WNANYJOWAW TVIINHDL

l am

\ 4

104

A memory manager for single
and multi tasking applications

J.K. Gibson and D.W. Dent

Operations Department

August 1985

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fir mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

CONTENTS

Page
1. INTRODUCTION 1
2. BASIC AIMS ' 1
3. MECHANISM FOR ADDRESSING STORAGE . 2
4. INTERFACE TO THE USER : k 2
5. MANAGEMENT METHODS 4
5.1 Management tables 4
5.2 Allocation strategy - work space 4
5.3 Allocation strategy - long term space 4
5.4 Release strategy - work space and long term space 5
6. ALGORITHMS 5
6.1 General 5
6.2 Matching a single table entry 5
6.3 Matching two table entries simultaneously 6
6.4 Hashing names 7
6.5 Allocation of long term space 7
6.6 Location of long term space 8
6.7 Release of long term space 8
6.8 Memory distribution -8
7. EXTENSION TO A MULTI~TASKING ENVIRONMENT 9
7.1 Multi-tasking space management » 9
7.2 Managing space for several tasks ‘ 10
7.3 Memory distribution A : 10
7.4 Choice of task space ' » 11
8. IMPLEMENTATION USING THE CRAY HEAP MANAGER 11
8.1 Initialising : 11
8.2 Adding to existing space 12
9. CONCLUDING REMARKS : 12
APPENDIX A 14

APPENDIX B 16

1. INTRODUCTION

Computer programmes such as'numerical weather prediction models ofténvrequire
large areas of main memory. Indeed, many such programmes cannot execute
without the aid of an input/output system, with large areas of memory being
continually refreshed from data held in onflinebscratch space or backing
store. To use the available memory efficiently, it is often necessary to re-
use specific. areas of memory fbr different purposes, over-writing one set of
variables by another. Such practices are éotentially dangerous, and must be
organised with care. Memory maps must be.produced,bconsulted, and updated as

modifications are introduced.

Memory references to lgrge shared areas of data becomé even more complex if a
language of the FORTRAN type is used. Often it is pecessar& to resort to
addressing displacements within a single, globally accessible array. Although
displacement variables can be given meaningful names,:the dimensipnal |
structure and direct relevance of well chosen array names and declarations are

lost.

The ideas contained in the foilowing paper were conceived in an attempt to.
provide a software solution to the memory managemenﬁtpfoblem. They héve Séen
successfully impiemenfed into the.ECMWfxoperétional'weather prediction model
using Cray Fortr#ﬁ, and could be adapted to any computer language which allows

the use of based variables.

2. BASIC AIMS
The basic aims of a simple memory manager of the type under discussion are:

a) to enable the user to ALLOCATE arrays fof use as WORK SPACE
or LONG TERM STORAGE.

b) to enable LONG TERM STORAGE arrays to be LOCATED and used.

¢) to enable WORK SPACE or LLONG TERM STORAGE arrays to be
returned when no longer required.

1

LONG TERM STORAGE is defined as array space required to be accessed by more
" than one routine. WORK SPACE is defined as array space required only within a

single routine.

3. MECHANISM FOR ADDRESSING STORAGE

The memory manager- is designed to supply pointers to based variables. 1In
consequence, it is only suitable for use in association with languages which
support such features (e.g. PL1, Cray Fortran, etc.) The concept of based
variables is gradually becoming accepted as an important feature of high level
computer languages. Simply stated, it enables the user to define a POINTER
variable in association with an array or structure. The assignment of a.ﬁalid
.mehory aadress to the POINTER variable then defines the location of the
corféspoﬁding afréy orAStructure in memory. Thus, in Cray Fortran,

DIMENSION A(1000) |

POINTER (IB, B(1000))

IB=LOC(A)

has the effect of making array B equivalent to array A.

