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ABSTRACT

A re-examipation of the test for ill-conditioning of the analysis equations:
suggests that the currently implemented test is unnecessarily severe. A
revised test which is effective even in the most unlikely circumstances and
which is less restrictive than the present one is proposed. It is noted‘that
even this test could be substantially relaxed if account is taken of the

statistical distribution of round—-off errors.
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1. INTRODUCTION

The purpose of this note is to review anlearlier error analysis by Céts and -
Rogertson (1980) on the growth of round-off error in the solution of the
linear equations which occur in the Optimum Interpolation (C/I) analeis
algorithm; the matrices in the problem are éymmetric and positive definite.

Cats and Robertson (1980) suggested that the O/I matrix is ill-conditioned if

- 3 :
k1R - n

-1 : ) .
where K is an appropriate condition number, n is the order of the matrix, p
. . . -48 . . ' e
is the machine precision, 2 , and Y is the relative accuracy which is

demanded of the solution.

We suggest that the test be revised to read

2n p (2)

where bij are the elements of the inverse of the 0/I index. This is a safe

criterion which is less restrictive than (1).

Two widely used condition numbers in -error analyses of these kinds are those
based on the L2 and L, norms. The L2 norm is more convenient for analytical

work than the L_ norm; on the other hand the L is easier to use in practicai

work.

The condition of the 0/I equatioﬁs is discussed theoretically using the L2
norm in Sect. 2. The results indicate that the eguations are well-conditioned
if some suggestions by Cats (1981) are followed. Sect. 3 gives estiﬁates of -
relative error for the solutions of the O0/I equations using both the L2 and

L, norms, and justifies the suggestion (2) for improving the current

operational test on the condition of the equations. Sect, 4 summarises the

results.



2. CONDITION NUMBERS FOR THE 0/I MATRIX

The disgussions of ﬁhe influence of rouﬁd—off error in the O/I context given
by CatS'and,Robértson (198Q), and Cats (1981) follows closely that given in
Rabinowitz and Ralston (1978, hereafter called RR) for the Crout and
Doolittle methods for the solution of linear equations. The method uéed in
.the(;nalysis algorithm is in fact the Cholesky method, which is substantially
more economical, and therefore less sensitive to round-off error. (The
Cholesky method requirgg the decomposition of a symmetric positive definite

matrix A to a form A=L L, where L is lower triangular).

The estimation of the probable error of such algorithms is sometimes rather
difficult. RR(page 11) make the point that when estimating the maximum
round—-off error in a calculation, the result will be r.p where r is the
operation count and p is the machine precision. On the other hand, the
probable error will be of order r%p. They remark that a common way to
estimate round-off error in a long calculation is to find a maximum bound‘on

3

the error and then replace r (where r is an operation count) by r°.

2.1 Definition of the condition number

Much of the discussion about the numerical stability of the algorithms hinges
on the condition number K(A) of the matrix A in the problem

Ax = Db

where x is the unknown. K is defined to be

K = Ial 127 . (3)

norm and assume that A

in some suitable‘norm. We willvwork first with the L2

is positive definite ~ hence

Ial =X and 1AW = 1/A__
. max - min



where Amax and Amih are the maximum and minimum eigenvalues of A and

max

Ky =3
min

2.2 Calculation of the L2 condition number

For the 0O/I matrix the condition number is rather easy to estimate in
simple cases. We begin with the definition
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where P and 0 are the correlation matrices for prediction error and
observation error, while the diagonal matrix ¢ gives the non-dimensional rms

observation error. 1In the simple case of equal uncorrelated errors we have .

na
@
a

a) The L2 norm of Al

The following lemma was used by Cats - the proof below is due to Wilkinson,

1964 (p.99).

Lemma If B and C are positive semi-definite then

T(]2+g)>'l'(

[Le:]

) + 1T (C)

where T denotes the absolute value of the minimum eigenvalue.

Proof T (B + C) = min {XT,(B + C) X}
T xl=1 -
. T
=min {x", Bx+cy
X 1=1
-min [{x", Bx}+{x" ¢zl
Ix1=1 -

2 min {gT, B g}A+ min {§T, c X} by positiveness

=T (B) +T (C) Q.E.D.



