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1. INTRODUCTION

Despite impressive improvements in numerical weather prediction over the last
few years, forecast models still show considerable day-to-day variability in
predictive skill, particularly in the medium range. An example is shown in
Fig 1. Whilst it is interesting to understand why such variability occurs,
the ability to predict when forecasts are likely to be particularly skilful,
or particularly unskilful, is, a fortiori, of great importance. Stimulated by
recent discussion with Member States, a project to investigate the extent to
which forecast skill is related to the large-scale flow, and to find possible
predictors of forecast skill, has recently begun at ECMWF and some early

results are recorded below.

Broadly speaking, one can distinguish two sources of forecast error.

Firstly, loss of forecast skill can be associated with analysis errors, or
errors in model formulation. These are related to deficiencies in the way we
choose to observe and simulate the atmosphere; they are essentially
‘man-made'. Secondly, there are errors associated with amplification of
unavoidable uncertainties in the analysis or model formulation due to the
intrinsic instabilities and nonlinearity of the atmosphere. This process
cannot be ascribed to man-made errors. For example, no matter how good an
analysis system might be, the final product will always represent one of a
statistical ensemble of equally probable initial states consistent with the

data.

Some sources of variability of forecast error can be ascribed to one or other
of these categories. For example, day-to-day changes in data coverage will
result in day-to-day variability in forecast skill. Changes in model
formulation will result in much lower frequency variability in forecast skill.

Furthermore, since stability properties of the atmosphere depend on the
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strength of parameters describing the flow itself, loss of skill due to
amplification of small initial uncertainties will vary with the initial and
forecast flow .patterns. However, variability in skill will also. be influenced
by interactions between the two categories of forecést error. For example,
the propagation and amplification of analysis errors depend strongly on the
structure of the large-scale flow. Similarly, the way in which systematic
model errors influence forecast skill, will depend on the detailed structure
of the flow. (For example, one might argue that systematic errors in the
model's treatment of tropical convection will most strongly influence the
extratropics when the large-scale flow is conducive to the meridional

propagation of Rossby-wave activity.)

These remarks serve to illustrate the fact that whilst it may be possible to
find relationships between the large-scale flow and forecast skill, the
reasons for such relationships may be not be unique. 1In this text, we shall
report the results of some statistical tests to try to discover significant
rela;ionships; however, at the present stage of the investigation, we can .

only speculate on possible reasons for such relationships.

Our ultimate goal in this study is to try to f£ind a set of predictors that

can be used in an operational sense to. 'forecast the forecast skill', and we
have examined a variety of such candidates. These include not only functions
of the large-scale flow itself, but also variables expressing the skill of
previous forecasts, and the consistency between forecasts initialised one day
apart. These latter variables have often been cited as possible predictors of

forecast skill.

The outline of the paper is as follows. In section 2 we give a brief survey
of previous work in this area, and in section 3 we outline some of the work
that has been done at ECMWF. Section 3 is divided into three parts. In 3.1
we describe the data analysis required for the subsequent investigations. In
3.2 we give results from correlations using forecast skill and forecast
spread. In 3.3, results of correlations between forecast skill and the
large-scale flow are discussed, both for hemispheric and limited area scores.

Some concluding remarks are given in section 4.
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2. SURVEY OF PREVIOUS WORK

Although numerical forecasts have been in operational use for several decades,
comparatively little work has been done to relate quantitétively objective
forecast skill td the skill of previous forecasts, forecast consistency or
synoptic flow type. Subjective relationships between such quantities have
been devised by bench forecasters to provide day-to-day guidance but not mach

systematic material has been available to substantiate these relationships.

Some‘early'work in this field was presented at the 1982 Seminar/Workshop on
"Interpretation of‘numeridal weather predictibn products" by Grgnas (1983)
and Rkesson (1983). Grgnas found that, during persistent Euro-Atlantic
blocking and deep cut-off low SLtuatlons, medlum—range forecasts show above
average anomaly correlatlon coefficient in the European area, while durlng
more zonal flow regimes, the model's performance is poorer over Europe.
Conversely, if onset of Euro-Atlantic blocking takes place after day 3 to day

5, the model often fails to predict it.

Results consistent with these ideas and with the downstream development theory
of Simmons and Hoskins (1979) were produced by Klinker (personal
communication), elaborating on the work of Hollingsworh et al (1985), whereby
the skill of day 7 forecasts (over the Northern Hemisphere) was shown to be
related to activity over the Northern pacific, though only during winters not
dominated by highly meridional (blocked) circulation over the Atlantic region

such as 1980-81 and 84-85 (see Fig.2).

gkesson, from his preliminary investigations, could not draw definite’
‘conclusions about the usefulness of consistency between recent forecasts and
forecast skill (see also Section 3.2). He also investigated relationships
between day 5 forecast error patterns over Europe and synoptic characteristics
of the initial conditions, and found some indications that strong negative
errors over Europe'were often associated with low index (meridional-type) flow

situations over the American quadrant.
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Grgnas, in a later study (Grgnas, 1985) also investigated forecast skill
variability over Europe, using spatially truncated fieldsd(T10) during both
winter and summer periods. He defined subjective binary indicators of
Euro=-Atlantic blocking and of Pacific activity and found corrélations around
.5 between a combination of such indicators and objectivé forecast skill over
Europe. Consistency between adjacent forecasts alone gave iower correlations
with forecast skill than when combined with these synoptic subjective
indicators. In the latter case the correlation reached Valueé in excess‘of +6
for day 5 forecasts. He concluded that the relationship between forecast

skill and flow type should be further investigated.