4. INTERFACE TO THE USER
Various implementations of the ideas contained in this paper will provide
varying interfaces to the user. A sufficient interface, for the purpose of

illustrating the following sections, would consist of five routines:
INILOC (KLENGTH1, KLENGTH2, KTASK, KSET)
ALLOCA (KPOINT, KSPACE, KNAME, XCODE)
ALLOCB (KPOINT, KSPACE, KNAME, KCODE)
LOCATE (KPOINT, KNAME, KCODE)
UNLOC (KNAME, KCODE)
where
KLENGTH1 is the number of words of memory to be managed.
'KPOINT - is used to return a POINTER value to the user.

KSPACE .. is. the afray size in words.

KNAME is the array name (LONG TERM STORAGE) or the name
of the user routine (WORK SPACE)

KCODE is a code number in the range 1 to 98 (LONG TERM STORAGE)
or 99 (WORK SPACE).

KSET is a value to be used to preset the managed memory
KLENGTH2 are parameters required because of extensions to
multi-tasking (see Section 7)

KTASK
INILOC is used to initialise the memory manager, and is called once only.
ALLOCA is used to allocate array space. Arrays are jidentified to the memory
manager by means of a name, KNAME, and a code, KCODE. It is thus possible to
have several arrays with the same name, provided a different code is
associated with each. This device has been found particularly useful where
different spatial representations of a variable are required to be stored
simultaneously. Thus, for instance, a code of 3 could be assigned to all
variables in grid point space. A single name could be used for a variable
stored in both grid point and spectral space, the memory manager being capable
of distinguishing the required array space according to the supplied Qalue of

the code. If work space is required, ALLOCA is called using the name of the

calling routine as KNAME, and a code of 99.

ALLOCB is used to allocate array space within the managed memory area in such
a way that repeated calls to ALLOCB will result in a set of arrays occupying a

contiguous area of memory.

LOCATE is used to locate an array previously allocated by ALLOCA or ALLOCE.
Only LONG TERM arrays may be located. WORK SPACE is only allocated, as it is

only addressable from the allocating routine.

UNLOC releases previously allocated space. Released spaces may be re-
allocated by subsequent calls to ALLOCA. LONG TERM arrays are released

singly, whereas a single call to UNLOC releases all areas of WORK SPACE

corresponding to KNAME.

5. MANAGEMENT METHOD

5.1 Management tables
Management information is mainfained in stack-like tabuiar form. For each
allocated area, table entries record:.

a) the name (KNAME&‘

b) the address (KPOINT)

c) the code (KCODE) (long term only)

d) the length (XSPACE)

Two sets of tables are maintained - one for LONG TERM space, the other for
WORK SPACE. A stack-pointer is associated with each table, indicating the

number of valid entries in each table at any time.

5.2 Allocation strategy - work space

Work space is always allocated from the next area of available space to that
of the last table entry. No attempt is made to re-use released areas
corresponding to entries within the table. As routines requiring work space
are rarely deeply nested, this simple strategy is both sufficient and

efficient.

5.3 Allocation strategy - long term space

Efficient use of memory dictates that long term storage must re-use released
- areas without resulting in memory fragmentation. A simple but effective
strategy is: |

a) re-use areas only if they are exactly the correct size.

b) do not combine adjacent released‘areas into larger areas.

c¢) 1if no suitable area can be re-used (i.e. no exact fit) then

add a new table entry and allocate from the residual area of
available space. »

The key to the success of this strategy lies within the repetitive nature of
most numerical computations, and the resolution dependence of many array
lengths. In consequence, the sizes of array spaces requested are far from

random, and often similar.

5.4 Release strategy - work space and long term space

When space is released, the "name" entries in the tables are replaced by
blanks. If the space corresponding to the last table. entry is released, the
stack-pointer is decremented and the appropriate length added.to the available

space.

