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1. EQUATIONS FOR THE MEAN MOTIONS AND FOR THE
FLUCTUATING COMPONENTS

Reynolds (1895) derived a set of equations for the mean properties of a

turbulent atmospheric shear layer.

Physical variables are then expressed as the sum of a mean value of the quantity

(1) and an instantaneous fluctuation of the quantity about its mean(u').

u + u’ (1)
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In most applications

(3

w' =0,

which is, however, only strictly valid for special integration intervals

(see Bernhardt, 1980).

Reynolds averaging can be applied to the momentum equations, continuity equation

and thermodynamic energy equation simplified by a Boussinesq approximation.
The Reynolds equations for the mean flow are
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thermal expanéion coefficient

-1
B = 6
o
v kinematic viscosity
o ) thermal diffusivity
u, = u, + u' velocity components
i i i v
p = 5 + p' pressure
6 =6 + 0 potential temperature
gj = (0,0,-qg) gravity vector

where p and 6 are deviations from the value of these quantities in an atmosphere

at rest described by eo, Py po. In the following, po will be set equal to 1.

Subtracting the equations for the mean flow from the Boussinesq equations

leads to the equations for the fluctuating components

= QO (7)
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Egns. (4) - (6) introduce new unknowns, the Reynolds stress and heat conducticon

moments uiué, uie', respectively. Therefore, the system of equatidns is no

longer closed.

It is easy to derive equations for these unknowns, the second order correlations,

from Egns. (7) - (9) (see Busch, 1973).
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There are similar equations for the ujie' and §'? (see Mellor 1973):
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The first four terms in Eqn. (10) show how diffusion acts on Reynolds
stresses. There are contributions of velocity fluctuations, molecular viscosity
and pressure fluctuations, the last one being least understood because of the

difficulties in measuring the guantities involved.

The hext two terms represent the production/destruction of stresses due to
interaction betweeh the eddy and the mean flow. The energy budgets for the mean
flow and the turbulent flow can be obtained by contracting Egqn. (10) and from
Egn. (5). As the production term occurs in both equations with opposite signs,

the meén flow supplies theyenergy for the turbulent motions.

The following term describes how buoyancy terms produce or destroy Reynolds

stresses.

The next term is called the tendency-towards-isotropy-term which will be
explained in more detail later. This term appears in the egquations for

uiz, uéz, uéz, but drops out of the equation for the total energy ui’ﬂ-ué’+ ué’
by virtue of the vanishing divergence of the turbulent velocity field. ’
Tt therefore represents a rearrangement of the turbulent energy among the

various éomponenté of velocity.
The last two terms represent the viscous dissipation and the effects of Coriclis
accelerations, respectivelyQ Viscous dissipation transforms kinetic energy of

the turbulent motions uiz into intermnal energy.

2. " THE CLOSURE PROBLEM

Although fhese equations are an important tool to describe turbulent flows,
they do not allow a direct solution of the problem, the prediction of second
order correlations. Since the equations are non-linear, the additional

- equations for second order moments will require information on third order
correlations and so on to correlations of order n involving those of order
n+l. Therefore, there will always be one more unknown correlation than

equations.

Several authors have derived methods to close the system of equations. The
simplest reasonable one is the eddy viscosity or eddy diffusivity approach.
Molecular viscosity in laminar flows enables molecular motions to transfer
momentum and heat. In a turbulent flow, velocity fluctuations transfer these

quantities. Molecular viscosity is then replaced by eddy viscosity defined as
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(K is also called turbulent exchange coefficient). K-theory and also the mixing
length theory proposed by Prandtl are called first order closure schemes. They

can only successfully describe a limited range of flows.

Mellor (1973), Wyngaard and Coté (1974), Deardorff (1972) and Sommeria (1976)
have used higher order closure schemes. Correlations of a certain order are

then related to the mean values and/or the correlations of lower order.

