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ABSTRACT
“A numerlcal case study of blocklng is dlscussed briefly for which model
rresolutlon‘vseems to play a major role in the success ‘of the s:.mulat‘ion. It
ls argued that the effect of the initial conditions is somewhat less
important than normally considered. The model used for all the experiments

is the ECMWF spectral model (Baede, Jarraud and Cubasch, 1979).

1. INTH)DUCTIOH

The horlzontal scale of atmospherlc blocklng patterns is large and their
dynaxnlcs has, with few exceptions (e.g. Green, 1977 and Bengtsson, 1981),
’always been 1nvest1gated in terms of planetary ultra—long waves. In trylng
.to‘ model numern.cally this phenomenon, therefore, model resolution would
perhaps ‘be" consldered to be a non-critical ulodelling characteristic. If,
however, as pointed out in different contexts by these authors, the
interactions between'smaller gcale transient eddies and the quasi-stationary
‘system are essentlal for the maintenance of the blocklng pattern, the partial
absence‘ of such smaller eddies would strongly decrease the ability of a model
to represent‘this phenomenon. A satisfactory representatlon of these eddies
in terms of resolution would then become of fundamental importance. 'l‘hel
purpose of thls work is to report a numerical case study of blocking that
showed a hlgh degree of sensitivity to model resolutlon, so as to suggest
that the scales of motion unresolved by the low resolution run but resolved
by the high one played a physically important role in the onset and

maintenance of the blocking circulation.

The‘model used was the ECMWF spectral model (Baede, Jarraud and Cubasch,
1979) at the two trlangular truncations T40 (low resolution) and T63 {(high
resolutlon). The scales of motion resolved expllcn.tly by the T63 model but
not by the T40 could be thought as spanning the range between 300 and 500 km,
expressing the concept of “scale“ in terms of half wavelength. The

parameterization of physical effects {(radiation, condensation and effects of



scales of motion beyond the model truncation, (see Tiedtke, Geleyn,
Hollingsworth and Louis, 1979) was exactly the same in the two runs and
reflects more or less the status of the "physics" of the ECMWF operational

grid-point model as at August 1981.

2. THE CASE S'I;(iDY

The case selected took place during December 1978 and partially overlaps with
the period covered by the WGNE Case Study No.1 (see JSC, 1981), since we will
discuss ten—-day integrations starting from December 17, 1978 at 12GMT. This
development initiated the blocked—type circulation which characterized most
of the winter period in 1978/79. The initial data used are the ECMWF FGGE
global initialized (non-linear normal mode initialization, se’e ’Williamson and
Temperton, 1981) analysis. Fig. 1 shows the 500 mb and 1000 mb height maps

for the Northern Hemisphere for the initial data (day 0).

Figs. 2a to 5a show that, by day 5 of’the 1ntegration period, a very large
anticyclone had established itself over the North Atlantic, diverting
completely the flow of the westerlies. This ‘large ecale situation
intensified atk first and then was maintained, with little or no substantial
change, for another ’week. By day 1’0 of the kforecast period; ‘the bloching
pattern had invaded the whole of the Atlantic region, from 30 degrees north

to the North Pole (Fig. 5a).

Figs. 2 to 5 show the different synoptic behaviour that the two different
resolution runs produced compared with the verifying FGGE analyses. Figures
on the left, (a), show the verifying analysis; centre figures, (b), ‘kshow the
high resolution T63 run; figures on the right, (c), describe the low
resolution T40 run. 500 mb height maps are abovev1000 mb height maps; It is
clear from the kfigures that,the T63 forecast succeeds in capturing accurately

most of the main features of the blocking event. The day 5 forecasts



predicts correctly the buJ.ld—up of the blocklng, down to several synoptlc
'detal‘ls of the flow, ‘the ampl:l..tude is, however, underestlmated;" The day 8
forecast ls ’characterlzedlby a marked erroneous eastward‘dlsplacement of the
blocking feature. -It, nevertheless, stJ.llA shows a blocklng pattern of
reallstlc 1ntens:.ty with a very good representat:l.on of the split of the
westerly jet at 500 mb. The day 10 forecast, although show:.ng a much earlier
H eakenlng of the block, Stlll contalns some synoptlc value; note, for
kexamp-le, the correct kspllt of the block :Lnto a double feature, with two
Vblock-llke patterns side by s:l.de,: both at 500 and 1000 ‘mb. On the other
'hand, the lower resolutlon run falls completely to accompllsh the onset of
the block, desplte a very reasonable short range (e.g. day 3) forecast. ’By
day-8 the two forecasts have completely dlverged synoptlcally from each
) other, w1th ther T40 run haV1ng erroneously drlfted towards a much more zonal v

state.