Recently Branstator (1986) has studied NMC Northern Hemispheric forecast skill
in winter periods 1974 to 1985 and found significant correlations between
forecast skill and both RMS amplitude of the anomaly and the persistence of
large-scale flow. Some relevant results along these lines are to be found in
Section 3.2. Also recently, Dalcher et al (1985) reported disappointing
results in trying to forecast hemispheric forecast skill using the
Lagged-Average Forecasting (LAF) technique (skill-spread correlation), while
much more encouraging results were found using a similar technique on regional
(limited-area) verifications (Kalnay and Dalcher, 1986 summarized in Kalnay et
al, 1986). 1Instead of using the LAF technique, they constructed an ensemble
of forecasts from alternative analyses produced in an Observing System
Experiment by removing different components of the globai observing system
(e.g. satellite temperature soundings, radiosondes, cloud winds, and so on).
In this study they found that! although the predictability of the hemispheric
forecast skill was low, the skill over Europe and North America (again
expressed as anomaly correlation coeffficients of geopotential height) .could
be much better forecast in terms of average forecast departure. They
concluded that, within the limitations of their sample, this method showed the

potential of providing a case-to-case a priori estimate of skill.
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3. SOME CURRENT RESEARCH AT ECMWF

3.1 Data

The basic data used in this study are taken from six years of ECMWF
forecasts. For each (extended) winter season from 1980/81 to 1985/86, the
northern hemisphere 500mb geopotential height field of 100 day 1-to=10
forecasts and verifying analyses, from 1 December , were extracted from the
archives. The data for the first five years were then concatenated, and the
correlation and regression studies described below were performed on these
data. The 100 forecasts and verifying analyses from the sixth available
winter, 1985/86, are to be used as an independent sample with which to test

the reliability of the statistical results.

Measures of forecast skill and forecaét consistency were then calculated for
the hemisphere north of 20N, and for a number of limited areas (defined
below). Skill scores included both Root Mean Square error (RMS) and Anomaly
Correlation Coefficient (ACC); for the latter, the 500-day mean of verifying
analyses in the concatenated data was subtracted from each field. Forecast
consistency was estimated by calculating the RMS difference and ACC between
forecasts initialised one day apart. The RMS of the deviation of each
forecast and analysis field from the 500~day observed 'climate' (the

Tamplitude of the'anomaly') was also calculated.

In order to study possible relationships between forecast skill and
configurations of the large-scale flow, it is necessary to project the 500mb
height data onto a suitable set of basis functions. 1In principal it would be
possible to use, for example, a spherical harmonic basis. However, in an
attempt to minimise the number of basis functions required to describe any
significant relationships between large-scale flow variability and skill
variability, it was decided to project the data onto a set of empirical
orthogonal eigenfunctions (EOFs) defined from pentad mean fields from 32
years of wintertime analyses (1952-84, taken from NMC and ECMWF archives).
These EOFs were calculated separately on the zonal mean and on deviations from
zonal symmetry. The first of these EOFs corresponds to variation in the
hemispheric mean height. Then five 'zonal' EOFs were retained, explaining
99.96% of the total variance of the zonal mean fields, and 17 eddy EOFs,

explaining 86.9% of the variance corresponding to fluctuations in the
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zonally-varying component of the flow. Fig 3 shows the first three zonal
EQOFs, and Fig 4 the first six eddy EOFs. It can be seen in Fig 4 that the
first eddy EOF corresponds to the stationary wave pattern. Higher eddy EOFs
have some similarities with the teleconnection patterns of atmospheric
low-frequency (e.g. Wallace and Gutzler, 1981).  Further properties of these
EOFs, including their probability distribution functions, are given by Molteni

and Sutera, 1986.

Finally, for each forecast field, so-called anomaly EOF coefficients were

also calculated, where the contributions from the annual cycle and systematic
forecast errors have been subtracted. This was done by calculating, for every
calendar date and every forecast time, an average (a "climate") of each EOF
coefficient over the five years. A fifteen—day running mean was applied to
these averaged EOF coefficients, and each forecast and analysis field was then

expressed as a difference from the appropriate value in this climate.

3.2 Skill-skill and skill-spread correlations

We show here the results of investigations on whether the skill of previous
forecasts and/or the spread between adjacent forecasts contain any information
about the objective skill of an operational winter forecast. However, before
doing so we will briefly discuss how the RMS error and ACC scores compare with
each other when they are used as measures of forecast skill and forecast

departures (spread between adjacent forecasts).

Fig.5 shows the correlation coefficient between the 500 day time series of ACC
and RMS error (lower curve) and ACC and RMS spread (higher curve). Both
coefficients increase with forecast time, but the two quantities seem to be
slightly more mutually consistent when used as measures of spread rather than
skill. They have comparatively low correlation during the early part of the
forecast time (60 to 70%) which confirms that the two measures have different
characteristics. This also suggests that, in looking for spread-skill
relationship, one is likely to find higher correlations between the two
quantities where they are measured by the same objective indicator. We will

see that this is indeed the case.

