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1. INTRODUCTION

This report describes in details the radiation scheme which, since 2 May 1989,
is part of the package of parametrizations for the physical processes in the
ECMWF forecast model (ECMWF Research Manual 3). This radiation package
calculates the heating/cooling rate due to absorption-emission of longwave
radiation and reflection, scattering and absorption of solar radiation by the
earth’s atmosphere and surfaces. Outline of the code, in the format of
Stephens’s (1984) paper, is given in Table 1. The longwave and shortwave
radiation parts of the scheme are described in details in sections 2 and 3,

respectively.



Table 1: Summary of the ECMWF operational radiation code

a. Clear-sky

(1) Shortwave: Two-stream formulation employed together with photon path
distribution method (Fouquart and Bonnel, 1980) in 2 spectral intervals
(0.25-0.68 and 0.68-4.0 um).

Rayleigh scattering Parametric expression of the Rayleigh optical
thickness

Aerosol scattering Mie parameters for 5 types of aerosols based

and absorption on climatological models (WMO-ICSU, 1984)

Gas absorption from AFGL 1982 compilation of line parameters
(Rothman et al., 1983)

HZO 1 interval

Uniformly mixed gases 1 interval

O3 2 intervals

(ii) Longwave: Broad band flux emissivity method with 6 intervals covering the
spectrum between 0 and 2620 cm . Temperature and pressure dependence of
absorption following Morcrette et al. (1986). Absorption coefficients fitted
from AFGL 1982.

HO 6 spectral intervals, e- and p-type continug¥
2 absorption included between 350 and 1250 cm
co Overlap between 500 and 1250 cm ' in 3
2 intervals by multiplication of transmission
0, Overlap between 970 and 1110 cm
Aerosols Absorption effects using an emissiVity
formulation

b. Cloudy sky
(i) Shortwave

Droplet absorption Employs a delta-Eddington method with T and w
and scattering determined from LWP, and preset g and ro

Gas absorption Included separately through the photon path
distribution method

(ii) Longwave

Scattering Neglected
Droplet absorption From LWP using an emissivity formulation
Gas absorption as in (a.ii)

Timing: 8 ms for a column computation for a 19-level model on a CRAY XMP-48




2. LONGWAVE RADIATION

The rate of atmospheric cooling by emission-absorption of longwave radiation

is
_— = (2.1)

where F is the net total longwave flux.

Assuming a non-scattering atmosphere in local thermodynamic equilibrium,‘F is

given

+ 1 0 0
F =I i du J dv [Lv(ps,u) t,(pg,p,p) + J Lv(p’,u) dtv]
= o : 5
, S (2.2)

where va(p,u) is the monochromatic radiance of wavenumber v at level p
propagating in a direction such as p is the cosine of the angle that this
direction makes with the vertical, and tv(p,p’,u) is the monochromatic
transmission through a layer whose limits are at p and p’ seen under the same

angle 9.

After separating the upward and_downward components, and integrating by parts,
we obtain the radiation transfer equation as it is actually estimated in the

radiation code

+
F,5 () = [BV(TS)—BV(TO+)] t,(pg.pir) + B, (T )

p
+ j’ tv(p,p ;T) dB

Ps

(2.3)



F, (p) = [Bv(Tt)-Bv(Tm)] tv(p,o;r) + Bv(Tp)

0

+ J tv(p ,p;T) dBV
P

where, taking benefit of the isotropic nature of the longwave radiation, the
radiance Lv of (2.2) is replaced by Planck function BV(T) in unit of flux,
Wm“2 (hereafter Bv always includes the = factor). TS is the surface
temperature, T + that of the air just above the surface, Tp is the temperature

that at the top of the atmospheric model. The

0
at level of pressure p, T

transmission tv is evaluate; as the radiance transmission in a direction 0 to
the vertical such that r = sec ¢ is the diffusivity factor (Elsasser, 1942).
Such an approximation for the integration over the angle is usual in radiative
transfer calculations, and tests on the validity of this approximation have
been presented by Rodgers and Walshaw (1966) among others. The use of the
diffusivity factor gives cooling rates within 2 % of those obtained with a

4-point Gaussian quadrature.