It is interesting, at this point, to note that another low resolution run
initiated from :|.n:|.t:Lal conditions of 12 hours 1ater (1978-12~17-12GMT,
ekperlment T40B) shows llttle‘)lu'lprovement (see F:\.g. 6) in descrlblng the
-' development in the Atlantlc, endlng up by day 8 (actually day 7.5 for this
Nexperlment) wn.th a block-like pattern in the wrong hemlspherlc quadrant.
‘ThlS would suggest that, rln this partlcular case study, the model is show:Lng
tobe as sensz.tlve to the resolutlonas“lt 1s' to the spec:Lf:.catlon of the
.’lnl;tlal condltn.ons, if noty more. It also shows, however, that the low
resolut:Lon model is capable of produc:.ng blocks, since the one developed at

day 7 5 of the T40B forecast (Flg. 60) w111 last up to the end of the 10 day

1ntegratJ.on (not shown).

Comparing the T63 and T40 objective scores (see Fig. 7), it can be noticed
that the two experiments start diverging from each other only after day 4.5,
except, of course, for the shorter waves upon which the impact of resolution

is more immediate (day 1.5). After day 4, however, the main difference (to



‘the advantage of the high resolution run) is to be found in the ultra—long
wave components. For a more complete spectral resolution comparison study of

this type, the reader is referred to Jarraud, Girard and Cubasch (1981).

The time evolution of the kinetic energy (Fig. 8) also shows that there is’a
sharp increasekof KE’in-the wavenumber band 44to 9 during the first two days
of the integration, followed by a decrease taking place in parallel with a
rapid growth of the XE in the wavenumber band 1 to 3. This might be
1nterpreted in the folloWing way: during a first stage (first two days) an
intense development of a synoptic scale wave takes place which favours the
onset of the block;’subsequently, an exchange of:kinetic energy from medium
(4 to 9) to’long and ultra-long (1‘to d)‘Waves takes place in order to
maintain the blocking situation. An adequate description of synoptic and
subsynoptic scale waves (hence the sensitivity to resolution) would therefore

be essential during both stages; see also K41llén (1982),.

Figure 9 shows the difference fields of 500 mb geopotential height between
‘the T63 experiment and the T40 experiment days 2, 4, 6 and 8. It is here
possible to see how the errors in the low resolution run oriéinate from an
underestimation of the development off the east coast of North America
,(fig' 9a) and then grow to larger amplitudes. At day’4, a pronounced centre
in the difference fields located on the North American continent, in the lee
of the Rocky Mountains (Fig. 6b), suggests that’the T40 run might not give an
adequate description of the mountain effects which cause successive
downstream developments of troughs (Simmons and Hoskins, 1979); this might,
in turn, contribute to the onset and maintenance of the blocking

(Kalnay~Rivas and Merkine, 1981).



3. CONCLUSIONS

The sensitivity to resolution that the ECMWF spectral model has shown in this
Atlantlc blocklng case study 1nd1cates that the cumulative effects of scales
of motion unresolved by.-a spectral triangular 40 truncation (but resolved by
a T63 one) can have a crucial influence on the onset of such an important
aynaﬁicai structhteiashblockihg;‘;These effects are most likely due to
_non-linear interactions: between ultra-long waves and shorter waves -and seem
to affect the ablllty of the model to enter into a locally blocked state at
the rlght +time and in. the rlght area. This conflrms, on a particular
~blocking cage study, general results: previously obtained in a larger sample
kcoﬁparlsoh, see. Jarraud, Girard and Cubasch (1981). This, of course, has an
- immediate bearing on the importance of model resolution in, numerical weather

prediction, malnly on tlme scales greater than 2 to 3 days-.

- This case study would also seem to lend more support to those regarding
j'l;>£lv.6c:kin;3(a’s‘a iarge seaie circulation systthsupperted vitally by
. comparatively smaller  scale eddy disturbances than it would to those
reéafdané it pa;elf as an‘"almost 1nescapable state for both the real

- atmosphere and hightly truncated models.

These two points of view need not, however, be mutually incompatible (cf.
Kallén, 1982). When one moves from a highly truncated model to a realistic
GCM (and, possibly, to the real atmosphere), the presence of smaller scale
eddies (and of smaller scale forcings) could, on one hand, change
substantially the "attraction" properties and the number and position of the
possible quasi-steady states in the phase space of the system. Smaller
eddies could also, on the other hand, contribute locally to the creation of
conditions for the transition from one local quasi-steady state into another
(Malguzzi and Speranza, 1981) and, moreover, contribute to the stability (and

"steadiness"™) of a blocked-type state.
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