WNANVHOWIWN 1VDINHD4L

3

68

A note on prime factor
FFT algorithms

C. Temperton

Research Department

November 1982

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

ABSTRACT

The implementation of prime factor FFT algorithms is considered in the
case of computers such as the Cray-1 and Cyber 205, where multiplications
can be performed in parallel with additions. It is shown that only very k
modest gains over the conventional FFT can be achieved using Good's
algorithm. Winograd's technique is likely to be no faster tﬁan the

conventional FFT, particularly on the Cray-1 where it becomes memory-bound.

1. INTRODUCTION

The Qpblication of a short paper by Cooley and Tukey [2] in 1965 led to a
revolﬁtion in the computation of discrete Fourier transforms (DFT's). They
showed that’if N can be decomposed into suitable small factors, then a
complex DFT of length N can be computed in O(N log N) operations, compared
with the O(Nz) operations required in a direct implementation. In practice
the computation of DFT's was speeded up by one or two orders of magnitude.
Many different variants of the algorithm were subsequenfly developed

(see [11] for a unified treatment), but all with essentially the same

operation count.

A second revolution - at least from a theoretical point of view -
resulted from the work of Winograd [12]. He showed that if the factors
of N were mutually prime, then the number of multiplications required
could be greatly reduced, typically by a factor of 4, while the number
of additions remained roughly the same. Winograd's technique was a
development of the algorithm due to Good [4] for mutually prime factors,
which in fact pre-dated the 'conventional' FFT of Cooley and Tukey.

Kolba and Parks [5] re-evaluated Good's algorithm, incorporating

Winograd's 'small-n' transforms, and pointed out that on computers where the
time taken for addition is a significant fraction of that taken for
multiplication, their modification of Good's algorithm would be faster than

Winograd's technique.

In this paper we extend the analysis of Kolba and Parks to the case

of large-scale scientific computers such as the Cray-1 and Cyber 205.

The crucial point here is not that they are vector machines, but that
floating point additions and multiplications can be performed simultaneously.
Consequently, in the context of the FFT algorithm, multiplications are
'free', and the time taken depends essentially only on the number of
additions. We show that Good's prime Ffactor algoriﬁhm can be further
improved in this case by using conventional . 'small-n' transforms in

place of Winograd's. It also emerges, however, that prime factor algorithms
offer only very modest:improvements over the conventional forms of the
algorithm. On the Cray-1 in particular, Winograd's algorithm is likely

to be slower than the conventional approach.

2. THREE FFT ALGORITHMS

In order to demonstrate the priﬁciples behind the various FFT algorithms
discussed here, it will suffice to consider the case N = pq.

Let w = exp (2in/N), and let WN be the DFT matrix of order N, with
ik

element‘(j,k)‘given by w where the rows and columns of WN are indexed

from 0 to N-1.
The conventional FFT algorithm is based on the factorization [11] -
ol

W (W, x Ip) Pﬁ Dy (wp x 1) ’(1)

q

where W?, W are the DFT matrices of order p, q ; Ip' I are the
corresponding identity matrices; PP is a permutation matrix, implemented

in practice by the indexing scheme given in [11]; Dg is a diagonal

matrix of complex "rotation factors", and x denotes the Kronecker product.

Good [4] demonstrated that if p and g are mutually prime, then Egq. (1)

can be rewritten as

=
]

bq P (‘Ip x wq) (,WP X Iq).Q |
(2)

W
P (b x Wq)Q

where P and Q are permutation matrices. Hence by suitable input and
output permutations, the one-~dimensional transform is mapped into a
two~dimensional transform. In terms of operation counts the important.
point is that the diagonal matrix of rotation factors has been eliminated.
Gold and Rader [3, Chapter 6] give a rather clear account of how this

‘works.

Winograd's algorithm [12] depends on the observation that each of the
'small-n' transform matrices Wp' Wq can be written in the form

W =BMA ‘ (3)
P PppP

and gimilarly for Wq. Here Ap and Bp are matrices whose non-zero entries
are all ii, i.e. multiplication by these matrices requires only additions
and subtractions. MP is a diagonal matrix whose entries are all pure real

or pure imaginary numbers. Note that the order of Mp may be greater than

that of Wb, so that Ap'and Bp are rectangular;' but in the algorithms
given by Winograd, the order?of M is at most (p+2). Winograd's

paper [12] concentrates on finding factorizations of the form (3) which
minimize the order of Mp’ and the way in which these are combined for
composite N is perhaps more clearly explained in papers by other
authors [5,7].

