatically convert loop index

dependent scalars into temporary vectors, so it is not necessary or desirable to

convert ZLNS into a vector for vectorization purposes.

needed later so it is saved.

C

C

GATHER KNOT POSITIONS INTO WORK SPACE
XK(*,*). (A VECTOR LOOP)

CDIR3 VFUNCTION GATHR

299
300

QO 0 0 Q

350

379

380

Now one

DO 3pp KNOT =1 , 6

DO 299 J =1, LINE

XK(J,ENOT) = GATHR(IPXKN+IDX(J))
IDX(J) = IDX(J)+1 5
CONTINUE
CONTINUE

NOW GATHER THE SPLINE COEFFICIENTS INTO WORK SPACE PTC(*,*). NOTE
WE ARE GATHERING ON THE SECOND INDEX OF ‘THE ARRAY AND HENCE MUST

TRANSFORM THE POINTER VECTOR APPROPRIATELY.
1,2,3,4,...... - LINE

DO 35¢ J =1, LINE

IDX(J) = (IDX(J)-8)*LINE + JVEC(J)

IPR = LOC(R)

DO 38§ K

1, 4
DO 379 J

1 , LINE

PTC(J,K) = GATHR(IPR+IDX(J))

IPR = IPR + LINE

CONTINUE

However, the value is

JVEC(*) HOLDS

is all set to interpolate. A is a statement function,

A(X,X2,C2,X5,C1)=((X-X2)*C2-(X-X5)*C1}/(X5-X2)

INTERPOLATION LOOP (VECTORIZES)

DO 7¢¢ J =1 , LINE

THAT

7909

)]

= © ® =

ANSWER(J) = (XLNS(J)~XK(J,3))/(XK(J,5)~XK(J,3))*(
(XLNS(J)—XK(J,B))*A(XLNS(J),XK(J,S),PTC(J,4),
B XK(J,6),PTC(J,3))—
(XLNS(J)-XK(J,5))*A(XLNS(J),XK(J,2),PTC(J,3),
XK(J;5),PTC(J,2)n
—-(XLNS(J)—XK(J,4))/(XK(J,45—XK(J,2))*(
(XLNS(J)-XK(J,2))*A(XLNS(J),XK(J,2),PTC(J,3),
‘ XK(J,5),PTC(J,2))—
(XLNS(J)-XK(J,4))*A(XLNS(J),XK(J,1),PTC(J,2),
XK(J,4),PTC(J,1)))

)/ (RK(J,4)-XK(J,3))

CONTINUE

OVERWRITE POINTS WHERE EXTRAPOLATION IS NEEDED
DO 8¢ J =1, LINE

IF . (XLNS(J).GT.XXSIG(NLEV))

2 . CALL EXTRAP(XLNS(J)reecreornnns)

‘The interpolation scheme S R . S APPENDIX 1

The interpolation method used was cubic-spline interpolation. A spline is defined
as a curve which is piecewise cubic. ' The points at which the cubic changes form
are called knots.

3 2 . : - ’ » 3 2
Alx +B1X¥+CIX+D1 ; Ty _(,,.,————""—4 A4x +B4x +C4X+D4
3. .2 o 3. 2.5 =
Azx +B2x +C2X+D2 A x"+B,x"+C,x+D

3 3 3 3

b4 Y. .
a2 Zs T

knots

Usually at a knot, the Curve, and its'first and second derivative are continuous,
while the third derivative shows a finite jump discontinuity, e.g. y''' changes
from A1 to A2 at the left most knot/above. By allowing adjacent knots to coalesce
a lesser degree of continuity is possible.

If one has a spline defined over M intervals (xo<x1<x2 ...<xM), it has M+3 degrees
of freedom, (since there are 4M co-efficients of the M cubics, and 3 continuity

conditions at each of the M-1 interior points Xl"“XM—l)'

It turns out that one can define special splines called B-splines once a mesh
(= set of knots) has been chosen, which form a basis. That is,there are M+3 B-splines
and a general spline S(x) has a unique expansion in B-splines,

M+3
S(x) = L S B, (x)
g=1 *%

The B splines are chosen to be non-zero over as small an interval as possible and
an interior B-spline looks like this,.