The above-mentioned authors have parameterized triple correlations in order to
obtain estimates of second order moments. (These schemes are mostly called
second order closure schemes. Some authors, however, call them third order
closure schemes, because the third order correlations are parameterized).

André et al (1976) provide model assumptions for fourth order correlations.

Higher order closure schemes are an alternative method for calculating the

structure of the turbulent flows.

Only ensemble average statistics of the flow are considered. This reduces

the computational effort which would be necessary to provide a three-
dimensional simulation of the flow, where instantaneous details of the randomly
fluctuating fields would be calculated. A three-dimensional simulation of a

diurnal cycle (Deardorff, 1974) e.g. took roughly 350 hr on a CDC 7600 computer.

3. MODELLING OF CERTAIN TERMS

Modelling of second order correlations requires a lot of assumptions.
Lumley and Khajeh-Nouri (1974) show that they can be minimized and that the
medel constants involved can be established through calculations of simpler

flows.

In the following, the terms which are modelled in a second order closure scheme
are listed. Details on the method of modelling are only given for the terms
in the equations for the Reynolds stresses. A similar approach is possible

for the u'é’'.
i

Rotta (1951) was the first to give a set of model assumptions for a certain

term. The assumptions have been tested and the constants involved have been



adjusted. Today, these models are widely used and referred to as a 'standard

set of assumptions‘ (described in Deardoxrff (1973) and Donaldson (1973)).

If some means can be found to model the velocity diffusion terms, the terms
containing pressure fluctuations (tendency~-toward-isotropy and pressure diffusion
terms) and the dissipation in terms of the mean variables and/or in terms of

the second order correlations, then the set of equations is closed and a solution

can be found}

When selecting a model for this purpose, the following basic principles

(see Donaldson, 1973) must be observed:

1) The model term must be of tensor form so that it is invariant
under an arbitrary transfdrmation of coordinate systems. It
must thus have all the tensor properties and, in addition, all

the symmetries of the term which it replaces.

2) The model term must have the dimensional properties of the

term it replaces.

3) The model term must satisfy all conservation relationships.
I. Modelling of the velocity diffusion terms uiu%uﬁ

The simplest tensor of rank three that can be obtained from the second-order
correlations u'y' that is of the form T,. is
ik ijk
2
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The tensor ufu[ui is symmetric in all three indices so that the model must be
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symmetric in all these indices. Mellor (1973) chooses:
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To obtain correct dimensions, the model expression must be multiplied Bv‘a
scalar velocity which is chosen as
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and by a scalar length Al , which is to be related to the scale of the mean

motion or to the scale of the turbulence.

The minus sign in
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ensures that energy will be diffused down the gradient.

A similar approach can be made for u'ke'2
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II. Modelling of the tendency-toward-isotropy term F‘&%?i? + Eif%

This is a second order tensor of the form Tij' The simplest tensor of this form
that can be formed from the second order correlations is the correlation uiug

itself, which has the right symmetry properties, but not the right dimensions.

If the term is modelled by




there is a correction to be made: if i is set equal to j, the term to be.

modelled vanishes in an incompressible fluid while q/l’_1 uiui does not.

A reasonable correction is therefore
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Eqn. (19) states that the tendency-toward-isotropy of the term u;ué is

proportional to the degree of anisotropy.

The minus sign in this expression is chosen so that in the absence of other
influences the turbulent energy will be equally distributed between the various
components of velocity. Expression (19) was first given by Rotta (1951).

It only includes the effect of mechanical turbulence. The pressure fluctuations
p', however, depend (as can be seen from the Poisson equation for p' which

follows from (8),. see e.g. Wyngaard, Coté and Rao, 1974) on three methanisms:

(1) ‘turbulence (the cortribution of which is modelled
~ by Egn: (19)):
~(2)  buoyancy and shear of the mean flow
{3) Coriolis forces.

The contributions of Coriolis forces on pressure correlations are negligibly

small and therefore they are not included in the model.