2.1 Vertical integration

The integrals in (2.3) are evaluated numerically, after discretization over
the vertical grid, considering the atmosphere as a pile of homogeneous layers.
As the cooling rate is strongly dependent on local conditions of temperature
and pressure, and energy is mainly exchanged with the layers adjacent to the
level where fluxes are calculated, the contribution of the distant layers is
simply computed using a trapezoidal rule integration, but the contribution of

the adjacent layers is evaluated with a 2-point Gaussian quadrature, thus

p; 2
Jp tv(p,p’;r) = lZ dBv(l) Wy tv(pi,pl;r)
s (2.4)

dB  (Jj) [tv(pi,pj,r) + tv(pi,pj_l,r)]




where Py and w, are the pressure corresponding to the gaussian root and the

1
gaussian weight, respectively. dBv(j) and dBV(l) are the Planck function
gradients calculated between two interfaces, and between mid-layer and

interface, respectively.

2.2 Spectral integration

The integration over wavenumber v is performed using a band emissivity method,
as first discussed by Rodgers (1967)}. The longwave spectrum is divided into

six spectral regions

1 0 - 350 cm ' + 1450 - 1880 cm !
2. 500 - 800 cm *
3. 800 - 970 cm ! + 1110 - 1250 cm -
4. 970 - 1110 cm *
5 350 - 500 cm !
6. 1250 - 1450 cm | + 1880 - 2820 cm !

corresponding to the centers of the rotation and vibration-rotation bands of

HZO’ the 15 micron band of C02,

03. the 25 micron "window" region, and the wings of the vibration-rotation

the atmospheric window, the 9.6 micron band of

band of H20, respectively. Over these spectral regions, band fluxes are
evaluated with the help of band transmissivities precalculated from the
narrow-band model of Morcrette and Fouquart (1985) -- See Appendix of

Morcrette et al. (1986) for details —-.

Integration of (2.3) over wavenumber v within the k-th spectral region gives

the upward and downward fluxes as

+
F (P) = [B.(T)) - B (T, )] tBk(ru(pS,p), T, (pg,P))  + Bk(Tp)

P
+ J tdBk(ru(p,p’), Tu(p,p')) dBk

Pg
(2.5a)



Fk (p) = [Bk(To) - Bk(Tm)] tBk(ru(p.O) ) Tu(p,O) ) - Bk(Tp)
0

- J tdBk(ru(p’ ,P), Tu(p' ,P)) dBk

P
(2.5b)

The formulation accounts for the different temperature dependences involved in
atmospheric flux calculations, namely that on Tp, the temperature at the level
where fluxes are calculated, and that on Tu’ the temperature that governs the
transmission through the temperature dependence of the intensities and
half-widths of the lines absorbing in the concerned spectral region. The band
transmissivities are non-isothermal accounting for the temperature dependence
that arises from the wavenumber integration of the product of the
monochromatic absorption and the Planck function. Two normalized band
transmissivities are used for each absorber in a given spectral region: the
first one for calculating the first r.h.s. term in (2.3), involving the
boundaries; .it corresponds to the weighted average of the transmission

function by the Planck function

V2 _

j B (T ) t (up,T ) dv
, v PV u

1 (2.6a)

tB(up,Tp,Tu) = v
I B (T ) dv
v p

V1

the second one for calculating the integral terms in (2.3) is the weighted

average of the transmission function by the derivative of the Planck function

v

I 2 4B (T )/4T t_(up,T.) dv
” vip’ v u
1

tdB(up,Tp,Tu) = o (2.6b)
J dB (T _)/dT dv
v p
Y1

where up is the pressure weighted amount of absorber.




In the scheme, the actual dependence on Tp is carried out explicitly in the
Planck functions integrated over the spectral regions. Although normalized
relative to B(Tp) (or dB(Tp)/dT), the transmissivities still depend on Tu’
both through Wien’'s displacement of the maximum of the Planck function with
temperature and through the temperature dependence of the absorption
coefficients. For computational efficiency, the transmissivities have been

developed into Padé approximants

& i/2
Z C. u
_ i= 1 eff
t(up,Tu) = =5 - (2.7)
Z Dju ffj
g 7
where U, =T up f(Tu,ﬁb) is an effective amount of absorber which

incorporates the diffusivity factor r, the weighting of the absorber amount by
pressure, up, and the temperature dependence of the absorption coefficients,
with

£(T,0p) = exp [a(ip) (T, - 250) + b(&p) (T, - 250)21 (2.8)

The temperature dependence due to Wien’s law is incorporated although there is
no explicit variation of the coefficients Ci and Dj with temperature. These
coefficients have been computed for temperatures between 187.5 and 312.5 X
with a 12.5 K step, and transmissivities corresponding to the reference
temperature the closest to the pressure weighted temperature Tu are actually

used in the scheme.