VS B, (x)

i
X —% %% X g X X

i-2 i-1 i i+1 i+2

Consequently at any point x, when evaluating the spline S, at most 4 B-splines
contribute to the sum.

The NAG routines EQ2BAF, E@2BBF use this form of spline representation.

EQ2BBF evaluates a spline at a point, X, given vectors S, K (K is REAL), which are
the co-efficients and the knot positions respectively. One evaluates via

CALL EQ@2BBF(M+7,K,S ,X,RESULT, IFAIL)

As applied in the postprocessing, for a given horizontal point, an interpolating
spline is constructed to fit the data at the NLEV o levels. (Ignoring the slight
complication of full and half levels), NLEV degrees of freedom imply NLEV-3 intervals
and the choice used, (the recommended one) is to make the spline knots coincide with
the o levels, omitting the 2nd and the 2nd last o levels, e.g. ’

.. e © levels

X X X X X X X X X X xXx X "X knots

APPENDIX 1 cont'd

To minimise later calculation, in an initial stage cardlnal spllnes are constructed

(1n the sense that the co-efficients of their B- spllne expansionsare found) A cardlnal
spline is defined to take the Value 1at a speclflc knot and @ at all other knots.

Ci(X)

i
Given the representation of the Cs

Ci(x) = FXXC B (x) ,
L i, L

a spline which assumes values F, at the level o can be written as

R : R

S(x)

% F.C (x) =1 F,_+XXC B, (x)
b kK e K ke T

I SprBy ()

In fact one works with a complete latltude c1rcle of data at a time, so that one can

add a subscrlpt 3 to the above to indicate the partlcular p01nt in question

,Sj(x) = F. XXC

5 B, (%)

2’ k, 2
Here FJ * represents the vertical column of data at point J, and the kX sum can be

thought of as a matrix multiplication.

+ 15 <« +
.- 15

192 ¥ F X XXC
/I‘

It is best performed by a suitable invocation of the (CAL) routine, MXMA,
CALL MXMA(F,1,LINE, XXC,1,NLMAX, S ,I,LINE,LINE, NLEV, NLEV)
(with LINE = 194 the actual first dimension of F and S and XXC is actually dimensioned

by NLMAX). Once the B spline co-efficients are found, the calculation point by point

proceeds as outlined previously.

APPENDIX 2

The CAL vector functions GATHR and INDEX

In CFT, (CRAY-1l FORTRAN) there is the possibility’ofiemploying special user supplied
functions, (which must be written in CAL, the assembler language), which are called
vector functions. The compiler can vectorise loops containing references to these

functions. It must be made aware of their names by a special compiler directive, e.g.

CDIRZ VFUNCTION GATHR, INDEX

GATHR provides an efficient implementation of the gather operation and allows loops
involving indirect addressing to be vectorised. INDEX provides a fast way of locating
elements in an ordered table. Both GATHR and INDEX are described in the bulletin

on ECLIB (ECMWF bulletin B6.1/3)

The algorithm used in INDEX is worth mentioning. To locate a single point, X, in
an ordered table Y(1)<=Y(2)...<=Y(N) one can do a single vector subtraction,

T(I) = X - Y(I) I=1, N«

2

The elements of T are positive as long as Y exceeds elements of Y, then become negative.
Instructions are available to extract the sign informétion from vector X, producing

a bit vector cdnsistihg of consecutive 1 bits, with the'transition from 1 tok¢;marking
the point which locates X in ‘the table. By éounting the number of 1 bits, one finds
the position of X in the table. For a table of length N this requires an amount of
work proportional to N to look up an item, while a binary search only requires an
amount of work proportional to log N, Since the vector instructions are so much
faster than.scalar instructions, the method which uses more operations is faster for
reasonable table lengths (up to a few hundred). When the table is at most 64 long

it may be held in a CRAY vector register and the calculation is very efficient indeed.
It is at least 1@ times as fast as a binary search for tables up to 64 long.

10