Substituting (3) in Eq. (2), and rearranging the factors using the

algebra of Kronecker products, we have

qu =P (Bp X Bq) (Mp X Mq) (Ap x Aq)Q ; . (4)
The important points here are that the 'input' and 'output' stages

(AP X Aq) and (BP X Bq) still consist entirely of additions and
subtractions, while the matrix (Mp X Mq) is still diagonal with pure
real or pure imaginary elements, and its order is not much greater than
pq. This 'nesting' technique is the key to the significant reduction
in the number of multiplications achieved by Winograd's algorithm.

In extending these factorizations to more than two factors, it must be
remembered that Egs. (2) and (4) are only valid if all the factors of N

are mutually prime.

3. OPERATION COUNTS

Kolba and Parks [5] considered the implementation of Good's prime

factor algorithm, based on the use of Winograd's small-n transforms.

In comparison with Winograd's procedure, this requires more multiplications
but fewer additions. They pointed out that if the time taken for

addition is a significant fraction of that‘taken for multiplication, then

their procedure would be faster.

On the Cray-1l1 and Cyber 205, this argument applies with greater force.
(In the context of this discussion we can ignore the question of
vectorization, for example assuming that many independent transforms

. are to be performed in parallel). On the Cray-1, independent additions

can be performed in parallel, or triadic bperations such as

a=b%* (c+d) anda =b + (¢ * d) can be performed in 'chained'

mode whereby the addition and multiplication are in effeect carried out
simultaneously. On the Cyber 205, there is a more restrictive 'linked'
mode analogous to chaining for triadic operations in which one of the
operands is a scalar. All variants of thevFFT algorithm require
considerably more additions than multiplications, and it can be shown
that on these machines only the number of additions is relevant, since
all multiplications can be chained or linked with additions (or done in
parallel on the Cray-1) and are therefore implemented free of charge
[9,10]. (on the Cyber 205 there is a slight overhead since the vector
start-up time for a linked add-multiply is longer than that for an
addition on its own, -but for sufficiently long vectors this can be

ignored).

Following Kolba and Parks, it can be seen that Good's prime factor algorithm,
based on Winograd's small-n transforms, should be faster than Winograd's

nested technigue on the Cray-1 and Cyber 205 since it requires fewer additions.
However, we can improve on this result still further by noting that Winograd's
small-n transforms themselves achieve the minimum number of multiplications

at the expense of extra additions for some values of n, when compared with
"conventional" small-n tr;nsforms. Table I compares the number of real additions

and multiplications regquired in each case.

The conventional small-n transforms for n = 2,3,4 are well known and
can easily be derived by inspection. That for n=5 is due to Rader, as.
quoted by Singleton [8] whose algorithm for arbitrary odd prime factors
is used here for n=7. The algorithms for n=8 and n=16 can be built up
from radix-2 or radix-4 algorithms, taking advantage of occasions when
the rotation factor angles are multiples of w/4 [1]. The algorithm for

n=9% is based simply on Eg. (1) with p=g=3.

Kolba and Parks dismiss multiplications by 1/2 and 1/4 as 'shifts', but

in Table I they are counted as full multiplications:.

No claim is made here that these conventional algorithms actually achieve
any theoretical minimum number of additions; it is simply to be noted that in
several cases they require fewer additions than Winograd's corresponding

small-n transforms.

We now compare, in Table II, the total number of real additions and
multiplications required for a DFT of length N implemented in four
different ways. The first column is for conventional transforms based
on Eq. (1); in order to correspond as nearly as possible to mixed-radix
FFT packages which actually exist [11] only factors 2 < n < 7 (including
n=6) have been used. The provision of coding for n=6 permits gome
advantage to be taken of mutually prime factors, without going to the
complexity of the full prime factor algorithms. In some cases the
operation counts could be improved by adding n=8,9,16, but these factors
are not normally included in conventional routines. The operation counts
here are derived using the formulae given in [11]; other authors
[5,7,12,13] have also compared the operation counts for conventional
transforms versus‘winograd's technique, but almost invariably they have
over-estimated the number of additions required in the conventional

case.