We now turn our attention to skill-skill and skill-spread correlations. The

large number of such correlations that can be computed poses a problem of data
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display, and we will therefore concentrate on day 3 and day 6 forecasts only.
Following Branstator (1986), we use the convention of calling 'prognostic',
those correlations that could be used to forecast, by statistical means, the
skill of an operational forecast at forecast prediction time (i.e. all those
that are based on forecast and analysis fields available at the time the
forecast is completed); and 'diagnostic', those correlations between forecast
skill and 'future' forecast skills and spreads (unavailable for operational
use). Figs. 6 and 7 attempt to condense such information for day 3 and day 6
forecast skill respectively. The a) panels display correlations between skill
and skill or spread both measured in terms of ACC and b) panels display the
same quantities but when RMS departure is used in place of ACC to measure both
skill and spread. The panels are arranged as follows. At the intersections
between horizontal and sloping lines (the vertices of the rhomboids) the
reported skill-skill correlations have been entered, whilst in the centre of

- diamonds the corresponding skill-spread correlations are shown. Horizontal
lines represent single ten-day forecasts (from day 0 to day 10) and
(initial-condition) time progresses from bottom left to top right. For
example, Fig.6a shows that the gkill (measured in ACC) of the day 3 forecast
starting from 'today's' analysis, is correlated 86% with the day 4 forecast
skill of the same forecast, but only 69% with the day 4 forecast skill from
'yesterday's' analysis, 52% with the day 4 forecasts skill from day before
yesterday's analysis and so on. The correlation between the day 3 forecast
skill and itself (100%) is not reported and in its place there is an
arrowhead, indicating that the entire panel refers to day 3 forecast skill.

Tf one wanted, however, to use such statistical relationships to predict the
day 3 forecast skill, one would have to use forecasts that could be verified
today. This means that only skill-skill correlations that lie to the left (or
exactly on) the vertical line marked A-B could be used. In the case of day 3,
Fig.6a, the highest prognostic correlation is with the day 1 forecast skill

(39%].

Regarding skill-spread correlations, the number in the centre of a diamond in
Fig.6a is the correlation between the day 3 forecast skill and the day N/day
N+1 forecast spread (both measured in ACC), where N is the top left corner and
N+1 is the bottom right corner of the diamond. For example the day 3 forecast
skill is correlated 80% with the day 2/day 3 forecast spread (verifying at the

same time), 72% with the day 1/day 2 spread verifying 24 hours earlier and
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only 43% with the day 3/day 4 spread verifying on the same day. Here
prognostic correlations are those below the horizontal line C-D and diagnostic
correlations lie above this line. It should be noticed that the day 0/day 1
spread is equivalent to the day 1 skill (by definition). It should also be
pointed out that only correlations »>30% have been entered in the panels of

Figs. 6 and 7.

Comparing Figs. 6 and 7 and panels a) and b) leads to a number of interesting

points:

a) These results are quantitatively consistent with those presented by
Grgnas (1985) and Branstator (1986).

b) The highest prognostic skill-skill (ACC) correlation is 39% for day 3
and below 30% for day 6. This implies that the skill-skill relationship is
very limited as a statistical predictive tool.

c) The highest prognostic skill-spread (ACC) correlation is 43% (day 3/day
4) for day 3 and 35% (day 6/day 7) for day 5. This indicates that forecast
spread is a better predictor of forecast skill than the skill of previous
forecasts available at forecast time.

a) ACC appears to be, at this stage, a more useful skill indicator than RMS
error. Their different behaviour, in this respect, is consistent with the
results displayed in Fig.5.

e) The correlation between the skill of a day N forecast (in our case N=3
and N=6) and the day N/day N+1 spread is consistently lower (by almost a
factor of two) than the correlation with the day N-1/day N spread.

Fig.8 shows the correlation between the day N/day N+1 spread and the day
N-1/day N spread and the day N skill for all forecast times up to 10 days when
either RMS or ACC are used as measures of both skill and spread. If we
concentrate on the two correlations between skill and day N/day N+1 spread and
skill and day N-1/day N spread, both measured in RMS (the same argument holds
for ACC), we see that they are different at short forecast ranges but tend to
converge to similar (and low) values at 10 days. This implies that, even
towards the end of the forecast, the day N forecast contains a measurably
higher information content than the day N+1 forecast verifying at the same

time.

The poor level of correlation found could be due to at least two factors:

i) the hemispheric scale of the fields employed. Other studies (Kalnay and
Dalcher, 1986 and Molteni et al, 1986) would suggest that more local limited
area (probably time-lagged) correlations might give better correlation
levels. -

ECMWF/SAC(86)6 8



ii) the size of the sample estimating the spread. In a LAF (or Monte Carlo)
environment more than two (up to 10) samples are usually available to estimate
the spread.

These possibilities will be investigated further.