This lemma is usefﬁl bécaﬁse Tkg 2,2) will be bounded away from zero, evén
though T (E) may be very close to zero.A The latter case can occur when there
are nearly coincident observations, or when the height streémfunction
correlation is very clqse to 1,s0 that height and wind data are regarded as

redundant.

We can bound the norm of a-l by 1/t(0 Q 0). There are three cases to

consider:
(a) In the case of equal uncorrelated errors the bound is just 1/62.'
(b) If the observational errors are not equal, but are still uncorrelated,

the bound is 1/02. where 0 , is the rms error of the most accurate
min min .

observation.

(c) If the observationai errors are correlated (e.g. radio-soﬁde heights

or winds in the vertical, or satellite thicknesses in the horizontal), the
situation is more complicated. In the case of SATEMS, the occurrence of many
SATEMS separated by the correlation length could lead to very small
eigenvalues. Similar problems can arise in the vertical. A practical
solution (Cats, 1981) is to reguire that the observatiénal error cofrelation

matrix can be split into two parts
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1
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6g=o0

=

+9,8
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the first of which is positive definite and the second is positive
semi~definite. Physically this can be done by reqﬁiring that two reports
cannot have perfectly correlated bbservational error at zero separation. As
implemented by Cats, the current algorithm limits this cérrelation to a

maximum value of K = 0.8. Thus we have

la~l § ——— . (4)
o, (1-x)
min



b) The L2 norm of A

an upper bound for Al is easily found:‘
IAl = p(A) =A < I\, = tr(A) =N + 5 02,
= = max i 1 i

since P and § are correlation matrices. .We then have

- 2
fal <»N (1 + 02) where ¢ = L, O

1

N1 i

‘This bound will be attained if all the observations are doincident

and the observation errors are perfectly correlated. In more general

cases there will be VYN eigenvalues which account for most of the

variance, with typical magnitude /N(1+52). Therefore we expec£ to have
1Al ~ /N (1 +57), (5)

while in all but the most pathological cases we will certainly have

Ialh < N (1 + 52) (6)

c) Estimates of the Lz,condition number

Using (5) and (6) in (3) gives
-2
N(1 + 07) (7)

02, (1 - k)
min

K <

whilst substituting (4) and (5) leads to

LYN (1 52)

02. (1 = K)
min

X (8)

As noted by RR, (7) is an extreme upper bound while (8) is a realistic

bound.

3. ESTIMATES OF RELATIVE ERROR ARISING FROM ROUND OFF

RR consider the estimates of relative error in the problem

S

X =

g

in two parts, viz response to round-off error in the data b, and response to

the round-off errors in A and x. Cats considers both simultaneously, but his



results are controlled only by the second problem, i.e. the response to

round-off error in A and x.

RR show that for the algorithms we use, the computed solution x satisfies

exactly the equation (A + E) X, = b from which we deduce the result

L K(A)IEN /I Al 0a)
P, 0 T = K(a) &l /iAl (92
-1 ]
_1a~li um ' | | (o5)
1 - 1a-11 1ml

where Xt is the true solution and IEl is a matrix whose norm can be

bounded.

RR deduce upper bounds for the norm of E under the assumption that A is
"row-equilibrated”, which is defined to mean that the L_ norm of each row of

A is unity:
i.e. for each i: max WA, Il = 1
J 1]

An artibrary matrix A can be equilibrated by dividing each row by the maximum
absolute element in the row. (For positive definite matrices this maximum
element is not necessarily on the diagonal - we only know that

a,. Smax (Ja..|, |a
ii

i3 |) . Symmetric matrices lose their symmetry in this

33

process.

In our case we know that the range of the infinity norm of the rows of A is
between (1 + N ) and (1 + o2 ), where o is the biggest observation

min max max
error, and Umin the smallest. If this range is not too big, A may be
row—equilibrated for the purpose of the estimation of E , by dividing all its

elements by its maximum element (1 + o2 ) - denoted by ¢.
max

6



RR show that for all standard norms lEl

lEl < g(2n+1) pe with g € 2 (the factor € comes from equilibration) if
all the dot products are done in double precision; if the entire computation
is carried out in single precision- there is the much weaker bound

1EI_S 1.06 (3n2 + n3)g pe.
They furthér comment that these are extreme upper bounds which take no account

of the statistical distribution of round-off errors.