The second column is for Good's algorithm using the conventional small-n
transforms of Table I as advocated here, while the third column is for
the same algorithm using Winograd's small-n transforms as suggested by

Kolba and Parks. The fourth column is for Winograd's nested transform;

these operation counts are taken from Zohar ['131].

Table II shows the impressive reduction in the number of multiplications
required by Winograd's approach in comparison with the conventional
algorithm, but the important point here is that this is often achieved

at the expense of the number of additions. Kolba and Parks reduce the
number of additions required in comparison with Winograd, but the minimum
number of additions is achieved in the second column with Good's

algorithm based on conventional small-n transforms.

Notice, however, that the reduction in the number of additions achieved

by Good's algorithm compared with the conventional approach is very modest,
typically only 10%. Also, some conventional operation counts are given

in Table II for values of N such that the prime factor algorithms are not
practicable. These have been includea to demonstrate that even if we

have some flexibility in the choice of N, there is not much to be gained
from the prime factor algorithms when the cost depends only on ‘the number

of additions.

Some authors [5,6] have suggested 'split‘nesting' techniques in which,

for example, the case N=pqrs (with all factors mutually prime) could be
decomposed using Good's technique into a two-dimensional (pg) x (rs)
transform, and the resulting one-dimensional transforms of length pg and rs
could be decomposed using Winograd's techniQue.‘ This would require fewer
additions than the full nested algorithm (at the expense of extra
multiplications), but it can be seen that using Good's technique in full

requires even fewer additions.

4. MEMORY CONSIDERATIONS ON CRAY-~1

While the argument of the preceding section is valid as it stands on the

Cyber 205, an important factor has been neglected in the case of the Cray-1.
Before any arithmetic can be done on this machine, the operands must first be
loaded into vector registers, and the eventual results must be stored back in
memory. (Temporary results may be held in vector registers). These transfers
to and from memory can proceed in parallel with the arithﬁetic, but they must
be taken into account when assessing the time taken for a given computation.
In the context of the present discussion,.if there are more memory transferxs
than additions then the time taken will depend only on the number of memory"
transfers. For example, if we compute y = W X we load 4 real components of

X into the registers, perform 4 real additions and store 4 real results back
into memory.. During the time taken for the total of 8 memory references, we
could have performed 8 additions rather than only 4; the computation is said
to be memory-bound. However, as shown in [9] n=2 is the only example of such
a small-n transform which is memory-bound; in all other cases the time taken
dependsuonly on the number of additions, and all memory referénces can be
overlapped with the ariﬁhmetic. The number of memory references (4n) and real
additions for each n is summarized in Table III. For the larger values of n,
additional memory references will in fact be required for temporary results,
since only 8 vector registérs are provided; but in these cases the number of

additions so far exceeds 4n that these extra memory references can be accommodated

without penalty.

In Good's prime factor algorithm for composite N, one pass through the
data is made for each factor n, and apart from the factor n=2 the time
dependence on the number of additions still holds true. (In the case of the

conventional algorithm, the number of memory references remains the same

~

while the number of additions increases, so the time still depends only
on the number of additions.) . |

In the case of Winograd's algorithm, there are two passes for each factor
of N, one during the 'input' stage and another during the 'output' stage.
For each n, the partition of additions between input and output stages is
given by Silverman [7] and reproduced in Table III. Also shown is the
number of memory references, given by 2(n+un) where,un is the order of
the diagonal matrix in the decomposition given by Eqg. (3). In most

cases this exceeds the number of additions, and in the remaining cases
the margin is probably always too small to accommodate the extra memory
references needed for temporary results. Thus Winégrad's algdrithm
implemented on Cray-1 will épparently be memory-bound throughout, and

the time taken will be significantly longer than suggested by the number
of additiohs. This strengthens the conclusions of the previous section,
and suggests that Winograd's algorithm will be slower than a conventional

transform for the same value of N on Cray-1.