6. ALGORITHMS

6.1 General

The following algorithms were devised specifically for a Cray-1 computer with
vector capabilities and a 64 bit word length. Characters are stored 8 per
word, using 8 bits per character (ASCII). Names are assumed to be left
justified, up to 8 characters in length. Despite these machine dependent
features, some of the following algorithms are suited tovother

configurations.

6.2 Matching a single table entry
A specialised routine, MATCH, was written in Cray assembler language (CAL) to
examine table entries 64 at a time using the vector facilities of the Cray-1

thus:

a) store value to be matched in a scalar register.

b) load 64 values from table into a vector register.

c) store vector difference in vector register.

d) set mask to ones for zero vector elements.

e) update counter and table address.

f) return to b) if mask is zero.

g) count leading zeros in non-zero mask and update counter.
h) return value of counter (zero if no match found).

5

This provides a means of locating the entry in a table matching a given value.

The subscript of the first matching entry is returned.

6.3 Matching two table entries simultaneously

The routine MATCH described above was extended to match two table entries to
two given values simultaneously. The resulting routine, MATCH2, uses the

following algorithm.

a) store value to be matched in Table 1 in scalar register 1 (S1)
b) store value to be matched in Table 2 in scalar register 2 (S2)
c) load 64 values from Table 1 into vector register 1 (V1)

d) 1load 64 valﬁes from Table 2 into vector register 2 (V2)

e) obtain vector difference S1-V1 in vector register 3 (V3)

£) seﬁ mask to dnes for V3 éero elements.(VM)'

‘g) update coﬁnter, Table 1 address, and Table 2 address

VH) étofe VM in scalar‘régister 3 (83)

i)' return‘to cf if s3 ié zero

j) count leading zeros in mask (A3)

k) transfer corresponding element from V2 into scalar register 5 (S85)
1) compare S5 with S2 and update counter

m) return to c) if not equal

n) return value of counter

This requires the second Table to be consulted only for segments where
matching values have been found in Table 1. Where no matching values exist in
Table 1, a zero value is returnéd; in such cases Table 2‘is not‘examined, and
the only additional cost is that inéurred‘in updating Table 2's address in q)

above.

6.4 Hashing names

Even when vector matching routines are available, searching Tables can be

expensive. In consequence it was considered desirable to provide a hashing

technique based on 8 character names and the integer code. The algorithm

used is:

a)
b)
c)
d)

e)

obtain exclusive OR (XOR) of KNAME with KNAME left shifted 11 bits

XOR a) with KNAME left shifted 21
XOR b) with KNAME left shifted 31
XOR c) with KNAME left shifted 41

return d) right shifted 53 with zero fill and merged with KCODE.

The result is an 11 bit value formed by combining parts of 7 characters of

KNAME and including a contribution from KCODE.

Using this technique, more than 90% of the names used in ECMWF's operational

numerical forecast are hashed to unique values in the range 0 to 2047.

6.5 Allocation of long term space

A hash table of length 2048 is initiated with all values equal to 1. The

algorithm for allocation of long term space is then:

a)

b)

c)

d)

e)

hash KNAME, and extract value stored at this entry of hash table
(IPOS)

check entries in management tables at position IPOS against KNAME
and KCODE. If correct entry located, return KPOINT from tables to

user.
otherwise use 6.3 above to find table entries matching both KNAME and
KCODE. If matched, return KPOINT from tables to user, and update hash

table.

If no existing entry can be found, use 6.3 above to find table entries

‘with blank name and matching length (XSPACE). If matched, return

KPOINT from tables to user, and update hash table.

If no returned space of correct length can be found allocate space
from the residual area, adding a new table entry to the top of the
table stack, and up~dating the hash table.

7

6.6 Location of long term space

Previously allocated space is located as follows:.

a) ﬁash KNAME and extract hash table entry (IPOS)

b) check entry IPOS in management tables against KNAME and KCODE.

If correct, return KPOINT to user.

¢) otherwise use 6.3 above to match both KNAME and KODE. Return the
matched entry for KPOINT to the user.