3.1 Estimated relative error using the L2 norm

Since the second of the above bounds does not apply for the L2 norm we will
use the first bound and assume that the final result is truncated to half
precision; in effect we have done the calculation in double precision for
half words. Then a realistic estimate of the relative error of the solution,
taking note of earlier comments on operation counts (Section 2), is given by

the following expression with g = 2 and p = 22k

N ﬂixﬂ aa™ " weny/c-na" e ~ a7 rmne
£ 24 '

~22(21/n+ 1)2 (1"*'6!2‘1 ) -
o . (1 -x) =
min
: -24

_47n 2 (1 + 02 )
2 max
o, (1 -K)
min

2
. g ~ 0. s . > 0. . .
Typically min 0.1 (giving min 0.3), but in exceptional circumstances

2

g”, ~ 0.01. Therefore
min
RE < ——3————: 2-24% /n (1+o;ax)
.2 x 10
ZfZH

1.2 x 10°% ¥n (1402 )
max



Thus the relative error will be less than 4 X 10_3 for matrices of order 103
in normal cases, and will be of order 10'1 for matrices of order 103 only in

the most pathological cases.

The conclusion is that there should be no reason for concern about round—off
errors, if the matrix size is less than'103, so long as we are satisfied with
relative errors between 5x‘|0-.3 and 10_1. This result is reassuring about the
stability of the algorithm, but not the acéuracy. As shown in’thé next

section, the accuracy estimates can be much improved using the L_ norm.

3.2 Estimated relative error using the L_ norm

The L2 norm is not readily computable in a real situation and so we estimate

the relative errors using the L norm.

As shown in standard texts

n
Ial ., = max I, [a,.]|
1 1<3<n i=1 ij
n
lal, = max .Z. la,.]|
T e 7T
and Ial_ = 1271 .
1 oo



The condition number based on the infinity norm is

n n
XK = ( max .I,|la..|).( max _Z
J=1| 13' ( j=

w b..])
i=1,n i=1,n

1 i3

-1 .
where bij are the elements of A& . Cats and Robertson define the quantity Km

as

= 2
Km (.max 'aijl).(.max lbij|)n
i=1,n i=1,n
i=1,n i=1,n

and they note that X < K .
L m

Since all the matrices are positive definite the largest element is on the

diagonal, and so there is an easy test for an upper bound for K_.

From (9a) the relative error RE is given by

I Sl Ky (R E"} K (A) I EI }
= ——— < e 1_
th" (:\] Al

K (A) I El
Al

provided we require the relative error to be small.

if YO is an upper bound for the acceptable relative error then we must have

K_(2)IEl

Al <Yy



Thus the matrix is ill-conditioned if

I all < I El
K,, (A) Y,

1.06 (n3+3n2) g.p

<
Yo max la ]
i,3
: 3 2
or 1 -~ < 1.06  (n°+3n°) g.p
max |a,,|HA I Yo
i,y

As currently implemented in the code the test on the condition is
1
<
m

which is too severe.
A reasonable modification is to estimate A=l by

n .max Ibi.l
i=1,n *J

j=1,n

and use that estimate in the condition test.

Thus the condition test would be revised to

! < LB : (10)

max |a,,|max |b,,| Y
_ i1 11
1 1

10



rather than the present version:

1 < TP
max |a,,|max |b,,| Y
: iit, ii
i i
As pointed out by RR,(10) is an extreme upper bound which could be

replaced by

< P (11)

in most circumstances. Taking even the pessimistic result (10) for matrices
of order 200 and relative errors of 10% the maximum element in the inverse

matrix would have to exceed 1 X 10% before ill-conditioning became a problem.

Note that all this is under the assumption (1402 )/(1+c2 ) = o(1);

; min max
it can be as low as 1-5% (the code starts objecting at 1/1025). We have not
examined the RR estimate to see if this is sufficiently close to 1. Cats
(1981) used a property that can lead to much more realistic bounds, namely
(Yx)2 < xcx for all x, where ¢ is the correlation matrix and Y the rms. This
property. is particular to 0/I because it is derived from the fact that Yy is

a correlation vector; RR do not have this available.

4. DISCUSSION

A re-examination of the text for ill—conditiéning of the analysis equations
suggests that the currently implemented test is unnecessarily severe. A
revised test which is effective even in the most unlikely circumstances and
which is less restrictive than the present one is proposed. It is noted that
even this test could be substantially relaxed if account is taken of the

statistical distribution of round-off errors.
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