2.3 Incorporation of the effects of clouds

The incorporation of the effects of clouds on the longwave fluxes follows the
treatment discussed by Washington and Williamson (1977). Whatever the state of

cloudiness of the atmosphere, the scheme starts by calculating the fluxes



corresponding to a clear-sky atmosphere and stores the terms of the energy
exchange between the different levels (the integrals in (2.3)). Let Fg (i) and
Fa (i) be the upward and downward clear-sky fluxes. For -any cloud layer
actually present in the atmosphere, the scheme then evaluates the fluxes
assuming a unique overcast cloud of unity emissivity. Let F; (i) and F; (i)
the upward and downward fluxes when such a cloud is present in the n-th layer
of the atmosphere. Downward fluxes above the cloud and upward fluxes below it

have kept their clear-sky values

F; (i) = FS (i) for i=n
] i (2.9)
Fn (i) = FO (1) for i > n

Upward fluxes above the cloud (F; (k) for k¥ = n+1) and downward fluxes below
it (F; (k) for k¥ < n ) can be expressed with expressions similar to (2.3)
provided the boundary terms are now replaced by terms corresponding to

possible temperature discontinuities between the cloud and the surrounding

air.
F' ) = [F' - B(n+1)] t( 1) + B(k) + ka t(p, ,p';r) dB
n cld P Pher’ _ kT
pn+1
(2.10)
_ - Ph
Fo(k) = [F., - B() ] tlp,p i r) + Bk +J' t(p’,pyir) dB

; Py

where B(i) is now the total Planck function (integrated over the whole
longwave spectrum) at level i, and led and F;ld are the fluxes at the upper
and lower boundaries of the cloud. Terms under the integrals correspond to
exchange of energy between layers in clear—éky atmosphere and have already
been computed in the first step of the calculations. This step is repeated for
all cloudy layers. The fluxes for the actual atmosphere (with
semi-transparent, fractional and/or multi-layered clouds) are derived from a
linear combination of the fluxes calculated at the previous steps with some

cloud overlap assumption in the case of clouds present in several layers. Let




N be the index of the layer containing the highest cloud, C, the fractional

i
cloud cover in layer i, with C0 = 1 for the upward flux at the surface, and
with CN+1 = 1 and FN+1 = F0 to have the right boundary condition for

downward fluxes above the highest cloud. The cloudy upward (F') and downward

(F') fluxes are obtained as

F'(1) = F§ (1) for i=1
. , . 1-=2 . i1
Fl)=cC,_, F, (1) + C F (g 1-c¢C)) for 2 =i= N+1
i-1 i1 nZO n'n 1=n+1 1 .
N-1 N
Fl1) =¢y Fy (1) +) C Fr (1) (1-C) fori=zNe
n=0 1=n+1

(2.11)

In case of semi-transparent clouds, the fractional cloudiness entering the
calculations is an effective cloud cover equal to the product of the
emissivity by the horizontal coverage of the cloud layer, with the emissivity

related to the cloud liquid water amount by

€ ,q=1 - exp ( - K. o Y ) (2.12)

where K.ab is the 1liquid water mass absorption coefficient set to 158 mzkg_1
s

according to Stephens (1978, 1979).



3. SHORTWAVE RADIATION

The rate of atmospheric heating by absorption and scattering of shortwave

radiation is

dT g dF
—_— — (3.1)
dt C d
D P
where F is the net total shortwave flux
© 104 +1
F(3) = J dv d¢J- pL (5 ,u¢) du dé (3.2)
0 0 -1 Y

Lv is the diffuse radiance at wavenumber v, in a direction given by ¢ the
azimuth angle and g = cos ¥, with ¢ the zenith angle. In (3.2), we assume a
plane parallel atmosphere, and the vertical coordinate is the optical depth &

a convenient variable when the energy source is outside the medium

0
5(p) =j’ B, (p) dp (3.3)
p
B;Xt(p) is the extinction coefficient equal to the sum of the scattering
coefficient Bzca, of the aerosol or cloud particle absorption coefficient
B:bs, and of the purely molecular absorption coefficient kv' The diffuse

