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1. INTRODUCTION

Before starting on the development of a cloud parameterization scheme it seemed
important that the method and performance of the radiation scheme should be
understood as fully as possible. To this end a detailed study of the scheme has
been made and its performance assessed using the single column model with an
initial profile derived from GATE data. The behaviour of the scheme near sharp
inversions was also'considered using a profile from ATEX (Atlantic Trade

Experiment). The following aspects of the scheme were studied in some detail:—

(1) Clear-sky fluxes and heating rates.

(1i) The effect of the vertical smoothing of humidity on the

treatment of inversions.

(iii) Fluxes and heating rates associated with clouds at
various levels. The bulk radiative properties of the

clouds are calculated and compared with other estimates.

(iv) The effect of changing the specification of cloud liquid
water on the heating rates, fluxes and the bulk radiative

properties of the clouds.

2. CLEAR SKY FLUXES AND HEATING RATES

The characteristics of the radiation scheme in clear-sky conditions were studied
using the GATE mean profile shown in Fig. 1. The ascent is moist, particularly

near the surface. For the purposes of this sﬁudy_the scheme was altered to print
out the various components of the solar and infrared fluxes. Heating rates were

also divided into short wave and long wave.

Under clear-sky conditions the scheme's treatment of the absorption and scattering
of solar radiation seems satisfactory. The main discrepancy with other estimates
is in the solar heating rates in the lower troposphere (Fig. 2). Here the

scheme gives considerably more heating by at least 0.5 K day_lland is guestion~
able for the following reason. In the troposphere the main absorber of soclar
radiation is water vapour. As the solar radiation penetrates lower into the
troposphere the energy in the water vapour bands is progressively removed, until
they are almost completely absorbed. Thus in the lower troposphere, although the
humidity mixing ratio increases, the rate of absorption should decrease. Such

a decrease is seen in the other estimates but not in the EC scheme. The reason
for this discrepancy lies in the form of the transmission function used. 1In

Fig. 3 the water absorptivity curve as a function of absorber amount is compared
with those used by Slingo and Schrecker (1982) and Lacis and Hansen (1974). The

EC scheme. agrees- well with the other curves at low absorber amounts but deviates



significantly for large path lengths. In the lower tropical troposphere absorber
amounts are typically near 10 g cm—2 so that the absorptivity curve used in the
EC scheme will overestimate the absorption in this region. This would seem to

explain the large heating rates obtained with the EC scheme.

The solar fluxes computed by the EC scheme show a reasonable reflectivity (10%)
but, as expected from the heating rates, the absorbed flux is too high (32% of
the incoming flux). Vonder Haar and Hanson (1969) quote observed values of
17-19% for a clear atmosphere in 0-10N and the scheme of Slingo and Schrecker
(1982) gives 18% for the GATE profile used in this study. Consequently the

EC scheme has too little solar radiation reaching the surface (277 Wm—2 compared
with 323 Wm—2 from Slingo and Schrecker) and this could have important conse-

guences for the land surface heat balance.

The upward and downward infrared fluxes computed by the EC scheme in clear-sky
conditions have been compared with various observed and modelled values from
GATE given in Table 1 taken from Rowntree (1981). Details of the observations
and the models are given in Table 2. The upward fluxes agree well with the
modelled and observed values in the lower and middle troposphere. Above 400 mb
however, the EC scheme gives upward fluxes that are systematically lower than
the majority of the other values. Similar values were obtained from the ATEX
profile (Fig. 6) which is considerably drier, so it does not seem to be related
to the humidity profile. The cause of the discrepancy seems to be in the
calculation of the ozone transmissivity in mich the same way as was found for the
short wave water vapour transmission. The downward fluxes are in reasonable
agreement with the various mdels and observations bearing in mind their larxge

variability.

The infrared cooling rates from the scheme are shown in Fig. 4 along with those
from the scheme of Roach and Slingo (1979) , using the same data, and an observed
profile from the Line Islands Experiment (Cox, 1969). The main difference is the
iack of cooling maximum near the surféce in the EC scheme. This is due to the
neglect of the continuum in the computation of the gaseous transmission. The
continuum or dimer has an absorption coefficient (k) which is dependent on

the water vapour pressure (e) with the form
k = klp + k2e (Bignell, 1970) 2.1)

