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Abstract

A set of 16 ensembles of time-lagged extended-range foreasts have been run at different
times in the annual cycle using the T63 version of the European Centre for Medium-Range
Weather Forecasts (ECMWF) operational model. Each ensemble was composed of 9
integrations from consecutive 6 hourly analyses.

Theoretical properties of ensemble-mean skill and ensemble spread are studied using a
simple model of error growth with a parametrization of the ECMWF model error. The impact
of systematic error on the potential improvement in skill of the ensemble-mean forecast is
discussed. The presence of model errors considerably reduces the gain from ensemble

averaging,

In practice, about a third of the ensemble-mean forecasts, at forecast days 11-20, were
~more skilful than both persistence and climate, and, in addition, were more skilful than the
latest member of the ensemble. At days 21-30, only one of the ensemble-mean forecasts
was similarly skilful. Whilst there is an overall hemispheric-scale correlation between
ensemble spread and skill, a substantial part of this reflects the impact of the annual cycle
on both quantities. In the winter period, however, no clear spread/skill correlation was
found.

Within the winter period, there was considerable case-to-case variability in forecast skill.
The January 1986 ensemble was the poorest of all the ensembles; the February 1986
ensemble was one of the most skilful. The different character of these two ensembles was
shown by considering phase space  trajectories of the ensemble forecasts in the plane
spanned by the two principal forecast EOFs of 500 mb height. During the first 15 days,
the trajectories of the January ensemble forecasts were consistent with each other, but
contrary to the observed atmospheric trajectory (which was associated with the onset of
blocking over Europe). During the last 15 days, as the January ensemble forecasts
migrated from positive to negative PNA index, the trajectories dispersed quite strongly,
~ becoming disordered. By contrast, the trajectories of the February forecasts remained
both mutually consistent and in agreement with the real atmosphere’s trajectory throughout
most of the forecast period.

In order to investigate possible reasons for the failure of the January 1986 ensemble to
develop the European block during the first half of the forecast period, two further
integrations were made. In the first, the control integration was rerun with a more recent
version of the ECMWF model. Development of the block continued to be missed, though the
trajectory of this forecast in phase space in the medium range was quite different to any of
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the members of the original ensemble. This suggests that a methodology for Monte Carlo
forecasting should include perturbations to model formulation as well as perturbations to
initial conditions.

Secondly, motivated by known systematic errors in the model’s simulation of tropical
divergence, and the diagnostic study of Hoskins and Sardeshmukh (1987), an integration
was run in which the model’s tropical fields were relaxed towards the verifying analysis. In
this integration, substantial ridging over the Euro/Atlantic area occurred, and the
extratropical skill scores were noticably improved. Phase space trajectories confirm this
partial success on a hemispheric scale. However, the intensity of the block was not well
captured. It would appear therefore that failure to capture the block is partially
associated with the problem of predictability, and partially with the problem of the model

systematic errors.

The EOF decomposition of the ensemble forecasts was also used as an objective criterion to
test for clustering within the ensemble. According to this analysis, one of the January
forecasts (but not the latest) showed quite distinct behaviour, and its extended-range skill
was well above the other members of the ensemble.

The cluster analysis was performed on all winter forecasts. When the forecasts were
categorized into three clusters (which vary from ensemble to ensemble), it is found that
the skill at days 11-20 of one of the categories is always better than the ensemble-mean
forecast. However, this more skilful group of forecasts does not always correspond to the
more densely populated ensemble. We suggest that this may be associated with a problem of
sampling.