There is one more point that emerges from the analysis of the results reported
in Figs.6, 7 and 8 that is worth commenting on in more detail. This is point
d) above; the apparent higher predictability of ACC as a forecast skill
measure when compared to RMS error. This would also appear to be confirmed by

other recent studied (e.g. Branstator, 1986 and Xalnay et al 1985).

Fig.9 shows, in addition to the graphs in Fig.8 similar correlations but where
skill is measured in ACC and spread in RMS and vice versa. (For the latter
the correlation coefficient is plotted with its sign changed to make the
diagrams directly comparable). It appears immediately evident that of

correlations (at short and medium range) are considerably smaller.

Tt is well known that the ACC is sensitive not only to phase differences
between forecast and verifying analyses, but also on the amplitude of the
verifying anomaly (e.g. Arpe, et al, 1985). It is possible that this produces
a 'spurious' correlation between spread and skill obscuring the relationship
that we are attempting to verify. Fig.10 shows the correlation between skill
(measured either by RMS or by ACC) and the amplitude of the forecast (or
observed) anomaly. When the forecast errors are small, i.e. at short range,
the correlation between ACC skill and size of the anomaly (either forecast or
observed) is indeed very high, while it is negligible if the skill is measured

by the RMS error.

Fig.11 shows the same correlations but with spread instead of skill. "We can
verify that again the ACC measure of forecast spread is considerably
correlated to the amplitude of either the forecast or the observed anomaly,

whilst this is not the case with RMS.

It is therefore concluded that most (if not all) of the apparent extra
predictability that ACC has over RMS (that is, the difference between full
lines A and B in Fig.9) is due to the relationship between both ACC skill and
acc spread and the amplitude of the forecast anomaly. This is especially
evident at very short forecast times, when the observed and forecast anomaly

fields are very similar to each other.
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3.3 Relationship between forecast skill and large-scale flow

i) Hemispheric skill

In this subsection we consider results from a regression analysis of EOF
coefficients against hemispheric skill scores. The type of question that we
wish to ask is whether there are certain patterns in the large~scale flow,
from model forecast fields or from initial analyses, or both, for which
forecast skill is predictable. Considerétion of both initial and forecast
fields provides some information on the evolution of the forecast. We have
therefore studied linear regressions of forecast skill against forecast EOF
coefficients only; against EOF coefficients of the initial analysis only; and
against forecast and initial EOF coefficients together. As in section 3.2,
results are for the 500-day concatenated dataset. Fig.12 a) to c) shows
graphs of the correlation between the regressed EOF coefficient and both the
Fisher z-transform (e.g. Morrison, 1983) of the ACC (ZAC coefficient) defined
as

1 1+
z = E‘Xn C?:g) where z is ZAC and. p is ACC

and the RMS skill scores. In Fig.12a) the model climate and annual cycle have
been subtracted from the EOF coefficients (see section 2 ). It can be seen
that correlations for the ZAC coefficient, fi(t), are higher than for RMS
error. The curve fi(t) has a maximum at day 2, whilst for the RMS measure,
correlations are largest at the end of the forecast, where they are comparable
in magnitude with correlations with the ZAC score. (For fields near the
beginning of the forecast period, regression against the ZAC coefficient
gives, not surprisingly, a higher correlation than against the ACC.) If
'climate' is not subtracted from the EOF coefficients, then the correlations
are a little higher (up to 0.06) than shown in Fig.12, indicaping that there

are correlations between EOFs and skill scores due purely to the annual

cycle.

It is interesting to note that the shape of the curve fi(t) in Fig.12a) is
somewhat complicated. The maximum at day 2 is followed by a minimum at day 5
followed by a second relative maximum at day 8. Some insight into possible
reasons for this can be found by considering corresponding correlation curves
for ZAC scores against regressed EOFs for the forecast data and initial data
separately. These are shown in Fig.12b), where it can be seen that the
correlations, £(t), for forecast EOF coefficients only and correlations,
i(t), for initial data only decrease essentially monotonically, (it is quite

possible that the small departures from monotonicity are due to sampling
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problems.) The function FI(t) = /E7(27157T€Y (precisely monotonically
decreasing), shown in Fig.12c), would give the correlation coefficient
between ZAC scores and regressed forecast and initial EOF coefficients, if
the fofecast EOF coefficients were independent of the initial EOF
coefficients. Because of the temporal auto correlation of atmospheric
variébles, this is not the case. The ratio R(t)= f£i(t)/FI(t), shown in
Fig.12c), gives a measure of thé degree of redundancy between data from the
forecast EOF coefficients and the the initial data EOF coefficients; It can
be seen that in the early stages of the forecast there is a degree of overlap
between both sets of EOF coeff1c1ents. However at day 10 the ratio equals 1,
‘1nd1cat1ng complete independence. Hence, the non-monotonic behaviour of the
curve fi(t) can be understood if we consider it to be a product of the
monotonically decreasiﬂg function FI(t) and thé monotonically increasing

function R(t).