6.7 Rélease of long term épace

Previously allocated space is released as follows:

a) hash KNAME and extract hash table entry, IPOS

b) check entry IPOS management tables. If not correct, match KNAME
and KCODE using 6.3 above.

c) change KNAME in table entry to blank.
d) 4if IPOS is at the top of the table stack, collapse the stack,'
' returning space to the residual area, until a non-blank entry appears

at the top of the stack of names.

6.8 Memory distribution

work
space

i
tlong term

1
) Space
1

i

i

|

i

1

fresidual space —&-
Fig.1 Memory distribution

Fig.1 illustrates one method of organising the memory space to be managed.
Long term space is allocated from low -order mémory, work space from high order
memory, with a moveable partition of residual space separating the two. This
provides the flexibility of allowing all space not allocated for long term

storage to be used as work space, and vice versa.

7. EXTENSION TO A MULTI-TASKING ENVIRONMENT

7.1 Multi-tasking space management

When modifying an application to take advantage of a multi-processor computer,
various multi—tasking strategies may be employed. The memory manager is
particularly useful when the chosen strategy shares the work to be done by
segmenting the data and performing the same calculations in several tasks
simultaneously. fhis requires access to different data areas in different

tasks.

Since the code being executed is common to all tasks, it is convenient to
allow the same names to be used for data areas, irrespective of the locations
actually being referenced. This may be accomplished in an application using
the memory manager by making the code parameter (KCODE) dependent on a task

identifier. Thus if the first task is identified as task 0 and subsequent

tasks as 1, 2, 3 etc. :

ITASK = IQTASK()
ICODE = 10 + ITASK
CALL ALLOCA (IPT1, ILEN, 'XXX', ICODE)

CALL, LOCATE (IPT2, 'YYY', ICODE)

where IQTASK is a function which retrieves the task number. Here, the newly
allocated space will have the memory manager name 'XXX' regardless of how many
tasks are executed. There will nevertheless be a unique area for each task,

distinguished by the code values 10, 11,...etc.

Similarly, when LOCATEing previously allocated space, the area required for a

specific task is obtained by establishing the correct value for ICODE.

7.2 Managing space for several tasks

When the memory manager is used in a multi-tasking environment, an important
difference compared to single-tasking is the indeterminate order with which
allocation requests are made. Hence the layout of allocated areas in memory

becomes indeterminate leading to wasted space. (See Section 5.3).

To overcome this problem, separate areas of memory are managed for each task.
The initialising routine INILOC is told what the maximum number of co-existing
tasks will be. Since many allocation requests are made from the root

or parent task (task 0) the manager allows for the space belonging to task 0
to be a different size than for other tasks. Hence, the INILOC parameter
KLENGTH1 defines the size of managed memory for task 0, and KLENGTH2 defines

the size of managed memory for all other tasks.

7.3 Memory distribution

The memory space is now organised as shown in Fig.2 (compare with Fig.1)

' i
. .
task 0 | ===———m- > : i
; 1
1 [
task 1 | ====== > : : €
!]
T
task 2 e —————— - : |G-—— ————————
i 1
T i
.]
task 3 | ~——————- ? P -S——
. i l
etc. long term ===+ e work space

Fig. 2

there is a separate set of management tables (see 5.1) to describe the

space for each task.

10

7.4 Choice of task space

A multi-tasking application has the freedom to choose which set of tables to
use, and hence which area to allocate from. Normally, this choice is made
automatically, in that a request from task N will be satisfied from the tables
for that task. However, the user can override this decision by supplying the

table number as an additional parameter (see Appendix).

When tables are being searched (e.g. by LOCATE) the searching mechanism will
examine all sets of tables if the required entry is not found in the first
choice. This is obviously inefficient and may be prevented by supplying the

table number as an additional parameter.