A simplified model of the contributions from the mean shear and from buoyancy

is proposed by Launder et al (1975):
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where the Pij include the total production/destruction of stresses by both shear and

buoyancy (De Moor and André, 1975) :
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In most cases, however, this production has been neglected as by Crow (1968).

Mellor (1973) takes Rotta's and Crow's terms into account, i.e.
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In the equations for uiz, uéz, uéz this term describes the conversion of
turbulent energy to heat by the action of molecular viscosity (Donaldson, 1973).
It represents the rate at which viscous stresses perform deformation work
against the fluctuating strain rate (Tennekes and Lumley, 1972). This is
always a sink of kinetic energy. 1In the equations for the tumbulent components
of the flow the viscous dissipation cannot easlly be neglected because

it is essential to the dynamics of turbulence. In the equatibns for the mean

flow, however, the corresponding term is negligibly small provided the

Reynolds number:is large.

Dissipation is connected with the smallest scales of turbulent flows which are
generated by non-linear processes. At large Reynolds numbers the relative
magnitude of viscosity v (1/R) is so small that viscous effects in a flow .
tend to become vanishingly small. The non-linear terms then, however,

generate motions at scales small enough to be affected by viscosity. The

smallest scale of motion automatically adjusts itself to the value of viscosity.

The generation of infinitely small scales of motion is prevented by the
viscous terms dissipating small scale energy into internal heat. Kolmogorov's
'universal equilibrium theory' of the small scale structure is described by

Tennekes and Lumley (1972). It is assumed that small scale motions with small

10



time scales are statistically independent of the relatively slow large-scale

turbulence and of the mean flow. Consequently: .

1. Then the small-scale motion should depend only on the rate at which it

is supplied with energy by the large-scale motion and on the kinematic viscosity.
This rate of energy supply should be equal to the rate of dissipation

(Tennekes and Iumley, 1972). If the amount of kinetic energy of the large

scale turbulence is scaled by u?, the rate of transfer of energy by% u?

(where £ denotes the length scale of the largest eddies), the rate of energy
supply is of order %— . Taylor (1935) notes that with

e~ o | | 1)

the total dissipation of kinetic energy can be estimated from the large-scale

dynamics which do not involve viscosity.

2. At large Reynclds numbers there is only very little direct interaction
between Fluctuations and the mean flow. Therefore, the small-scale structure
of turbulence tends to be independent of orientation effects introduced

by thé mean shear. As all aweragesrelating to the small eddies do not
change under rotations or reflections of the coordinate system, Kolmogorov

introduces 'local isotropy' for small-scale motions.

Assuming isotropy at large Reynolds numbers, Rotta (1951) notes that there are
: A
no correlations between the U /‘axk and the (a\"ﬂ!,‘axﬁ_ if i # j, so that
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Under isotropic conditions, the contribution to the total dissipation of
kinetic energy should be equal for all components i = 1,2,3. Then the

dissipation term can be modelled as
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IV. Other terms

The diffusion of uiug by molecular viscosity

is negligibly small at high Reynolds numbers.

Hanjalic and Launder (1972) state that the pressure diffusion terms

-are small in the first place. Mellor (1973) sets

Puc = p 0 0 (24)
4. CLOSED SET OF MODEL EQUATIONS

Simplifications and modelling assumptions lead to the following set of

equations (Mellor, 1973)
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To obtain the length parameter £, the mlx:Lng length profile as given by

Blackadar (1962) can be used
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k von K&rmin's constant
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Miyakoda and Sirutis (1977) choose

N
J 4 dz
Lo = 0. — : | (30)
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' Yamada and Mellor (1979) introduce an additional prognostic equation for £:
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The constants Ai, Bi’ Ei’ C1 and the stability function é can be derived

£
empirically. Values are given by Mellor (1973) and Yamada and Mellor (1979).