Given the results from the present sample of forecasts we believe that prediction beyond
the medium range is not currently viable. However, when forecast systematic error,
particularly in the tropics, is reduced, and when techniques that can identify the most
rapidly growing perturbations have been ‘fully developed, then the cluster analysis
suggests that probabilistic forecasting of extratropical time-mean weather may be feasible
in the time range of up to two-three weeks into the future.
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1. INTRODUCTION
Experimental programmes to study the skill of numerical weather prediction (NWP) models

beyond the mean limit of instantaneous deterministic predictability have been under way at
a number of major centres over the last few years (see, for example, ECMWF, 1988). The
companion paper by Palmer et al. (1989; hereafter referred to as I), shows that, on
average, the models lose skill in predicting weather regime transitions by about day 15.
On the other hand, individual forecasts exist where skill is maintained longer into the
integration. The value of these more skilful forecasts cannot be realized unless good a
priori estimate of forecast reliability can be given.

The prediction of forecast skill for extended, medium and short range forecasting is a topic
of much interest at present. Possible techniques for estimating forecast reliability include
the use of stochastic-dynamic models (Epstein, 1969), Monte Carlo forecasting (Leith,
1974), and statistical prediction techniques based on data from time-series of deterministic
integrations (Palmer and Tibaldi, 1988). |

Problems of formulation, closure, and sheer computational cost will require solution before
the stochastic dynamic technique can be considered viable, at least beyond the short
range. On the other hand, statistical techniques do not appear to offer a satisfactory
solution for the extended-range problem, not least because of the very limited archive
sample with which to derive, for example, regression coefficients.

The notion of Monte Carlo forecasting originated as an alternative to the stochastic-dynamic
technique, and was defined by a finite sample or ensemble of integrations of a deterministic
model, the initial conditions of each individual integration being obtained by randomly
perturbing the spectral coefficients (or grid point values) of an operational analysis. As
such, much of the perturbation amplitude may be lost through the initialisation procedure,
especially in the height field (Baumhefner, 1988), even when the 'wind and mass fields of
the perturbations are in geostrophic balance (Hollingsworth, 1980). '

However, a simple and convenient way (in an operational environment) of -effectively
obtaining an ensemble of balanced initial states for a Monte Carlo ensemble, is through the
time-lagged technique advocated by Hoffman and Kalnay (1983). In the current operational
analysis/forecast system at the European Centre for Medium-Range Weather Forecasts
(ECMWF), where analyses are produced at 6 hourly intervals, an n-member ensemble at
time t=0 would be composed of the operational analysis at t=0, the 6hr forecast initialised
from the analysis at t=-6 hr, and so on o the 6(n-1)hr forecast from the analysis at
t=-6(n-Dhr (see Fig. 1). The effective perturbations at t=0 are considered to be the
forecast errors at t=0. Preliminary tests of extended-range ensemble forecasting using this



technique were performed at ECMWF with low-resolution version of the operational model
(Molteni et al., 1988).

Whilst this technique does not suffer from the problem of unbalanced perturbations, it
clearly represents a compromise in other respects. In data void regions, for example,
where the analysis is taken from the previous 6hr forecast (the ’first guess’ field), the
effective perturbation will be zero. Moreover, the larger the value of n, the more unlikely
that the effective perturbation is representative of analysis uncertainty at t=0. Within a
given data assimilation system, this effectively limits the size of the ensemble, and gives
riss to a nonisotropic distribution of effective perturbations about the t=0 analysis which
may favour the latest members of the ensemble.

For extended range forecasts, however, these potential drawbacks are probably not serious
enough to outweigh the advantage of the technique in terms of its relative ease of
implementation in an operational environment. Beyond the first few days, initial analysis
errors propagate downstream and project onto the dominant modes of instability of the flow
field (e.g. Palmer, 1988). Ultimately, the structure of forecast errors may depend more on
the geographical distribution of these modes of instability than on the distribution of the
initial analysis errors. Furthermore, as will be shown explicitly in this study, whilst in
the first ten days of the forecast period, forecasts from two adjacent analyses will tend to
resemble each other more than two forecasts from non-adjacent analyses, this relationship
breaks down later in the forecast period. This suggests that beyond about the first ten
days of the forecast period, members of the ensemble can indeed be treated as, a prior,
equally likely.