The regression analysis picks out from the forecast EOF coefficients, a
pattern of 500mb geopotential height that is representative of the synoptic
situétions connected to the most 'forecastable' forecast skill. These k
patterns are shown, with climate subtracted, in Fig.13a) for day 2 forecasﬁs.
If the day 2 forecast anomaly pattern is highly positively correlated with the
pattern in Fig.13a), then the ACC will be higher than normal; conversely, if
it is highly negatively correlated, the ACC will be lower than normal. (If
the magnitude of a forecast anomaly is equal to that in Fig.13a), and is
perfectly correlated with it, then the expected anomalous ZAC skill score,
normallsed by its standard dev1atlon, will be equal to the correlation
coeff1c1ent 'of the regression analysis.) The so-called factor structure
constants of the regression analysis give the correlation between this pattern
and the original EOF patterns. For the day 2 regression with ZAC
coefficients, the two highest factor structurebconstants are for the first
zonal EOF, which gives the mean strength of the hemispheric westerlies, and
the first eddy EOF, which gives the strength of the stationary waves. It
easily seen that the pattern of 500 mb height in Fig.13a) corresponds to
weaker than normal zonal winds, particularly over the oceans, and weaker than
normal stationary waves. Hence we can expect that forecast fields with weak
stationary waves and weak zonal flow will be relatively skilful. The pattern
of 500mb height anomaly in the initial data that correlates most strongly with
the day 2 ZAC coefficients is shown in Fig.13b). The redundancy in using both

initial and forecast data for a day 2 regression is apparent.
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The corresponding day 2 forecast pattern that correlates most strongly with
the day 2 RMS errors, is shown in Fig.13c). The magnitude of the factor
structure constants for the first zonal and first eddy EOFs are not as large
as for the ACC regression; however, one can see that there is considerable
similarity in the two patterns. The sign of the amplitude of the patterns are
opposite, of course, since a skilful forecast should have high ACC but low RMS
error. The consistency between results for the RMS regression and the ACC

coefficient regression is encouraging.

In attempting a physical explanation of the above results, we note that the
patterns in Fig.13 correspond to a weakening of the climatological westerlies
across the oceanic storm tracks. These storm tracks are associated with
regions of genesis and amplification of the most unstable quasi-geostrophic
modes of the extratropical atmosphere, the baroclinic waves. In the presence
of such waves, small analysis errors or uncertainties will amplify rapidly.
Whilst our single level height data cannot determine changes in baroclinity,
it is likely that, assuming climatological wind shears, the patterns in Fig.13
do correspond to weakened baroclinity in the storm track region, and hence

less rapid amplification of analysis errors.

Shown in Fig.14a is a scatter diagram of the day 2 ZAC coefficients and the
amplitude of the regressed EOF coefficient, relative to its mean, of’the day

2 forecast fields. The scatter in the diagram reminds us that the regression
explains only about 40% of the variance (see Fig.12). In Fig.14b, c we show
the subset of points for the years 1980/81 and 1984/85, the first and last
years of the concatenated dataset. Comparison of these two diagrams indicates
how much changes in model formulation and analysis procedures have improved
day 2 forecast skill. We note also apparent indications of interannual
variability in the amplitude of the regressed EOF coefficient. However, for
both years, a trend between skill score and regressed EOF amplitude can be
discerned. This indicates that at least some of the relationship between EOF
coefficient and skill scores is associated with correlations between
interannual variability in the strength of the large-scale flow independent of
changes in model formulation. (The diagrams suggest that a higher regression
correlation might be obtained if the ACC scores were first normalised and
standardised to values for the version of the model to which they belong.) In
Fig.14d), we show a similar scatter diagram for the independent 100 days for

1985/86 using the regression weights from the
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500 day concatenated dataset. The relationship between the day 2 skill and

regressed EOF coefficient is apparent.

In Fig.15a,b we show the pattern of the day 9 forecast field and the
corresponding initial analysis that correlate most strongly with the day 9
ZAC scores. The forecast field pattern is very similar to the day 2 pattern,
corresponding to a weak zonal flow and weak stationary waves. The initial
data, pattern is somewhat different, however. Over the Pacific and north
America, it is almost anti-correlated with the forecast field pattern, and

across the Atlantic it is much less zonal.

Hence, if the model develops during the course of the integration stronger
than normal westerly flow, relative to the model climate, then the forecast
will tend to be unskilful. Put this way the result seems to accord with
experience; development of excessive westerly flow is likely to be associated

with deteriorating forecast skill.
The discussion above represents a preliminary assessment of possible
relationships between hemispheric skill and large-scale flow patterns;

research is continuing in this area.

ii) Limited-area skill

In this sub-section we shall outline some results from regression analyses
between forecast EOF patterns, and skill scores in pre-defined regional

areas.

Before doing so, however, it is worth recalling some idealised barotropic
model experiments reported by Simmons et al (1983). Fig.16 shows the
amplification of two localised initial perturbations, on a longitudinally
varying basic state representative of climatology. The positions of the two
initial perturbations are quite different to one another. On day 2 the
influence of each perturbation can be seen as a wavetrain propagating
downstream from the initial disturbance. By day 10, however, the perturbation
streamfunction has amplified in a geographically fixed location over the east

Pacific, independent of the position of the initial disturbance.