5. SIMPLIFICATION OF EQUATIONS USING SCALING OF TERMS

The set of model equations containing 3 equations for the mean flow,

Egn. (4) - (6), and, in addition, 10 partial differential equations for the
turbulent correlations,Egn. (25) - (27), is far too complex and not economic.
Mellor and Yamada (1974) (M-Y in the following) refer to this model as the
Level 4 model. From this highest level of complexity, M-Y derived a hierarchy

of 4 models, using a systématic way of simplification.

They use a parameter a which-denotes the degree of anisotropy such that a0

is the isotropic limit.

Although there exists no physical process such that a—+0 as in the kinetic
theory of gases (where a*0 as the mean free path approaches 0), M-Y assume

that a is small enough for the purpose of simplifying the model.
After ordering the terms of the Level 4 model according to this parameter,

terms of order a® and a, respectively, are neglected to decrease the

complexity of the system.

14



Departures from isotropy are defined using aij and bi as
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The equations can be separated into equations for an isotropic and an
anisotropic part, i.e. an equation for g*, which follows from (25) by

" summation and an equation for aij g* which follows from (25) by using
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Table 1 Scaling of terms
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The scaling of the terms in (35) is based on the following considerations:

L= 6(L) = 6(L)

:

¢(L)y=6(L) e
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From neutral experimental data the ratio for the length scales 'LLJ~
has been determined to '&/_,L X 005—-0,A40 (Mellor, 1973).

!

Although in most shear flows, production and dissipation do not balance
locally, they generally are of the same order of magnitude (Tennekes and
Lumley, 1972). If dissipation, which is proportional to q3/JL,

and production are regarded as dominant in Egn. I, then

qu /LL)( P I . '.,v ' (37?

For the same reason, the first and third term on the right hand side of

Eqn. II lead to
3 .
4" W = @ va . * (38)
A combination of these two relations yields:
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If similar considerations are made for Egn. (35) ITT and IV, this leads to

4 b & = L

q° Ox

fl
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k‘b b V ~ (41), (42)
a

which gives

(43) ; (44)

so that a = b.

Experimental laboratory boundary layer measurements and boundary layer

models show that

X a2
— = &la) (45)

and

)=o)

(46)

Therefore, the diffusion terms are considered to be of order

ot i
L

The determination of a final form of the equations depends on a comparison of

the relative magnitudes of the different terms. Therefore some a priori

information is needed about the time scale associated with the advection of
the variables.
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M-Y use D/D—b ~ %,L. (where T remains undefined)

for the scaling of tendency and advection terms (see Eqn. (35)).

According to M-Y, experience shows{that\édvecﬁion and tendency terms are L
generally small. They use the same scaling for diffusion and advection: e’(g%? ).
This is ‘based on the belief that diffusion wiil*éssume a length scale which

will tend to bring the processes of advection and diffusion into balance

( Schemm and Lipps, 1976).

Velocity and "length" scales of the advective terms (u,L) can then be related

to the parameters g and.A by using

q& 1 : “ 3_, v o 5
Wi = at — . ‘ (47)

L .
The time scale of the mean flow L/U is therefore of order 1/a? larger than A/q .

This approach is different from the one used by Schemm and Lipps (1976)..
They distinguish between resclvable motions and subgrid turbulence. In this
particular case, homogeneous turbulence experiments have shown that there

is only one true scale appropriate for both kinds of motion

—— NS

L A ‘ (48)

where A denotes the grid spacing and L the scaling parameter for tendency

and advection terms.

6. HIERARCHY OF MODELS

In order to derive the level 3 model as a first level of simplification,
all terms of orderaB or smaller relative to terms O(1) are neglected in

Egqn. (35) I to IV. .
The simplified setkdgféquations consists of three differential equations for

the mean flow [Eagn. (4) - (6)], two differential equations for the turbulent

quantities g* and 0'? , and eight algebraic equations

19



Table 2 Corrected versions of model. Levels i, 2, 3.
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If all terms of order a®? are also neglected, the Level 2 model results only

containing algebraic equations. =

To obtain the Tevel 1 model all terms except those o6f O(1) are neglected.