In the present paper, we study the problem of predicting extended-range forecast skill
using the time lagged technique over the entire annual cycle. Following earlier studies
(Leith, 1974; Hoffman and Kalnay, 1983) we recognise that at least 10 integrations are
necessary to form a reasonable sized ensemble. This would cause practical computing
problems if it was necessary to integrate at the currently operational T106 resolution of the
-ECMWF model. However, results from the companion paper of Tibaldi et al. (1989; hereafter
referred to as II) have indicated that the extended-range performance of the ECMWF model
is not significantly worse at T63 resolution than at T106 resolution. The time-lagged
ensembles described in this paper have therefore been integrated at T63 resolution.

In section 2 we describe the forecast ensembles that have been made. In section 3 we
discuss the skill of ensemble-mean forecasts that can be deduced within a simple theoretical
framework using a parametrization of known model systematic errors. In section 4, we



describe the ensemble-mean skill of the integrations, and examine whether the hemispheric
scale ensemble-mean spread can be used to assess forecast reliability. We show the
synoptic development in the extended range of some of the most skilful and least skilful
ensemble-mean forecasts.

In section 5 we discuss in more detail two of the forecast ensembles from consecutive
months. One of these ensembles is the poorest of our set, the other is one of the most
skilful. The poor forecast ensemble was initialised about two weeks preceding the
development of an intense FEuropean block, diagnosed in detail by Hoskins and
Sardeshmukh (1987). We discuss the forecast performance using both conventional
synoptic maps, and using less conventional phase-space trajectories. Additional
experiments are described in an attempt to assess the mechanisms that may have been
responsible for the failure of the first of these case studies.

Having established a methodology for extended-range ensemble forecasting, it is necessary
to consider techniques for postprocessing the results. Though the ensemble-mean forecast
is a simple and convenient way of collating the results from individual members, the RMS
error of the ensemble-mean forecast is trivially smaller than the mean RMS error of the
members of the ensemble, because the ensemble mean is a smoothed field biased towards the
model climate. An estimate of the reliability of the ensemble-mean forecast, in a model
without external error, can be obtained from the ensemble standard deviation.

More generally, it is possible to use the information available within the forecast ensemble
to indicate possible alternate forecast flows. The association of probabilities to each of the
possible alternatives captures the essence of forecasting beyond the limit of deterministic
probability. In section 6, we apply a cluster analysis algorithm on the forecast empirical
orthogonal functions to produce sub-ensembles. These give some insight into the question
of predictability during periods of blocking. Using this clﬁster analysis technique,
*probability’ forecasts are made for the winter ensemble forecasts. Concluding remarks are

made in section 7.

| 2. THE DATABASE AND EXPERIMENT DESIGN
An ensemble of time-lagged forecasts in the present study is composed of 9 members, each

member being an extended-range prediction with the T63 version of the ECMWF operational
spectral model. The initial data for each member of the ensemble were ECMWF operational
analyses separated (lagged) by 6 hours. There is therefore a 48-hour period spanning the
first and the last member of the ensemble (Fig. 1). This was a natural choice, since
ECMWF analyses are available at 6-hour intervals: 00Z, 06Z, 12Z and 18Z. The last
forecast of an ensemble starts from a 12Z analysis at DO’ and is integrated for 30 days. All



verifying times are relative to DO and therefore this last forecast is referred to as the
control run. The first forecast of an ensemble starts from 12Z analysis at D-2, ie 48
hours before the initial date of the last forecasts, and is integrated for 32 days.

The complete list of the ensemble forecast dates is given in Table 1. From September 1985
until March 1986 the time-lagged forecasts were performed every month. After this period
they were run at 3-month intervals.