These results, as pointed out for example by Grgnas (1985), may have some
application to studies of the behaviour of forecast errors in the short and

medium range. The results at day 2 cannot be quantitatively correct, since.
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as we have discussed above, the amplitude of downstream propagating errors
will depend on whether they propagate into disturbances that are growing due
to baroclinic instability. Hence we can expect forecast errors in some
spatially localised region of the atmosphere to be correlated with the phase

of transient synoptic scale systems.

Since the group velocity of the error disturbance is generally greater than
the phase speed of the baroclinic waves, we can expect the day 2 RMS forecast
error in a spatially isolated region of one of the oceanic storm tracks to be
correlated with a geopotential height pattern with a low centre either over or
just upstream of the isolated region. However, results from the barotropic
model indicate that forecast errors in the medium range should correlate more
with the (equivalent barotropic) long wave structure in the atmosphere, than

with more local transient disturbances.

These remarks (made with hindsight!) describe quite well some of the results
of the regression analysis of skill scores with forecast EOFs. They also
accord with the findings of Wallace et al (1983). Specifically, 12 limited
areas were defined from 60N-30N and sectors of 30 degrees of longitude. The
regression analysis was performed against both RMS and ZAC scores. 1In
general, higher correlations were obtained when correlating RMS scores. Since
the results form the barotropic model above suggest that the strongest
differences between day 2 and day 9 forecasts occur over the Pacific, we shall

first show results from this region.

Fig.17, then, shows the anomalous pattern of forecast field which correlates
most strongly with the day 2 RMS error in three of the limited areas,
180~150W, 150W-120W, and 120W-90W. The first two of these coincide with
regions where the day 10 response in Simmons et al's model is strongest. The
number at the top left hand side of each diagram gives the correlation
coefficient for the regression analysis (using both forecast and initial EOF
coefficients). It can be seen that the pattern is indeed mobile with a
negative centre positioned within , or just upstream of, the pre-defined area.
For the day 9 forecast (Fig.18) on the other hand, the pattern is stationary,
independent of the position of the pre-defined area, and is strongly

correlated with the Pacific/ North American teleconnection pattern over that
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region (Fig.1%a). It is interesting to note that, for the day 9 forecast, the
correlation coefficient is smallest for the pattern that is least spatially

localised over the Pacific/North American region.

Simmons et al (1983) interpreted their results by showing that the
climatological flow was barotropically unstable, and that the day 10
perturbation streamfunction can be considered as a superposition of the
unstable modes. In turn therefore, the results from these limited area
analyses suggests that, if the magnitude of day 9 forecast errors is related
to the barotropic stability of the large scale flow, then flows with a large
negative PNA index should be more unstable than flows with a large positive

PNA index. We hope to test this speculation in the future.

Results from regressions with limited areas over Europe do not appear to show
such distinct differences between day 2 and day 9 results, consistent with
Simmons et al. In Figs.20 and 21, for example, we show patterns of the day 2
and day 9 forecast field that correlate most strongly with RMS forecast
errors in the regions 30W-0, and 0-30E. In all four cases there is a
negative centre over the appropriate limited area. For the area 30W-0, there
is an interesting transition from day 2 to day 9, towards a highly localised
disturbance. The regression correlation is noticeably higher for the more
localised pattern. Wallace and Blackmon (1983) have documented
teleconnection patterns with base points in this localised area. These are
shown in Fig.19c) and d). When the data is band-pass filtered, emphasising
fluctuations in the range 2.5-6 days, the teleconnections extend across the
Atlantic and into Europe. However, when the data is low-pass filtered,
emphasising periods longer than 10 days, the teleconnection pattern becomes
highly localised. Hence, as for the Pacific region, the evidence seems to
suggest that, in the medium range, forecast errors are related to the
low-frequency variability in the atmospheric flow. For the area 0~30E,
however, both the day 2 and day 9 forecast patterns appear very similar. As
Wallace and Gutzler (1981) discuss, low-frequency teleconnection patterns in
the European/Asian area are not as spatially constant as over the Pacific and
north America. Nevertheless, the patterns in Figs.20b) and 21b} do have some
correspondence with their Eurasian teleconnection pattern (Fig.19b)). Clearly
further investigation is required to understand differences between results

for the different regional areas.
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4. CONCLUDING REMARKS

Due to the preliminary character of this report, only very tentative
conclusions can be attempted at this stage. More appropriately, the

possibilities for future work will be discussed.

It has been argued above that the choice of objective scores with which to
quantify the skill of a forecast is, for a start, not an obvious one. Indeed
it has been shown that ACC (and, equally, ZAC) suffers the drawback of being
too sensitive to the absolute amplitude of the anomaly. RMS does not have the
same problem, but its deficiencies are otherwise well known. (i.e. giving
unfair advantages to excessively smooth fields). While hemispheric
skill-skill prognostic correlations  are comparatively smaller, skill-spread
correlations using ACC (but not RMS) show practically useful levels of
correlations. 'Such results, however, are influenced by the abovementioned

problems affecting the ACC skill score.

Independent results obtained at other centres would, however, suggest that .
skill-spread correlations computed on limited areas (regionally) and,
possibly, 'at appropriate time lags might yield more encouraging results. Work

is in progress along this line.