radiance Lv is governed by the radiation transfer equation

)
dL (8,1, ) w (8) -—
v _ _ v o] 1}
”, _da—_ - Lv(ayp'y¢) 4 Pv(5)uﬂ¢!u0)¢o) Ev e o
(3.4)
Bv(a) T+l
- —-—Jz P (8,pn,¢,1",¢") L (8,p7,¢") dp’d¢’
4 0“-1

o s s . X . . . =,
Ev is the incident solar irradiance in the direction B, = cos 60 , 0, 1s the

sca

single scattering albedo (= Bv / Kv ) and P(8,u,¢,u’,¢’) is the scattering

phase function which defines the probability that radiation coming from

10




direction (p’, ¢') 1is scattered in direction (g , ¢). The shortwave part
of the scheme, originally developed by Fouquart and Bonnel (1980) solves the
radiation transfer equation and integrates the fluxes over the whole shortwave
spectrum between 0.2 and 4 microns. Upward and downward fluxes are obtained
from the reflectances and transmittances of the layers, and the photon path
distribution method allows to separate the parametrization of the scattering

processes from that of the molecular absorption.

3.1 Spectral integration

Solar radiation is attenuated by absorbing gases,. mainly water vapor, carbon
dioxide, oxygen and ozone, and scattered by molecules (Rayleigh scattering),
aerosols and cloud particles. Since scattering and molecular absorption occur
simultaneously, the exact amount of absorber along the photon path length is
unknown, and band models of the transmission function cannot be used directly
as in longwave radiation transfer (see 2.1) The approach of the photon path
distribution method is to calculate the probability p(U) dU that a photon
contributing to the flux FC in the conservative case (i.e., no absorption, 5?
= 1, kv = 0) has encountered an absorber amount between U and U + dU. With

this distribution, the radiative flux at wavenumber v 1s related to FC by

00
F, =F_ jo p(U) exp( - k U ) du (3.5)

and the flux averaged over the spectral interval Av can then be calculated

with the help of any band model of the transmission function tAv

_ 1 _ ®
F = F dv =F_ JO p(U) ty (U) dv (3.6)

Av Av

To find the distribution function p(U), the scattering problem is solved
first, by any method, for a set of arbitrarily fixed absorption coefficients

kl, thus giving a set of simulated fluxes Fk . An inverse Laplace transform is
1
then performed on (3.5) to get p(U) (Fouquart, 1974). The main advantage of

11



the method is that the actual distribution p(U) is smooth enough that (3.5)
gives accurate results even if p(U) itself 1s not known accurately. In fact,
p(U) needs not be calculated explicitly as the spectrally integrated fluxes

are

F = FC tAv(<U>) in the limiting case of weak absorption

(3.7)
1/2
F = Fc tAv(<U >) in the limiting case of strong absorption

172

1/2 (+] :
> = J p(U) U du.
0 .

(+1]
where <U> = f p(U) U dU and <U
0

The atmospheric absorption in the water vapor bands is generally strong, and
1/2

the scheme determines an effective absorber amount Ue between <U> and <U >

derived from

U = 1n (F /F)Y/k : (3.8)
e ke c e

where ke is an absorption coefficient chosen to approximate the spectrally

averaged transmission of the clear-sky atmosphere

ke = ——  1ln ( tAv(Utot / uo) (3.9)
u / -

where Utot is the total amount of absorber in a vertical column and B, = cos

ﬂo . Once the effective absorber amounts of H_O and uniformly mixed gases are

2
found, the transmission functions are computed using Padé approximants

.—h
ic~1=
o
jah)
[
[
0
[y

(3.10)

ty, V) =

1=
o
c
0
[eY

e
o
[
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Absorption by ozone is also taken into account, but since oione is located at
low pressure levels for which molecular scattering is small and Mie scattering
is negligible, interactions between scattering processes and ozone absorption

are neglected. Transmission through ozone is computed using (3.10) where UO ,
3
the amount of ozone is

C
It

0
0 M J dUO for the downward transmission
P 3

of the direct solar bean,

(=
i

P
v r du, + Ud (p.) for the upward transmission
0 0 s

3 P 3 3

of the diffuse radiation;

r = 1.66 is the diffusivity factor (see 3.), and M is the magnification factor
(Rodgers, 1967) used instead of H, to account for the sphericity of the

atmosphere at very small solar elevations

M=35//1224 “i +1 (3.11)

To perform the spectral integration, it is convenient to discretize the solar
spectral interval into subintervals in which the surface reflectance can be
considered as constant. Since the main cause of the important spectral
variation of the surface albedo is the sharp increase in the reflectivity of
the vegetation in the near infrared, and since water vapor does not absorb
below 0.68 um, the shortwave scheme considers two spectral intervals, one for
the visible (0.2 - 0.68 pm), one for the near infrared (0.68 - 4.0 um) parts
of the solar spectrum. This cut-off at 0.68 pum also makes the scheme more
computationally efficient, inasmuch as the interactions between gaseous
absorption (by water vapor and unifofmly mixed gases) and scattering processes

are accounted for only in the near-infrared interval.