The observed sea surface temperatures (SSTs), which are part of the initial data, were
kept constant during the course of integration. Since, in the operational data assimilation
scheme, SSTs are updated daily at 12Z, it is in principle possible to have different SSTs
within the same forecast ensemble. However, these differences (if any) are negligible, by
virtue of their slowly varying nature. |

The ensemble mean is computed as a simple arithmetic average from all members. There is
no weighting of individqal forecasts, (Hoffman and Kalnay, 1983), because of our interest
in extended range predictions where all weights would be essentially identical (c.f. Molteni
et al., 1986 and below).

Until March 1986, the same version of the ECMWF operational ‘model was used for all
forecast ensembles: 16 levels, envelope orography and physical parametrization as defined
in May 1985 (Tiedtke et al, 1988). The June 1986 ensemble was run with the model
in which vertical resolution was increased to 19 levels by including three additional levels
between 10 and 150 mb (Simmons et al, 1989). From September 1986 the ensembles
were run with a model which included the parametrization of gravity wave drag (Palmer
et al, 1986; Miller et al, 1989). From the beginning of 1988 the wvertical
diffusion scheme above the planetary boundary layer was removed. This inhomogeneity in
model data is an unavoidable consequence of our desire to keep the extended-range
programme relevant to the needs of the operational forecasting system, particularly with
regard to the diagnosis of systematic error.

The ECMWF operational analyses were used for the objective verification of the ensembles
and individual forecasts. A monthly climate, derived from six years (1979 to 1984) of
ECMWF analyses, was employed to evaluate the forecast anomaly correlation coefficient of
skill.

In the following sections we denote forecasts from December, January and February as
‘winter’ forecasts; forecasts from June, July and August as ’summer’ forecasts; and
forecasts from all other times of year as ’transition’ forecasts.



- No. Date Comment/Model change
1. 16 May 1985 May 1985 physics
2. 16 September 1985
3. 16 October 1985
4. 16 November 1985
5. 15 December 1985
6. 19 January 1986
7. 16 February 1986
8. 16 March 1986 .
9. 15 June 1986 19-level model
10. | 14 September 1986 Gravity wave drag parametrization
11. | 14 December 1986
12. | 15 March 1987
13. | 14 June 1987
14. | 13 September 1987
15. | 13 December 1987
16. | 13 March 1988 New vertical diffusion scheme
Table 1

Initial dates of a set of 16 forecast ensembles run with T63 ECMWF operational spectral
model. Changes in the model are indicated on the right-hand-side.



3. THEORETICAL BACKGROUND
Before looking at results obtained from the integrations, it is useful to discuss briefly what

improvement can be expected, on average, from the ensemble mean of a time-lagged
forecast over a single deterministic forecast. An unweighted time-lagged forecast is a
particular realization of an ensemble forecast, and the results of Leith (1974) and Seidman
(1981) are appropriate in the perfect-model environment.

Practical experience (see for example Molieni et al., 1988, and Murphy, 1988) indicates
that, in general, the improvement in the skill of an ensemble-mean forecast compared with
that of a deterministic forecast is noticeably smaller than expected from the perfect model
theory. In this section we consider the expected improvement that ensemble averaging can
make in a non-perfect model environment. Having established basic notation in section 3.1,
we discuss properties of a simple analytical model for error growth in which the ECMWF

model errors are parametrized.

3.1 Basic mathematical relations

For the purpose of statistical assessment of an ensemble forecast, we first define a basic
set of expressions. Let Fi be a forecast field produced by one member of the ensemble
(i=1, .., N). For any given field X (which could be for example the verifying analysis,
climate, etc.), the mean square distance of X from the members of the ensemble can be

written as
N - N -
1 2 2 1 2
N2 F-xI"=IF-xI"+& X IF-Fl 6))
i=1 i=1
- 1 N
where F = N 'Z Fi represents the average of the N forecast fields, that is the centroid of

i=1
the ensemble, and vertical bars denote the modulus. Let A be the analysed field which

verifies each Fi’ let E = F - A the error field of the ensemble mean, and let us assume
from now on that all the fields are expressed in terms of anomalies, i.e. deviation from the
climate. We can define the following variables describing the statistical properties of the

ensemble:

N
f=% 3 Il - (22)
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=% 3 IF-al (2b)
i=1 ‘
N -
A2=lN- Y |Fi-F|2 2c)
i=1 -
&= (Nl)N ); ): IF, - FI2 | ©d)
i=lj=1

¢ is the ensemble average of the spatial variance of individual members (or deterministic
forecast anomalies), 32 represents the mean squared error of individual members (again
averaged over the ensemble), A’ is the mean squared spread (or dispersion) from the
ensemble mean, and & is the mean squared - distance between all pairs of individual
forecasts. Using (1) we obtain -relationships between variables defined by (2a) - (2d).
For X=0 it follows |

= FI 2+ A, (3)

whereas if we set X=A we obtain

=Bl 2+ @)

Eq. (4) dquaniifies the average improvement of the ensemble-mean forecast over the
individual members in terms of mean-square error, and Eq. (3) indicates that this
improvement is obtained by removing part of the variance from the forecast fields. The
practical usefulness of the ensemble-mean forecast depends on whether thlS removed
variance is due only to unpredictable scales of motion; in an ideal situation, A? should be
exactly equal to the variance of the unpredictable components. Finally, a relatmnshlp
_between the squared ensemble spread A’ and the mean squared distance of all pairs 5
obtained by substituting Fj in (1) and summing over all FJ forecasts:

5 =2N_ A% G



Now, in the perfect model hypothesis one assumes that the growth of the mean distance
among the members of the ensemble is equal to the average growth of the ’deterministic’
error, and that the spread of the ensemble at the initial time is representative of the
analysis error; then for every forecast time ez--82, and from (4) and (5) one deduces

|i3l2=(1-2ﬂi1—1-)62. (6)

If N is sufficiently large, one obtains the theoretical 'perfect model’ limit for the skill of an
ensemble forecast deduced by Leith (1974), that is, the mean-square-error of an ensemble
forecast is half of the average mean-square-error of the individual members of the

ensemble.

Finally, for comparison, note that the error variance of a ’climate’ forecast is | Al 2, that
is, the magnitude squared of the observed anomaly.

Let us now consider the 'anomaly correlation coefficient (ACC) as a measure of skill for any
deterministic or ensemble forecast. For a single forecast in the ensemble the ACC can be
expressed as

F - A IEI+1A1* - |FR-Al®
o1 | i (7a)
Pi=TF T TAl 2 TF; T-TA] ’
and for the ensemble mean as
- - -2 2 2

IFl 1Al 21F|- |Al

In order to derive a relationship between p(F) and the mean ACC of individual members of
the ensemble, the latter being simply defined by

Py ®

i M2

- 1
p_._
i 1



we must make some assumptions about the ensemble. Thus, if we assume that each
deterministic forecast F; has a greater spatial variance than the ensemble mean (l FiI >| Fl)

and covariance Fi-A > 0 for each Fi one can demonstrate that from Eq. (7) p(F) > p.

Alternatively, if one assumes that all the forecast anomalies in the ensemble have nearly the
same amplitude, ie. |F;l= f for each i, then, by applying (4) and (3) in Eq. (8), it can
be deduced that : '

T f . Py
=p—L =pGt—*. 9
pE) PG | ©)

| Fl

(Note that if the average ACC of individual forecasts is negative, ensemble averaging will

make poor Scores even worse).

Since the ratio f/| F| is always greater than 1 and increases with forecast time due to the
growth of the spread, the ensemble mean forecast should have a proportional increase in

the ACC over a deterministic forecast (providing that p is positive!).