-1
where the first term is the pressure broadening term. Typically, K1 = 0.004 g
cm—2 atnrl. paltridge and Platt (1976) point out that in the atmospheric
window the approximate contributions to the radiance of the pressure

broadening term, the vapour pressure +term and the other gases



are, respectively, 15%, - 70% and 15%. . The main problem.in incorporat- )
ing the dimer effect in the scheme is the computation of the mean water vapour
pressure encountered by the radiation. The results of a first attempt .at
including the continuum effect in the EC scheme are shown in Fig. 5. The water
vapour transmissivity (1) between 9.07 and 12.27 um has been replaced by the

term:-

T=exp [ -0k, 4, (Dp + kyd,(Delu] : (2.2)
where ¢1 = (2§§) 1.5 and ¢2 = (2-6--‘3’)6 > , u is the absorber amount. (Roach and
Slingo, 1979). For simplicity the local value for e was used. Although there
is increased cooling and a higher outgoing flux - both improvements - the
increased cooling penetrates too high into the troposphere. This may be due to
the use of a local e rather than a pathlength weighted mean vapour pressure.
However, the dimer effect is sufficiently important that some way of including

it in the scheme should be found.

3. THE EFFECT OF VERTICAL SMOOTHING OF HUMIDITY ON THE TREATMENT

OF INVERSIONS
The humidity mixing ratios used in the radiation scheme are determined from the
satu:ated mixing ratio at the k-levels multiplied by the relative humidity
averaged over three adjacent levels. In most circumstances the effect of this
is small but the physical implications near atmospheric inversions warrant some
consideration. The radiative effects of the smoothing were studied using a
profile from ATEX (Fig. 6) which contains a fairly sharp lower tropospheric
inversion with felatively dry air aloft. The effect of the vertical smoothing
on the infrared and solar clear—sky heating rates is shown on Fig. 7. In neither
case does the scheme respond very strongly to the inversion particularly in the
infrared. The effect of the smoothing is to Shlft the level of increased cooling
from below to the inversion to above fhe inversion thus leading to a reduction
rather than an enhancement in the strength of the inversiom. It is generally
considered, however, that, except where the overlying air is relatively moist,
the effect of radiation is to strengthen an inversion (Staley, 1965). The sméll
response of the infrared part of the scheme to a large humidity and température
change is somewhat surprising. Could it be related to the approxiﬁations used in
the derivation of the long wave flux equation used in the séheme ? The equation
involved an assumption relating the isothermal case to the temperatufe dependent
case via the term g*:—

o -1
F=aB+ (50 - F/e) T+ (F °/g - TB) T ' (3.1)

where F° is the flux without gaseous absorption, 7B is the local black body flux



and E* is the emissivity corresponding to the fluxes computed in the isothermal
case. This equation alsoc includes the assumption that the black body fluxes vary
linearly withAoptical depth, It is not clear that either this assumption or

the assumption that E* can be applied to the temperature dependent case are valid

in the vicinity of sharp temperature and humidity gradients.

In addition, a 'cooling to space' approximation has been used to derive equation
(3.1). This means that the terms representing exchange with the surface and
internal exchange with other layers in the atmosphere have been largely neglected.
The last term on the right hand side of equation (3.1) represents an approximation
for the internal exchange term based on the assumption that the black body flux
is a linear function of optical depth. However, in the vicinity of inversions
the internal exchange term is important (Rodgers and Walshaw, 1966) and the
approximations used in the scheme may prove inadequate. There may be other
circumstances where the approximation falls short, for example, in the strato-
sphere where exchange, in the atmospheric window, between the surface and the
ozone layers may be significant. There may also be problems with this approx-

imation near clouds though—this—aspect—needs—further study

4, EFFECT OF CLOUDS‘ON FLUXES AND RADIATIVE HEATING RATES

The radiative effects of high, medium and low layer clouds have been studied by
placing varying amounts of cloud in the 50 mb layers centred on 250, 550 and

850 mb. Only one cloud was considered at a time. The net radiative cooling in

the cloud layer as a function of cloud amount ;s shown in Fig. 8. All the clouds
show a rapid increase in radiative cooling for small cloud amounts. This rather
intense reaction to small cloud amounts could lead to problems in the model through
the response of the convection and the cloud paramete;ization. The sljight decrease
in radiative cooling with increasing cloud cover seen for medium cloud seems
physically unrealistic. 1In Fig. 9(a) the dependence of the outgoing flux at the
top of the atmosphere on cloud cover again shows unphysical behaviour for all
clouds. With the GATE profile, all the clouds are colder than the surface and so
should decrease the outgoing flux because they block off the warmer surface. As
can be seen, the error is greatest for high cloud. The downward infrared flux at
the surface,(Fié. 9(b)) is reasonable, the response of the clouds being dependent
on the temperatufe of the cloud relative to the effective temperature of the

clear-sky flux. |

The radiative properties of high, medium and low layei clouds have been computed
by alternately placing a cloud cover of 100% at different levels in the atmos-
phere. The levels chosen were 850, 550 and 250 mb. The cloud filled a single
layer and was always 50 mb deep. ' '