In the neutral case, the Level 1 and 2 models bear direct resemblance to eddy

or mixing length models.

The Level 3 model with boundary layer approximations provides algebraic

expressions to estimate the Reynolds stresses w'u', w'v' and w'8'; which then

can be used in the p’iognostic‘e‘qliatic'ms for' the turbulent kinetic ehergy g °

and for §'2." The 'e'/‘qﬁa’tions for the Reynolds stresses are of the form

WV
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where KM and KH can be iégarded as sophisticated expressions for the exchange

coefficients for momentum and heat, respectively, which are defined as -

follows:
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M-Y tested the performance of model Levels 2,3,4 on an'idealized

diurnal cycle, with an imposed surface temperature. All model levels

gave approximately similar results. . The difference between the most sophisticated
Level 4 (ten differential equations for turbulence moments) and Level 3.

(two differential equations)were less than between Level 3 and

2 results.

The Level 3 model was chosen to simulate the Wangara experiment

(Yamada and Mellor, 1975). Experience derived from this successful
numerical simulation lead to the. proposal of a. 'model of compromise' which
was more economic. It was formally obtained by omitting advection;tendency
and diffusion terms in all the equations for the second order correlations
of the Level 3 model except in the equation for the turbulent energy.

The resulting model was referred to as Level 2.5. It only requires the
solution of a differential equation  for the turbulent energy q®*. 'The yest

of second moment equations are reduced to algebra.

In another simulation of the Wangara -experiment (Yamada, 1977), the Level 2.5

reproduced well -the results of the Level. 3 model.

Miyakoda and sirutis (1977) incorporated the Level 2.5 model in the GFDL
general circulation model. They obtained significant improvement over’

previously tested parameterizations.

Yamada and Mellor (1979) use a one-dlmen51onal version of the revel 2.5
model together with cloud ensemble relations in order to simiilate BOMEX data.

The results are said to be encouraging.

Strangely enough, Mellor and Yamada did not neglect the diffusion term in

Egn. (32) II in the 'hierarchy paper' (M-Y, 1974) , although they wanted to
eliminate small terms. Lipps (1977) pointed out that this term was

(in our notation o(a ) compared to the largest terms of O(1) on thé right hand
side of the equation and could be deleted in order to obtain the Level 3 model,
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Deletion of this term makes the further calculations slightly less complicated;
The results ofcomputations which include the term, are, however, said not to-
be significantly altered by its deletion. M—Yiusé the incorrect VerSionyﬁb'j'

of the' 'model £0 simulate the Wangara ‘data (Yamada and Méilor, 1975)..

Miyakoda and Sirutis (1977) give a description of the corrected version used
in the GFDL GC model.-HThe,documentationiof the model  (1975) and a
listing of the code used in the GFDL model (1980), however, 'still show the

additionalHQerms.

23



References

andré, J.C., G. De.Moor, P. Lacarrére and R. du Vachat ' 1976 . Turbulence )
approximation for inhomogeneous flows. Part I: The clipping : g
approximation. J.Atm.Sci., 33, 476-481. Part II: The numerical ' ‘ ‘
simulation of a penetrative convection experiment. J.Atm.Sci., 33, 482-491.

Bernhardt, K. 1980 Zur Frage der Glltigkeit der Reynoldsschen Postulate.
Zeitschrift . filr Meteorologie, 'Bd. 30, Heft 6, 361-368.

Blackadar, A.K. 1962 The vertical distribution of wind and turbulent exchange
in a neutral atmosphere. J.Geophys.Res., 67, 3095-3102.

Busch, N.E. 1973 On the mechanics of atmospheric turbulence. In: Workshop on-
Micrometeorology, AMS, 1-61. :

Crow, S.C. 1968 Visco elastic properties of fine grained incompressible
turbulence. J.Fluid Mech., 33, 1-20.

Deardorff, J.W. 1972 Numerical investigation of neutral and unstable planetary
boundary layers. J.Atm.Sci., 29, 91-115.