Regarding relationships between hemispheric skill and large-scale flow, it has
been found that, towards the end of the forecast period, both the initial
condition and the forecast fields contain independent information about the
skill of the numerical prediction. The characteristics of the large-scale
flow that seem to be most connected to forecast skill are those expressed by
the first zonal EOF, which is proportional to the mean strength of the
hemispheric westerlies, and the first eddy EOF, which is proportional to the
amplitude of the stationary waves. Anomalously weak (strong) zonal flow
and/or stationary waves situations seem to be associated with relatively

skilful (unskilful) forecasts.

Results of regression analysis between hemispheric patterns and limited area
(regional) skill scores indicate that day 2 forecast patterns that correlate
most strongly with RMS errors in the Eastern Pacific/North American quadrant
are mobile and tend to be linked in phase with the limited area where the

skill score is measured. By day 9, however, the pattern appears to be more

stationary, independent of the position of the predefined area and strongly

ECMWF/SAC(86)6 16



correlated with the PNA teleconnection pattern over that region. This is
consistent with idealized barotropic model experiments. Similar, but weaker,
correspondence can be found between the more localized patterns singled out by
the forecast skill over the European region and Wallace and Gutzler's (1981)

Atlantic and Euro/Asian teleconnection patterns.

Clearly much more work is needed both to enlarge the investigations on the-

6 years ECMWF forecast dataset and to complete the interpretation of the
results. Areas that need particular attention are skill=-skill and
skill-spread regional and time lagged correlations, forecast error
teleconnection patterns, relationships between forecast skill and stability of
the large-scale flow, synoptic éctivity-forecast skill lagged correlations and
stratifications of all such relationships by weather regime, defined either by
bimodality ihdicators of the type derived by Sutera (1986) or by means of EOF

coefficients.
Work is also underway at ECMWF to investigate along ‘the lines proposed by

Roads (1985), possible relationships between flow energetics and forecast

skill (Persson, 1986, work in progress).
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ECMWF DAILY FORECAST SKILL

NORTHERN HEMISPHERE

DAILY VARIATION OF ANOMALY CORRELATION
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Fig.1

Daily variations of anomaly correlation of NH 500 mb geopotential height for day 1, day 3, day 5 and

day 7 ECMWF forecasts. September to November 1985.
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model skill (ACC) and

activity over the Northern
Pacific region (500 mb spatial
height variance, 140°W to 190°W
and 70°N to 30°N) in five winters,
1980-81 to 1984-85, a) to e)
respectively. The correlation
coefficients for the 5 years

are .01, - .52, -.49, -.72,

-+33 respectively.
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Fig.4 First six NH eddy EOFs, a) to f). Non-dimensional amplitude.

ECMWF/SAC(86)6 24



Correlation coefficient (%)

100

90 | | Spread (N<>N+1)
80

i Skill (N)
70'é,,————""'———_f——__———____—_____-__—___—_—— : .
60 3 | o .‘

50
40
30
204
103

0- ) | | | J | | | |
1 2 3 4 5 6 7 8 9 10

N=forecast time (days)

Fig.5 Correlation coefficient between ACC and RMS error (lower curve) and
ACC and RMS spread (upper curve between day n and day n+1).
500 winter days 1980-81 to 1984-85, Northern Hemisphere.
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Fig.8 Correlation coefficient between the gkill of a day N forecast and the
spread between the day N and day N+1 forecasts (thick lines) and the
day N=-1 and day N forecasts (thin lines). Both skill and spread
measures in ACC (full lines) or in RMS (dashed lines).
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Fig.9 As Fig.8, but, in addition, skill in RMS and spread in ACC (dotted
lines) and skill in ACC and spread in RMS (dash-dot lines).
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Fig.10 Correlation coefficient between the forecast skill (acc, thick lines;
RMS, thin lines) and RMS amplitude of the anomaly (observed anomaly,
solid lines; forecast anomaly, dashed lines). o
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Fig.12 a) Correlation between regressed EOF coefficient, using both forecast
and initial data, and hemispheric skill scores (ZAC and RMS) as a
function of forecast time. b) Correlation between regressed EOF
coefficient, and hemispheric ZAC scores, using forecast and initial
data (fi(t)), forecast data only (£f(t)), and initial data only (i(t)).

c) A plot of the functions fi(t), FI(t)= /fz(t)+i2(t), and the ratio
R(t)= fi(t)/FI(t). See text for explanation.
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Fig.13 Pattern of 500mb height anomaly that correlates most strongly with
hemispheric skill scores. a) day 2 forecast field and day 2 ZAC score
b) initial data and day 2 ZAC score. .c) day 2 forecast field and day