Given a theoretical model for the growth of e:2 and 52 (see section 3.2) and assuming a

climatological constant value for f and for a = | Al, theoretical curves for p and p(F) can

be computed from

2 2
b=fL21§5'_e » (10a)
pE)=p—— . (10b)
V1-4
f

3.2 Impact of the ensemble-mean forecast in an imperfect model
Dalcher and Kalnay (1987), based on earlier work of Leith (1978), have shown that the
growth of error and spread of deterministic numerical forecasts can be parametrized by the




following equations:
‘2 2 ¥ 2k
e =(oe +0Ve)(1-e/Ve) : (11a)

& = o8 (1 - SZN;) , (11b)

where the dot represents the derivative with respect to forecast time, V: and Vg are the
asymptotic (saturation) values of the variance of the deterministic error and spread
respectively, o an ‘internal’ (i.e. intrinsic to the real atmosphere) growth rate of the error
and ¢ an additional ‘external’ growth rate representing the effects (either random or
systematic) of the model approximations.

It is clear from Dalcher and Kalnay and from Lorenz’s (1982) work that the term GV: is
essential for a good parametrization of error growth, especially at short forecast times.
Furthermore, it is comxﬁon experience: in NWP that the spread between forecasts grows
slower than the actual error. Consequently, the theoretical, perfect model, limit for the

error of an ensemble forecast, i.e. | E| > = 05 ez, can only be achieved at very long

forecast times. Fig. 2a, b shows the theoretical time evolution of ez, lE| 2, p and p(F)
computed using Eqs. (11a,b) and setting the values of parameters as follows

a=f=1.
* *
\’e = V5 =2,
o = 0.4 day-!
o = 0.025 day-l.

The first four parameters are normalized by setting the observed variance to 1; the growth
rates oo and o are chosen to fit the error growth of the (improved) T63 model used in this
study and differ from those found in Dalcher and Kalnay. The initial values for e2 and &2
were set to 0.025, which corresponds to the average initial squared distance between
members of our time-lagged ensembles.

The thin solid line (A) shows the skill of an individual forecast with the above
parametrization. In the mean square error it increases asymptotically to the value Ve=2'
The thick solid line (B) represents the skill of the ensemble mean in a perfect model
environment (ie assuming ©=0). It also increases monotonically, but from equations (4),
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- (5) and (11) asymptotes to a value Ve' %— ‘VS =1. The dashed curve (C) shows the skill
of the ensemble mean for the imperfect model where G is nonzero. During the first half of
the forecast period, the reduction in the mean square error is much smaller than with the
perfect model (curve B). However, it must asymptote to the same value as the perfect
model, i.e. Ve' %— V5=1. The ensemble-mean score therefore appears to show some

apparent 'return of skill’ in the extended range.

The potential improvement obtained by ensemble averaging is even smaller when one takes
into account that in practice Vs<Ve by an amount which is proportional to the variance
explained by the systematic error itself. From the results to be presenied in the following
sections, a typical winter value of VS/V e is about 0.75, decreasing to about 0.5 for an
exceptionally poor ensemble forecast. The dotted (D) and dot-dashed (E) lines in Fig 2
show the ensemble-mean skill that would be achieved with our parametrization using these
ratios, respectively.

Estimates of the anomaly correlation coefficient using equations (10) for these values of the
parameters, are shown in Fig 2b. The reduced impact of the ensemble average in a
non-perfect model environment can be seen quite clearly in these calculations.

The curves in Fig 2a,b have been computed assuming that the vasymptotic value of the
forecast error is twice the climatological variance. In fact, as results below indicate, see
Fig 5, about 10% of the variance remains predictable at longer range (possibly due to
predictability associated with the persistence of initial sea surface temperature anomalies)
and therefore reduces the values of Ve and VS accordingly. In this case, one obtains the
curves shown in Fig. 2c,d. One can see that the most significant effect of this assumption
on ensemble forecast skill scores is to enhance the improvement in terms of anomaly
correlation coefficient. A ’retum of skill’ can now be seen in the anomaly correlation
coefficient in the case Ve=V5 (curve C).