- 1973 Three-dimensional numerical modeling of the planetary
boundary layer. In: Workshop on Micrometeorology, AMS, 271-311.

- 1974a Three-dimensional numerical study of the height and
mean structure of a heated planetary boundary layer. Boundary-Layer
Meteor., 7, 87-106. ‘

- ) 1974b Three-dimensional numerical study of turbulence in an
entraining mixed layer. Boundary-Layer Meteor., 7, 199-226.

De Moor, G. and J.C. andré 1975 1Ia turbulence dans la couche limite
atmosphérique. Modelisation de la couche limite. La M&t&orologie VI,
No. 3, 179-195.

Donaldson, C. du P. 1973 Construction of a dynamic model of the production
of atmospheric turbulence and the dispersal of atmospheric pollutants.
In: Workshop on Micrometeorology, AMS, 313-392.

Hanjalic, X. and B.E. Launder 1972 A Reynolds stress model of turbulence
and its application to thin shear flows. J.Fluid Mech., Vol.52, 4,
609-638,

Launder, B.E., G.J. Reece and W. Rodi 1975 Progress in the development of
a Reynolds stress turbulence closure. J.Fluid Mech., Vol. 68, 3, 537-566.

Lipps, F.B. 1977 Corrigenda, J.Atm.Sci., 34, 1482,

Iumley, J.L. and B. Khajeh-Nouri 1974 Computational modeling of turbulent
transport. Advances in Geophysics, Vol. 18a, 169-192.

Mellor, G.L. 1973 Analytic prediction of the properties of stratified planetary
surface layers. J.Atm.Sci., 30, 1061-1069.

Mellor, G.L. and T. Yamada 1974 A hierarchy of turbulence closure models for
planetary boundary layers. J.Atm.Sci., 31, 1791-1806.

Miyakoda, K. and J. Sirutis 1977 Comparative integration of global models with
various parameterized processes of subgrid-scale vertical transports:
Description of the parameterizations. ‘Contr. to Atm. 'Physics, 50, 445+487.

24



Reynolds, 0. 1895 On the dynamic theory of incompressible viscous fluids
and the determination of the criterion. Phil. Trans. Roy. Soc. London
Al86, 123-164.

Rotta, J. 1951 Statistische Theorie nichthomogener Turbulenz.. Zeitschrift fir
Physik, Bd. 129, 577-572.

Schemm, C.E. and F.B. Lipps 1976 Some results from a simplified model of
atmospheric turbulence. J.Atm.Sci., 33, 1021-1071. '

Sommeria, G. 1976 Three-dimensional simulation of turbulent processes in an
undisturbed trade wind boundary layer. J.Atm.Sci., 33, 216-241.

Taylor, G.I. 1935 The transport of vorticity and heat through fluids in
turbulent motion. Proceedings Roy.Soc. London, A135, 685.

Tennekes, H. and J.L. ILumley 1972 A first course in turbulence. The MIT
Press, Cambridge, Massachusetts.

Wyngaard, J.C. and O.R. Coté 1974 The evolution of a convective planetary
boundary layer - a higher order closure model study. Boundary-lLayer
Meteor., ZJ 289~-308.

Wyngaard, J.C., O.R. Coté and K.S. Rao 1974 Modeling the atmospheric boundary
layer. Advances in .Geophysics, Vol. 18a, 193-211.

Yamada, T. 1977 A numerical simulation of pollutant dispersion in a
horizontally homogenecus atmospherie boundary layer. Atmos. Environ, 1015~1024.

Yamada, T. and G.L. Mellor 1975 A simulation of the Wangara atmospheric
boundary layer data. J.Atm.Sci., 32, 2309-2329.

Yamada, T. and G.L. Mellor 1979 A numerical simulation of BOMEX data using a
turbulence closure model coupled with ensemble cloud relations.
Quart.J.Roy.Met.Soc., 105, 915-944.

25