2 RMS score. d) initial data and day 2 RMS score.

ECMWF/SAC(86)6 33



*19selEp peleusleOuUcD siep (0¢ 99Uyl woxl saybteom uoTssaxbaa aylx bursn ‘98/686L SAEP 001

juspuadapur °oyY3 wWOIXIF eiep (p

*XTuo ¢8/¥86lL I0F ®IEP (D

*ATuo 18/0861L I0F ®IEP (q

*s&ep 00§ TTe (®

*21008 JYZ oTIeydsTwey pue ‘pTSTJ 3ISenaIoi g Aep I0F JUSTOTIIO0D J0H passeoxbax useomisq weibelp I933eos ¢l °bTa

aprylduuy
S6 o8 S8 [+ St 0z oL sz- [+ and 86—
—_ 1 1 1 1 | | | i 1 [
a ¥l
o st
o
-9l
g o°
o o
o B o cn_u Foe N
o
o o 7, oo g 3
o o a a] el
pgoe® g o 3
o 0 oo gg g (%]
o o le1 ©
o o3 m O gog- o =
o =X
o oo ]
Og o =] L
o s o o =} z
o
D@ D
[=] nm— o P 12
a o ful
o o o
[=] FZT
[ a n o
A
apnyjdwy
S6 (o]} s9 0S SE 274 ol- sZ- or— SS~
| L 1 1 1 1 1 ] 1 - M.—
o o
o ]
o o
o a .
a s
=] oo’ 8o o
fulia} O
[a] = o ﬂ_ b o
a a o o 97
o o o Po
o o G .
o Fog Oy o905 AN
o &pb =]
=] s @ £ ° o o g1 ®
o o e # 3
a o
% ® g oom o
wmoopg o & Ll Q
o o o o
o -z
a Fiz
FZT
A

apnyyduy
S6 08 $9° os sg oz S o1 gz- or— g5-
L 1 ] i 1 i ] | 1 1 €1
F+
-1
gt
a o o A
o
oo i et
a DD [agarc] Dnﬂ o
o =}
Ennuﬁunuunm_ &l
o o o g o 2
o
u o Pt boot o %f
o [u] wun_ & ot o x4
a
% o op g 0 g a®
a -
& o nnm 1z
oo o
oo o Fzz
o
ol WA
apnylidwy
. §6 08 s9 os SE [+14 1 o= SZT- [¢) ol S6—
L 1 I L ] 1 ] ] 1 L €1
<o o
o+ o 24!
] .
o aQ
[u] W o L g
o o a s’
o o o e o ooo+ fogro,
o 0o o
l o o & Ba P @«n +, © L9
+ ey "o o3 MWD a
o o + ] .
o o® . x++nwm ou%,f«nqn_cq% 21
Xy WV.M m .m oﬂuuﬂ 4o+
o
?mbw%%aq S o a -8t
% S, BT foa
o ¥ WM@Gﬁx v vdm ﬂ * + o +
x oo LI 61
o ° xx o % %O@% M x._mua +_um “+
x X0 x ° 8 OxvB T b X o v .
x ° o x " v u@ Vm_cxf% % o v re
X x x Q + % xx xX N
x Xq x o At o Fiz
» x o ox +
x X o + +
xX x [s] +
x ~ZT
x
Lsz

103 Wwoupn—7

109 Woup—7

34

ECMWF/SAC(86)6



ot

Z 500 MB DAY 8

ZAC SCORE WITH CLIMATE

S
.,

Fig.15 a) b). As Fig.13a), b) respectively, except for day 9 forecast

fields.

ECMWF/SAC(86)6

35



l’,----l---n waeense

N M T

Fig.16 The perturbation s

treamfunction in a barotropic model at days 2,6,and

10 for an initial disturbance centred at 30N,0 (left hand side), and

From Simmons et al (1983).

t hand side).

igh

30N, 120E (r

ECMWF/SAC(86)6

36



a) | b)
CLIMATE SUBTRACTE RMS SCORE WITH CLIMATE SUBTRACTED

— 7

- 7 N,
" i e .
- e ", ;
N, ¥
i, N
K . e r . i
/ 7

Y

Z500MB DAY 2

Z 500 M8 DAY 2

C) RMS SCORE WITH CLIMATE SUBTRACTE

48 ‘} e /

I

Z 500 MB DRY 2

ght anomaly (m) for day 2 forecasts that most

Fig.17 Pattern of 500mb hei
al area 30N-60N and

strongly correlates with RMS scores in the region
a) 180-150W, Db)150W-120W, c)120W-90W.

ECMWF/SAC(86)6 37



a)

b)

RMS SCORE WITH CLIMATE

RMS SCORE WITH CLIMATE SUBTRACTED

46  \ —

54

. pom——— e 7
A\ o i
B g e .
N iy
P Y 0 £
o :, ;
o kY T i
- ' !
- kY

Z 500 MB DAY 9

ECMWF/SAC{86)6

C) | mus SCORE WITH CLIMATE SUBTRRCTE

—— 7
o "‘-*-\‘ i
e ~
- ~/
O Y Py
kY .

Z 500 M8 DAY 8

Fig.18 As Fig.17 but for day 9 forecasts.

38



Fig.19 One point correlation maps showing the correlation coefficient between
500mb height at base points a) 45N,165W, and 55N,75E, and 500mb height
at other gridpoints. From Wallace and Gutzler (1981), using monthly
mean data. c) Base point at 55N,20W and data band-pass filtered. 4)
Base point at 55N,20W and data low-pass filtered. From Wallace and
Blackmon (1983).
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Fig.20 As Fig.17 but for regidnal area 30-60N and a)30w-~0 , b) 0-30E.
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As Fig.18, but for regional area 30N-60N and a)30W-0 , b) 0-30E.