13



3.2 Vertical integration

Contrarily to the scheme of Geleyn and Hollingsworth (1979), the fluxes are
not obtained through the solution of a system of linear equations in a matrix
form. Rather,assuming an atmosphere divided into N homogeneous layers, the

upward and downward fluxes at a given layer interface j are given by

N
F () =F,  T.(k
o I ‘b
k=] (3.12)
F (j) =F (j) R, (J-1)

where Rt(j) and Tb(j) are the reflectance at the top and the transmittance at
the bottom of the j-th layer. Computations of Rt’s start at the surface and

work upward, whereas those of T, ’s start at the top of the atmosphere and work

b

downward. Rt and Tb account for the presence of cloud in the layer

Rt =C Rcdy +(1-C) Rclr

(3.13)

=
]

b c Tcdy *+(1-C) Tclr

clr and cdy respectively refer to the clear-sky and cloudy fractions of the

layer, and C is the cloud fractional coverage.

3.2.1 Cloudy fraction of the layers

Rt and Tb are the reflectance at the top and transmittance at the bottom
cdy . cdy
of the cloudy fraction of the layer calculated with the Delta-Eddington

Approximation. Given 60, Sa , and 68 , the optical thicknesses for the cloud,
the aerosol and the molecular absorption (= ke U), and gC and ga the cloud and

aerosol asymmetry factors, Rt and Tb are calculated as functions of the

cdy cdy
total optical thickness of the layer

8§=8 +8 + 8
c a g

14




of the total single scattering albedo

w = (3.14)

of the total asymmetry factor

of the reflectance R_ of the underlying medium (surface or layers below the
j-th interface), and of an effective solar zenith angle ue(j) which accounts
for the decrease of the direct solar beam and the corresponding increase of

the diffuse part of the downward radiation by the upper scattering layers.

u () =1 Q- Al5)) s p+r e 17t (3.15)
with

al N
c)=1-1 (1 -cC(i) E(1) )
i=j+1

and

(1-a_(1) gc(i)z) 5_(1)
E(i) =1 -exp [ - 1 (3.16)
U

Sc(i), wc(i) and gc(i) are the optical thickness, single scattering albedo and
asymmetry factor of the cloud in the i-th layer, and r is the diffusivity
factor. The scheme follows the Eddington Approximation, first proposed by
Shettle and Weinman (1970), then modified by Joseph et al. (1976) to account

more accurately for the large fraction of radiation directly transmitted in

15



the forward scattering peak in case of highly asymmetric phase functions.
Eddington’s approximation assumes that, in a scattering medium of optical
thickness to*, of single scattering albedo w, and of asymmetry factor g, the

radiance L entering (3.4) can be written as

L(a,u) = LO(5) o L1(5) (3.17)

In that case, when the phase function is expanded as a series of associated
Legendre functions, all terms of order greater than one vanish when (3.4) is

integrated_over.p and ¢ . The phase function is therefore given by

P(e)=1+ 31(9) cos 6

where 6 1is the angle between incident and scattered radiances. The integral

in (3.4) thus becomes

T+l
Iz I P(u,¢,u’,¢’) L' ,¢’) du’de’ = 4n (LO + nLl) (3.18)
0Y-1

where

fi
3

1 +1
g = = ———-J P(8) cos 8 d(cos 0)
2Y-1

is the asymmetry factor. -

Using (3.18) in (3.4) after integrating over p and dividing by 2m,we get

d(LyuL,)
B o—— & = - (L+ul. ) +w (L. +gpulL,)
0 1 0 1
ds
1
i FO exp ( 6/p0) (1+3g uou)

(3.19)

16




We obtain a pair of equations for LO and L1 by integrating (3.19) over u

d I_.0 3

= -3 (1 - w) LO + —w FO exp (-8 / uo) (3.20)
d 3 4
d L1 3

=-(1-wg) L, + —wgpp, F exp (-8 / pn.) (3.21)
15 1 . 00 0’