The compuﬁed short wave reflectivities and absorptivities, defined according to
the amount of energy reaching the cloud top, are shown in Table 3.where they are

compared with estimates from various sources. The results show that, for all

clouds, the EC scheme gives rather low reflectivities and absorptivities. These
results could have some bearing on those reported by Geleyn et al. (1982) where
they noted rather low values of albedo in the EC model in thé trade wind areas.
The reflectivities of these stratocumulus clouds are probably underestimated by

_the scheme.

In the infrared the behaviour of clouds is more complicated because as well as
absorbing and scattering the incident radiation they are also‘themselves sources
of radiation. They emit at the local temperature of the cloud with an emissivity
which should be CICSe to uhity for most water clouds (Stephens, 1978) but may be
a lot less for ice ‘clouds (Liou and Wittman, 1979). The infrared effect of
élouds in the EC scheme has been studied by comparing the fluxes at the cloud :
boundaries with the appropriate black body flux. The results are shown in

Table 4. Low cloud is behaving almost as a black body although it is interesting
to nbté that the flux from the cloud top is less than either the black body flux
or the flux‘entering the cloud base, presumably due to the scattering effects of
the cloud. Medium cloud also has an emissivitf close to unity, particularly for
the downward flux. As already noted, high cloud beHaves in rather an unexpected
fashion. Instead of reducing the upward flux it increases it. This behaviour is not
supported by satellite observations over areas of high cloud and may account for
the high values of IR emittance noted by Geleyn et al. (1982) in the region of
the ITCZ.

5. THE SENSITIVITY OF THE CLOUD RADIATIVE PROPERTIES TO CHANGES

IN THE LIQUID WATER CONTENT
At present the cloud liquid water is calculated assuming a'supersaturationAof 0.2%.
This typically gives liquid water contents that are at least an order of magni-
tude lower than those quoted by Cox and Griffith (1979) and Stephens (1978). 1In
this study the scheme has been altered to compute liquid water contents with
Aisupersaturations'of 1% and 2%. The values given by Cox and Griffith (1979) have
also been used. The effects of these changes on the short wave properties of
the clouds are shown in Table 5. For low and medium clouds the increase in
liquid water gives a sharp rise in reflectivity but ﬁas a minimal effect on the
absorptivity. This appears to be for two reasons; firstly that the cloud is
low in the atmosphere so that much of the enexrgy in the water vapour bands has
already been removed and secondly that as the reflectivity increases, the
radiation available for absorption is reduced. The second reason presumably

acdounts for the decrease in absorptivity seen with all the clouds as the

5



liquid water content increases. Nevertheless, apart from high cloud, the
absorptivities are still considerably lower than those quoted in Table 3. For
medium and low cloud Cox and Griffith's values of liquid water content give
reflectivities that are too high with the present parameterizatjon of cloud
optical properties. The most satisfactory results would be obtained with a
value of liquid water content baéed on slightly less than a supersaturation of
1%. However, it might be instructive to test other parameﬁerizations of optical
depth and single scattering albedo sﬁch as those given by Stephens (1978) and
Slingo and Schracker (1982). For high cloud the use of a supersaturation of 2%
seems reasonable although it should be borne in mind that these are ice crystal
clouds and therefore might require a different treatment. At the moment no

distinction is made in the scheme between ice and water clouds.

The infrared effécts of altering the liquid water content are shown in Table 6.
For low and medium clouds the scattering properties of the clouds are more
evident with an increase in FB+ over and above the black body flux and a decrease
in FT+. The most dramatic effect of increasing the liquid water content is on
the behaviour of the high cloud. The cloud now shows a decrease in the outgoing
flux and with a liquid water content based on a supersaturation of 2% behaves
very much like a cirrus cloud with an emissivity of 0.5 - a value currently used

in a number of general circulation models.