5. CONCLUSIONS

It has been shown that prime factor FFT algorithms offer little improvement
over conventional FFT algorithms on computers such as the Cray-1 and

Cyber 205 where the multiplications can be performed in parallel with the
additions. A very modest gain may be obtained by using Good's algorithm
with conventional small-n transforms. Winograd's technique, despite its
impressive reduction in the number of multiplications, is likely to be
slower than the conventional algorithm, particularly on the Cray-1 where

memory transfers will dominate the computation.

| TABIE I

Number of real operations for small-n' transforms

- conventional Winograd
n adds ‘ mults , adds mults
2 4 0 4 0
3 12 4 12 4
4 16 0 16 0
5 32 12 34 10
7 60 36 72 16
8 52 4 52 4
9 80 40 88 20
16 144 o 24 148 ’ 20
TABLE II
Number of real additions/multiplications for DFT's of length N
N conventional Good Kolba & Parks Winograd
105 2272/1492 1992/932 2214/590 2418/322
108 2018/1012 - - -
112 2162/1188 1968/744 2188/396 2332/308
120 2302/1116 2028/508 2076 /460 2076/276
126 2684/1672 2452/1208 2780/568 3068/392
128 2242/900 - - -
240 5322/2708 4656/1256 4812/1100 5016 /632
252 5954 /2500 5408/2416 6064/1136 6640/784
256 5122/2050 - - -
315 8492/5728 7516/3776 . B462/2050 10406/1186
320 7202/3396 - - =

Number of memory references and real additions on Cray-1

TABLE III

Prime factor

Winograd

n algorithm input stage output stage
memory ~adds memory adds memory adds

2 8 4 8 4 8

3 12 12 12 6 12 6
4 16 16 16 12 16 4
5 20 32 22 16 22 18
7 28 60 32 34 32 38
8 32 52 32 28 32 24
9 36 80 40 40 40 48
16 64 144 68 80 68 68

10

REFERENCES

10.

11.

12.

13.

G.D. BERGLAND, An FFT algorithm using base 8 iterations,
Math. Comp. 22 (1968), 275-279.

J.W. COOLEY AND J.W. TUKEY, An algorithm for the machine computation
of complex Fourier series, Math. Comp. 19 (1965), 297-301.

B. GOLD AND C.M. RADER, "Digital Processing of Signals",
McGraw-Hill, New York, 1969.

I.J. GOOD, The interaction algorithm and practical Fourier analysis,
J. Royal Statist. Soc. Ser. B 20 (1958), 361-372.

D.P. KOLBA AND T.W. PARKS, A prime factor FFT algorithm using
high-speed convolution, IEEE Trans. Acoustics, Speech and Signal
Processing 25 (1977), 281-294.

H.J. NUSSBAUMER AND P. QUANDALLE, Fast computation of discrete
Fourier Transforms using polynomial transforms, IEEE Trans.
Acoustics, Speech and Signal Processing 27 (1979), 169-181.

H.F. SILVERMAN, An introduction to programming the Winograd Fourier
transform algorithm (WFTA), IEEE Trans. Acoustics, Speech and
Signal Processing 25 (1977), 152-165.

R.C. SINGLETON, An algorithm for computing the mixed-radix Fast
Fourier transform, IEEE Trans. Audio and Electroacoustics lz
(1969), 93-103.

C. TEMPERTON, Fast Fourier Transforms and Poisson-solvers on Cray-1,
in "supercomputers", Infotech State of the Art Report, Infotech
International ILtd., Maidenhead, U.K., 1979.

C. TEMPERTON, Fast Real Fourier Transforms on the Cyber 205, Met.0.1l
Technical Note No.155, U.K. Meteorological Office, 1982.

C. TEMPERTON, Self-sorting mixed-radix Fast Fourier Transforms,
submitted to J. Computational Phys.

S. WINOGRAD, On computing the discrete Fourier transform,
Math. Comp. 32 (1978), 175-199.

S. ZOHAR, A prescription of Winograd's Discrete Fourier Transform

Algorithm, IEEE Trans. Acoustics, Speech and Signal Processing
27 (1979), 409-421.

11

LIST OF SYMBOLS

~

!X D
i la

[o TR ¢
~

w, m,

vectors (bold type, lower case Latin letters)

upper case Latin letters with superscript 'p', subscript ‘g’

lower case Greek omega, pi

lower case Greek mu, subscript 'n'

numeral zero throughout

numeral one throughout