For the cloudy layer assumed non-conservative (w < 1), the solutions to
*

(3.20) and (3.21), for 0 =8 = § , are

C, exp(-kd) + C

Lo(a) 1 o exp(+k3) - a exp(—a/uo)

(3.22)

Ll(B) p (C1 exp(-k8) - c, exp(+k38)) - B exp(—a/po)

where

' 1/2
k=13 (1-w) (1-wg)]

. 1/2
p=1[3 (1-w)/(1-wg)]

2 2

a=30wF ug [1+g (1-w)] 7 4 (1 Xk ”0)

0

2 2

2
B=3uwF, Hg [ 1 +3g (1-w) uO] /4 (1 -k Ko )

The two boundary conditions allow to solve the system for C1 and Cz; the
downward directed diffuse flux at the top of the layer is zero, i.e.,

2
F (0) = [ LO(O) + -;—Ll(O) 1=0

17



which translates into

(1 + 2p/3) C1 + (1 - 2p/3) C2 =a + 2B8/3 (3.23)

the upward directed flux at the bottom of the layer is equal to the product of
the downward directed diffuse and direct fluxes and the corresponding diffuse

and direct reflectances (Rd and R_, respectively) of the underlying medium

+  * * 2 *
F()=1[ LO(S ) - -——-Ll(a ) 1
3

* 2 * *
= R_[LO(S ) + 7;— Ll(a )1 + Rd Hy FO exp (-8 /uo)

which translates into

(1-R -2(1+R)p/ 3) clexp(—ka*)

*
+ (1 -R_+2(1+R)p/3)C, exp(+k & ) (3.24)

2
E 3
=((1-RJ)a-2((1+R)B/3+ Rd o Fo ) exp(-8 /uo)

In the Delta-Eddington approximation, the phase function 1s approximated by a
Dirac delta function forward scatter peak and a two-term expansion of the

phase function
P(8) =2 f (1-cos 8) + (1-f) (1 + 3g’ cos 6)

where f is the fractional scattering into the forward peak and g’ the
asymmetry factor of the truncated phase function. As shown by Joseph et al.

(1976), these parameters are

f=g
(3.25)
g =g/ ( 1+g)

18




The solution of the Eddington’s equations remains the same provided that the
total optical thickness, single scattering albedo and asymmetry factor

entering (3.19)-(3.24) take their transformed values

*? *
d =(1-wf)3s
(1-9f) o (3.26)
w =
1 - wf

Practically, the optical thickness, single scattering albedo, asymmetry
* * £ 3
factor, and solar zenith angle entering (3.23)-(3.26) are § , w , g and u,

defined in (3.14) and (3.15).

3.2.2 Clear-sky fraction of the layers

In the clear-sky fraction of the layers, the shortwave scheme accounts for
scattering and absorption by molecules and aerosols. As the optical thickness
lr(J)’ the

reflectance at the top and transmittance at the bottom of the j-th layer can

for both Rayleigh and aerosol scattering is small, Rclr(j—l) and Tc

be calculated using respectively a first and a second-order eXpansion of the
analytical solutions of the two-stream equations similar to that of Coakley

and Chylek (1975). For Rayleigh scattering, the optical thickness, single

scattering albedo and asymmetry factor are respectively &_, wp = 1, and g =
0, so that
6R -
(2p + 3 ) (3.27)
2 p

R~ (2u+s_)

The optical thickness tor of an atmospheric layer is simply

*
8g = 85 (PRI - p(J-1)) / p___

19



2

E 3

where BR is the Rayleigh ‘optical thickness of the whole atmosphere

parametrized as a function of the solar zenith angle (Deschamps et al., 1983)

3
* i-1
8 = ) a5 kg
i=0
For aerosol scattering and absorption, the optical thickness, single
scattering albedo and asymmetry factor are respectively Sa

<< 1 ) and g, SO that

, W (with 1-w
a a

den =1+ (1 - wo+ back(ue) w ) Ba / o

‘ 2 2
+ (1 - wa) (1 - w, * 2 back(ue) w ) Sa / "

back(ue) W 6a / My

R(p ) =
€ den v
(3.28)
1

T(#e) den

where back(pe) =(2-3 Ko ga) / 4 is the backscattering factor.