More generally, Ve and VS are functions of the annual cycle, and, within a season, of
weather regime. Their dependence on the annual cycle is so strong, that even for models
with significant systematic bias, asymptotic error and asymptotic spread are well correlated
over an annual cycle. Within a season, on the other hand, the dependence of Ve and V8
on weather regime could be quite different. For example, as discussed above VS reflects
the intrinsic instabilities within that weather regime, whereas V. may, additionally,
reflect the impact of systematic deficiencies in the NWP model physics and numerics on
forecast quality, given the flow pertaining to that weather regime. Hence, within a
season, V8 and Ve could be quite uncorrelated for models with serious systematic error.
In such circumstances, ensemble spread and ensemble-mean skill would be poorly

correlated.
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In conclusion, the ensemble average is essentially a dynamically tuned spatial filter, which
has the effect of removing unpredictable scales. A predictable component of the circulation
can be made evident by the time-lagged forecasting technique if it already exists in the
deterministic forecasts, but obviously it cannot be created! However, one must always
remember that the improvement in the scores of the mean forecast is not the only (and
probably not even the main) purpose of ensemble forecasting; its usefulness should be
judged from its ability to provide a realistic probability distribution for expected
atmospheric states.

4. A SUMMARY OF VERIFICATION RESULTS
In this section we shall present a summary of verification results from the time-lagged

ensembles listed in Table 1.

4.1  Skill of ensemble-mean vs. mean skill of individﬁal forecasts

We first address the question of whether the skill of the ensemble-mean forecast has
increased over the skill of individual forecasts. Scatter diagrams of the 30-day mean
northen hemisphere 500 mb height. RMS error and anomaly correlation coefficient,
respectively, for the ensemble-mean forecast against the mean skill of the individual
forecasts are shown in Fig.3. As discussed in section 3 (equation (4)), the ensemble-mean
RMS error. is inevitably smaller than the mean RMS error of individual forecasts. This is
clearly illustrated in Fig.3a, which shows a nearly linear relationship between
individual-mean and ensemble-mean skill. In this, and following scatter diagrams, summer A
forecasts are shown with open circles, winter forecasts are shown with open boxes, and the
transition forecasts are shown with crosses. The distribution of points in the scatter
diagram clearly reflects the impact of the annual cycle on the ensemble mean RMS errors,
with summer forecasts having smallest RMS errors, and winter forecasts having largest

CITOrIS.

From Fig.3a, one can note that the reduction in error associated with ensemble averaging
is, on average, somewhat larger for the transition season forecasts than for the summer
forecasts. This is to be expected under perfect model assumptions since improvement due
to ensemble averaging is proportional to the dispersion from the ensemble mean (see
equations (5) and (6) for large N). Furthermore, one would expect the RMS amplitude of
this dispersion to be strongly influenced by the annual cycle, being smallest in summer and
largest in winter. However, the reduction of forecast error in the winter season is not as
large as one might have anticipated on this basis. In addition, the smallest impact of
ensemble averaging does not occur for a summer ensemble; it occurs for the winter
ensemble from January 1986. For this ensemble, the RMS error was reduced from an
individual forecasts mean value of 96 m to an ensemble mean value of 95 m. This suggests

12



that the perfect-model assumptions seriously break down for the winter ensemble forecasts.
As will be shown in section 5, individual members of the ensemble from January 1986 failed
to forecast the development of a major large-scale anomaly, and, moreover, were each

consistent with one another.