8. IMPLEMENTATION USING THE CRAY HEAP MANAGER

8.1 Initialising

The memory manager as described in Section 7 may be used for both single and

multi-tasking applications.

The memory to be managed is obtained by routine INILOC from the Cray Heap
Manager by means of a call to HPALLOC. This requires that appropriate

parameters are supplied to the loader as follows:

IDR,ese0se, MM=INIT:INC, STK=STINIT:SINC, ...

where INIT is an initial heap allocation which may be increased as often as
necessary in pieces of size INC. The stack parameter STINIT should be such
that INIT > KTASKS * STINIT where KTASKS is the number of concurrent tasks

in the application. The HPALLOC request also includes a small amount of space

for tables.

similar parameters exist when using the segmenting loader SEGLDR.

11

8.2 Adding to existing space

The memory manager includes a routine ADDMEM to change the size of an existing
managed space. This is implemented using the heap manager call HPCLMOVE.

This routine will move the existing space to a new location if necessary
before appending to it. It is very important to appreciate that any array
pointers which exist in the application code will be invalidated by this
operation (i.e. it is necessary to reLOCATE). Since the original allocated
space is unused after the ADDMEM operation, this is likely to result in
inefficient use of memory and is therefore not recommended unless the original

allocation is small.

9. CONCLUDING REMARKS

Memory management software using the above ideas has been found to be both
flexible and efficient. A version used by ECMWF's numerical weather
prediction model uses about 5% of the CPU time of the code; in addition about
1% is added in traceback overheads to allow comprehensive error facilities to

provide useful information when errors are detected.

Memory management software does not relieve the user of the task of planning
the use of memory space in a sensible manner. It does provide a means of
using space efficiently, and allows the user to choose sensible array names
and structures. The capability of allocating several areas of storage in a
contigquous block facilitates the buffering of data for input/ou;put processes.
Flexibility is enhanced because extra variables can be introduced into the

code without disturbing a rigidly structured memory configuration.

Good diagnostic and trace facilities are important. It has been found that
the provision of switchable trace facilities has been especially useful in

program development. The ability to call a trace routine to print a map of

12

the managed space in critical areas assists the user to plan, and often points

to ways in which problems may be overcome.

A final, but important feature worthy of comment is the usefulness of based
variables as a means of reducing programming errors. In‘an environment where
all POINTER variables are set as a result of calls to memory management
routines the likelihood of using nonassigned data, or over-writing previously
assigned data incorrectly, is reduced. If a POINTER variable has not been set
before reference is made to a based variable, a fatal error usually results.
Over-writing in a managed system takes the form of allocating space which must
first have been released. The resulting increased confidence in the integrity

of the code is a considerable benefit.

13

' APPENDIX A
The subroutines and parameter lists supported by the memory manager

are listed here. [] indicates optional parameters.

ADDMEM (KALEN1 [,KALEN2])

ALLOCA (KPT,KLEN,KNAME,KCODE [,KTABLEj)
ALLOCB (KPT,KLEN,XNAME,KCODE [,KTABLE])
ALLOCC (KVPT,KVLEN,KVNAME,KCODE,KNUM [,KTABLE])
FREEALL

INILOC (XKLENGTH1,KLENGTH2,KTASKS,KSET)
LOCATE (KPT,KNAME,KCODE [,KTABLE])

LTRSTAK (KLTRACE)

MMGETL (KTLEN [,KTABLE])

MMGETN (KNAME,KLOC [,KTABLE])

MMLIST (KNAME,KLEN,KCODE)

MMPUTN (KNAME,KLOC [,KTABLE])

MMSWAPN {(KLOC1, KLOC2 [,KTABLE]})

OFFTR

ONTR (XTRACE,KTRLIM)

PUSHMEM [(KTABLE)]

QLEFT (KMLEN [,KTABLE])

OMEM (KMLEN)

RENAM (KNAME1,KCODE1,KNAME2 ,KCODE2 [,KTABLE])
RLSEALL

UNLOC (KNAME,KCODE[,KTABLE])