Practically, Rclr and Tclr are computed using (3.28) and the combined effect
of aerosol and Rayleigh scattering comes from using modified parameters
corresponding to the addition of the two scatterers with provision for the
highly asymmetric aerosol phase function through a Delta-approximation of the

forward scattering peak (as in (3.25)-(3.26))

_ _ 2
§ =8 +3 (1-o0 g )

g = ( ) (3.29)

20




As for their cloudy counterparts, Rclr and Tclr must account for the multiple

reflections due to the layers underneath

R(u) + R T() / (1 - R R_)

clr
(3.30)
*
.T;lr = T(ue) / (1-R R_)
*
with R =R (1/1)
*
T =T (1/r)

and R_ is the reflectance of the underlying medium (R_ = Rt (j-1)) and r is

the diffusivity factor.

Since interactions between molecular absorption and Rayleigh and aerosol
scattering are negligible, the radiative fluxes in a clear-sky atmosphere are
simply those calculated from (3.12) and (3.30) attenuated by the gaseous

transmissions (3.10).

3.3 Multiple reflections between layers

To deal properly with the multiple reflections between the surface and the
cloud layers, it should be necessary to separate the contribution of each
individual reflecting surface to the layer reflectances and transmittances
inasmuch as each such surface gives rise to a particular distribution of
absorber amount. In case of an atmosphere including N cloud layers, the
reflected light above the highest cloud consists of photons directly reflected
by the highest cloud without interaction with the underlying atmosphere, and
of photons that have passed through this cloud layer and undergone at least

one reflection on the underlying atmosphere. In fact, (3.6) should be written

]
I
~1=

0
F_, JO p,(U) t, (U) dv (3.31)
1

1l
o
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where Fcl and pl(U) are the conservative fluxes and the distributions of

absorber amount corresponding to the different reflecting surfaces.

Fouquart and Bonnel (1980) have shown that a very good approximation to this
problem is obtained by evaluating the reflectance and transmittance of each
layer (using (3.24) and (3.30)) assuming successively a non-reflecting
underlying medium (R_ = 0 ), then a reflecting underlying medium (R_ = 0 ).
First calculations provide the contribution to reflectance and transmittance
of those photons interacting only with the layer into consideration, whereas
the second ones give the contribution of the photons with interactions also

outside the layer itself.

From these two sets of layer reflectances and transmittances (R
(R

to ° 'I‘b0 ) and
te Tb¢ ) respectively, effective absorber amounts to be applied to

computing the transmission functions for upward and downward fluxes are then

derived using (3.8) and starting from the surface and working the formulas

upward
U;O =1In (Tyy 7/ Ty.) 7 k,
;¢ = In (Tb¢ / Tbc) 7 ke
(3. 3 2)
U;O = 1n (Ryy / R, ) / k_
U:¢ =1n (R, /R, ) / k_

where th and Tbc are the layer reflectance and transmittance corresponding to

a conservative scattering medium.

Finally the upward and downward fluxes are obtained as

- . e
0 }RtD tAv(UeO) + (R, -R )t (U) (3.33a)

o
F ) t£ ~ t0 AV e |

"
Q!

T . t, (U )+ (T. -T. )¢t (U ) (3.33b)

F ) =Fy |Too tanVeo b* b0’ Ay es’

it
']
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3.4 Cloud shortwave optical properties

As seen in section 3.2.1, the cloud radiative properties depend on three
different parameters: the optical thickness Sc , the asymmetry factor g and

the single scattering albedo W,

ac is related to the cloud liquid water amount U e by
3 = —_— (3.34)

where r, is the mean effective radius of the size distribution of the cloud
droplets. Presently r. is fixed to 15 um, but this radius may vary with height
from S5 pm in the planetary boundary layer to 40 pum at 100 hPa, in an empirical
attempt at dealing with the variation of cloud type with height. Smaller water
droplets are observed in low-level stratiform clouds whereas larger particles

are found in cumuliform and cirriform clouds.

In the two spectral intervals of the shortwave radiation scheme, g, is fixed
to 0.865 and 0.910 , respectively, and R is given as a function of Sc

following Fouquart (1987)

4

w 0.9999 - 5 x 10

o1 exp ( - 0.5 3. )

(3.35)

w 0.9988 - 2.5 x 10 2 exp ( - 0.05 8 )

ca

These cloud shortwave radiative parameters have been fitted to in situ

measurements of stratocumulus clouds (Bonnel et al., 1983).
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