The effect of increasing the liquid water content to the recommended values on
the radiative cooling in the gloud layer is shown in Fig. 10. The increase in
cooling for small cloud amounts is now even mofe dramatic and both medium and
high cloud show unphysical decreases in radiative cooling with increasing cloud
cover. The effects of scattering were thought to be responsible and so, as a
test, the single scattering albedo for high cloud was reduced by three orders of
magnitude. The effect on the fluxes and heating rates was dramatic. Instead of
a radiative cooling the cloud now experiences a radiative warming (Fig. 11) as
observed by Fimpel et al. (1977). The outgoing flux is much improved (Fig. 12a))
although the decrease in the flux to the surface (Fig. 12 (b)) is probably

unrealistic and needs further study.



6. PROPOSED AMENDMENTS TO THE EC RADIATION SCHEME

(a) Treatment of gaseous transmission including the dimer effect

In both the short wave and long wave parts of the scheme the gaseous transmission

(T) is calculated using the equation:

_ 1 J/ 7 a .
T = 1.0/(1.0 + 0‘(Au/ 1.0+Bu /ur) + Cur) 6.1)

where u and u, are the unreduced and reduced pathlengths, A, B and C are
temperature dependent functions and o is a constant between 0 and 1, the value
depending on whether there is strong or weak line absorption. The présent
version of the scheme has = 1.0 for reasons of computational economy.v However,
. this represents only weak line absorption and so o was decreased to 0.5 . This
change gave substantial improvements‘in both the short wave and long wave. The
solar flux reaching the surface increased by 24 Wm_zbwhilst the outgoing flux
increased by 30 Wm_2 due to the better treatment of the 9.6 um band of ozone.

The increase in computation time was small being 0.037 seconds for a singlé

sweep of an eighteen level profile.

The term Cur in 6.1 represents the continuum effects but isﬁclearly'independent

of water vapour pressure in the present version of the scheme. However, the
formulation of the infrared scheme does not allow a pathlength mean vapour
pressure to be correctly calculated (see Section 6 (¢)). Instead, the coefficients
used to determine C have been adjusted to incorporate implicitiy a cdptinuum
effect for an atmosphere with 75% relative humidity. This adjustment was only
made between 9.07 and 12.27 um where line absorption is weak. This change

resulted in a much greater lower tropospheric cooling (by up to 0.8 K day~1).

The net effect of both these amendments on the radiative heating rates is shown
in Fig. 13. The revised scheme has greater cooling at all levels but particu-
larly in the lower troposphere. The solar flux to the surface (S¢) and the
outgoing long wave flux (Ft) are both improved but the downward long wave flux

to.the surface (F¥) is now too small.

(b} Treatment of clouds

The results given in Sections 4 and 5 indicate that an increase in the super-
saturation used to calculate cloud liquid water would be advisable. Typically
a supersaturation of 1% seems satisfactory for low and medium cloud with 2% for
high cloud. These changes improve the cloud short Wave reflectivities but the

absorptivities still remain too low and further study is needed here.

In the infrared an increase in cloud liquid-water and- a reduction in scattering

give much improved results.



(c) Formulation of the infrared part of the scheme

As discussed in Section 3 several approximations have been necessary in order to
keep the scheme computationally economic. These approximations are accurate for
an isothermal atmosphere but become less so as the temperature and humidity
gradients become sharper. Thus the scheme would seem to work least well near
atmospheric inversions and possibly near clouds - precisely those areas where

radiation is most important.

Another economy has been made in the calculation of pathlengths where the approxi-
mation has been made that the only source term is at the top of the atmosphere

as in the solar case. This is correct for an isothermal atmosphere. However,

in reality very little infrared radiation originates from the upper atmosphere
and for the upward flux, for example, a large part originates from at or near

the surface. Thus the pathiengths used to derive the transmissions for the
infrared fluxes are seriously in error as can be seen in Fig. 14. Here the path-
lengths have been plotted on a logarithmic scale for the downward and upward
radiation streams. The pathlengths associated with 100% cloud cover, placed
alternately at three levels, are also shown. Clearly, the radiation emitted

by the clouds and the surface will not experience the correct transmissivities.
This may well account for the rather iow values of radiative cooling predicted
under cloud decks and explains the lack of success in attempts to include a
vapour pressure dependent continuum (Section 2). The dimer only becomes

effective near the surface where the scheme does not calculate any pathlengths.