The parameter meanings are as follows:
KALEN1 change in length of task 0 space

KALEN2 change in length of space for tasks other than 0

14

KCODE
KCODE1
KCODE2
KLEN
KLENGTH1
KLENGTH2
KLTRACE
KMLEN
FKNAME
KNAME 1
KNAME2
KNUM
KPT
KSET
KTABLE
KTASKS
KTLEN
KTRACE
KTRLIM
KVLEN
KVNAME

KVPT

Integer code in the range 1 to 99

length of allocated array

size of space required for task 0

size of space required for tasks other than 0

TRUE to switch on calling trace. FALSE to switch off
amount of remaining space

array name (1 to 8 characters)

number of arrays to be simultaneously allocated

address of allocated array

initial value for managed memory

table number to be used (optional parameter)

number of tasks reguired to use the memory manager

table length

maximum number of table entries to be printed

print limit before tracing is switched off

vector of length KNUM containing KLEN values for each array
vector containing KNAME for each array

vector containing KPT for each array

15

APPENDIX B

Description of memory manager routines:

ADDMEM (KALEN1 [,KALEN2])

change size of managed space (increase or decrease)

ALLOCA (KPT,KLEN,KNAME,KCODE [,KTABLE])

ALLOCB

ALLOCC

allocate space for an array with given name and code.
KCODE = 1 to 98 for long term storage

= 99 for work space.

(KPT,KLEN,KNAME , KCODE [/XTABLE])
as for ALLOCA but long term storage only
Consecutive calls are allocated contiguous memory

No reuse of released space except when at top of area

(KVPT ,KVLEN , KVNAME , KCODE , KNUM [,KTABLE])
as for ALLOCB but KNUM arrays are allocated simultaneously

FREEALL

INILOC

LOCATE

released managed space to system. Must be followed

by INILOC before any new space can be allocated.

(KLENGTH 1, KLENGTH2 , KTASKS ,KSET)

obtain memory to be managed and preset it to KSET
KLENGTH1 words are obtained for table 0

KLENGTH2 words are cbtained for table 1 ... (KTASKS-1)

(XPT,KNAME,KCODE [,KTABLE])

locate a previously allocated array

LTRSTAK (KLTRACE)

MMGETL

MMGETN

switch on or off the subroutine calling trace

{KTLEN [,KTABLE])

return the current length of the memory manager table

(XNAME ,KL.OC [,KTABLE])

return the name held in position KLOC of the name table

16

MMLIST (KNAME,KLEN,KCODE)
print contents of tables for debugging purposes

MMPUTN (KNAME,KLOC [,KTABLE])
insert KNAME into position KLOC of the name table

MMSWAPN (KILOC1, KLOC2 [,KTABLE])
swap entries in positions KLOC1 and KLOC2

OFFTR
switch off debugging tracing
ONTR (KTRACE, KTRLIM)

switch on debug tracing and establish printvlimits.

PUSHMEM [(KTABLE)]
compress space used by memory manager to eliminate
unused portions. BApplies either to all tables or to a
specific table. Modifies addresses and therefore

requires arrays to be re-located.

QLEFT (KMLEN [,KTABLE])

returns in KMLEN the residual space available for

subsequent allocations.

OMEM (KMLEN)
returns the residual space available to the job,
i.e. space not already in use by memory manager or
operating system.
RENAM (KNAME1,KCODE1,KNAME2,KCODE2 { ,KTABLE])
renames the array idéntified by XNAME1 and KCODE1
- to the new identification of KNAME2 and KCODE2

RLSEALL

frees (UNLOCs) all arrays known to the memory manager

space remains available to the manager

UNLOC (XNAME, KCODE[,KTABLE])
releases previously allocated space
If KCODE = 99 all arrays named KNAME are released.

Otherwise, a single long term array is released.

17