All these results suggest a thorough review of the method for calculating infra-
red fluxes. Clearly, extending the present scheme to cope explicitly with all
the emission terms would be expensive. The possibility of developing an 'emiss-
ivity' scheme such as that used in the Meteorological 0ffige general circulation
models (Slingo, 1982) was considered. However, this method is now rather 'out-
of-date' and has the disadvantage of totally excluding scattering effects.” The
possibility of developing a scheme based on the exponential-sum fitting of
transmissions (ESFT) technique has been considered, This method was developed
for treating gaseous absorption in the presence of strong scatterlng (Wiscombe
and Evans, 1977) and represents a viable alternative (in both solar and 1nfrared)
to the approach currently used in the EC scheme. With the ESFT technique the
total transmission is calculated directly from the layer absofber amounts and
the optical depths for clouds and aeroscls. This thgrefore removes the
necessity of calculating pseudo-optical depths from the fluxes without gaseous
absorption and avoids the problems involved in allowing for the various source

terms in the atmosphere (Geleyn and Hollingsworth, 1979).
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SUMMARY

The scheme is an attractive and efficient way of solving the radiative transfer

problem. It has the virtue of accommodating cloud at any level with a parameter-

ization of optical properties that allows the user to amend or experiment with

them if desired. The results presented in this brief report show some deficiencies

in the scheme which may require major changes, particularly in the infrared part.

Below are listed the main results from this study with recommendations for possible

changes to the scheme.

(a).

(b)

(c)

(&)

(e)

(£)

(g)

Solar heating rates in the lower tropésphere are too high by
as much as 0.5 K>day~1. Consequently the solar flux reaching
the surface is too low by 45 Wm72. The water vapour trans-

missivity curve should be amended.

Infrared cooling rates in the lower troposphere are too low
by as much as 1.5 K day_l. Some way of including the water

dimer effect should be found.

Upward infrared fluxes in the upper troposphere and lower

v , -2
stratosphere are considerably lower (by about 40 Wm ~)} than

-observed values. This is related to the specification of the

ozone transmissivity.

‘The scheme does not show much response to atmospheric

inversions. How well do the approximations used to derive the

long wave fluxes behave in these circumstances ?

Cloud shortwave reflectivities are rather low but are improved

with an increase in cloud liquid water content.

Cloud short wave absorptivities are consistently too low.

The reasons are not clear but should be investigated.

The behaviour of clouds in the infrared is improved withvan
increase in cloud liquid water particularly for high cloud.
The effects of scattering are very evident and some adjustment

of the infrared optical properties might be advisable.

The following remark applies generally to items (e), (£) and (g). Apart from

adjusting the cloud liquid water content to more realistic values it might also

be worthwhile to test out other parameterizations of cloud optical properties

such as those of Stephens. (1978) and Slingo and Schrecker (1982).
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Table 4 Infra-red fluxes at cloud boundaries

Upwa?d fluxes (Wm—z) Downward fluxes (Wm—z)
FT'!‘ B’I‘ FBf FB+ BB FT+
Low 3?9 393 427 405 406 305
cloud i )
Medium 311 ' 293 - 364 | 298 - 309 ’ 180
cloud
High 296 143 283 88 173 38
cloud )
:FT - Flﬁx at cloud top
FB - mooow cloud base
' BT - Black body flux at cloud top
By - vt base
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Table 5 Effect of changing ligquid water content
on cloud shortwave properties

Low cloud

58

Liquid water -content Reflectivity Absorptivity ‘Transmissivity

0.002 q 56 3 41

0.01 q 85 3 12

0.02 a4, ‘ 91 3 6

1.0 x 1077 9% 3 1

Medium cloud .

0.002 q 31 5 64

0.01 dq 71 4 25

0.02 q 82 3 15
-3

0.265 x 10 91 3 6

High cloud

0.002 q 2 3. 95.

0.01 q, 9 6 85

0.02 q 18 8 74
-3

0.035 x 10 7 35

Values taken from Cox and Griffith (1979)
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Table 6 Effect of changing cloud liguid watexr on
infra-red fluxes at cloud boundaries

Low cloud

Ligquid water content ~FT+ BT FB+ FB+ BB » FT¢
0.002 qs : 389 393 427 405 406 305
0.01 qs 387 - 393 427 409 406 305
0.02 q, 386 393 427 409 406 305
1.0 x 10“3 386 393 427 409 406 305
Medium cloud

0.002 q 311 293 364 298 309 180
0.01 q, 286 293 364 316 309 180
0.02 qg 285 293 364 317 309 180
0.265 x 10._3 285 293 365 317 309 180
High cloud

0.002 dg 296 143 283 88 173 38-
0.01 q 268 143 283 123 173 38
0.02 q 227 143 283 147 173 38
0.035 x 10-3 148 143 283 186 173 38
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Fig. 10 Variation of net radiative cooling in cloud
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water contents. :
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