As discussed in section 3 (equation (7)), provided the spatial variance of the individual
forecast fields is .larger than the spatial variance of the ensemble mean field, ensemble
averaging will increase the absolute value of the anomaly correlation coefficient. This can
be seen in Fig.3b. As in Fig.3a, there is an approximately linear relationship between
individual-mean and ensemble-mean skill, though in this case the relationship can be
thought of as a rotation of the diagonal about the origin. The winter ensemble lying below
the origin is again the January 1986 case, where the mean individual score is negative,
and, consistent with the discussion in section 3, ensemble averaging has made the anomaly
correlation coefficient even more negative. Since the anomaly correlation coefficient is less
strongly influenced by annual cyéle effects than RMS error, the comparison of relative
predictability in summer, transition and winter season forecasts is more meaningful in
Fig.3b than in Fig.3a. In this sense, it would appear that summer ensembles have rather
low skill in the prediction of phase compared with other times of year.

4.2 Time evolution of the ensemble-mean skill scores
We now briefly discuss the evolution of skill of the ensemble forecasts during the course of
the integration. All ensembles are separated into the ’winter’ - October to March (OM),

and ’summer’ - April to September (AS) periods.

In Fig 4, we show 5-day average scores of each individual ensemble-mean forecast. They
show large variability. The poomess of the January 1986 forecast is clearly seen in both
RMS error and anomaly correlation coefficient (thin dash-dot line). The ensemble-mean
anomaly correlation for this case crosses the 0.6 line by day 5, and it continues to fall
rapidly, reaching zero anomaly correlation by day 9. (Here, according to Hollingsworth et.
al. (1980), the 0.6 value has been taken as the threshold of ’usefulness’ for medium-range
forecasts.) The ensemble forecast for the next month, February 1986 (thick solid line), is
the most skilful in terms of anomaly correlation coefficient, which does not fall below 0.6
until day 15 and stays relatively high at the end of the forecast.

During the AS period, it can be seen that anomaly correlation scores tend to decrease to

zero faster than during the OM period. The RMS error is lower, but saturation is reached

earlier than in winter.
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The potential improvement that time averaging makes to the ensemble-mean forecast is
shown in Fig.5. Since RMS is trivially reduced through time averaging, we show in Fig.5
only the impact on anomaly correlation coefficient. It can be seen that both daily and
time-average scores fall below the ’useful’ 0.6 line before day 10. If the predictability of
the ensemble-mean forecast was the same for all time scales, the time averaging should
merely result in a smoothing of the daily skill scores. In fact, as Fig.5 shows, there are
some improvements for both 5 and 10 day mean forecasts compared with daily values, albeit
rather modest ones. For example, during the OM period, daily scores drop below 0.3
around day 10. For 5-day mean fields, the same level of skill is achieved for days 11-15,
and for 10-day mean fields, it is achieved for days 11-20. The improvement made by
time-averaging is negligibly small at the end of the forecast period.

The fact that the largest improvement in the time-averaged fields is found between day
10-20 could be very significant. At the present, the upper limit for medium-range
forecasting is normally considered to be about 10 days. The improvement in skill shown in
Fig.5 gives rise to the hope that the upper limit for forecasts might extend beyond day 10
in future years, at least for time-averaged fields.

It can be seen in Figs 4 and 5, that there is some ’return of skill’ for some individual
ensemble-mean forecasts, and for the AS 10-day average ensemble-mean forecasts. This
could be expected, as discussed in section 3, on theoretical grounds provided some of the
variance remains predictable.

4,3  Skill of ensembles vs. skill of control forecast, climate and persistence

From a practical point of view, it is important to consider whether the ensemble-mean
forecast is superior to the latest member of the ensemble, the control forecast. When
compared against a single member of the ensemble, it is no longer inevitable that the
ensemble-mean will be superior, even in terms of RMS error. Scatter diagrams of 500 mb
height and 850 mb temperature RMS error and anomaly correlation coefficient of the
ensemble-mean forecast against the control forecast are shown in Fig.6. In view of the
impact of the ten-day average on ensemble-mean skill, discussed in the previous
subsection, particularly during the middle ten days of the forecast period, here we
concentrate on the skill of ten-day mean fields throughout the forecast period.

For days 1-10 (not shown), the ensemble-mean forecast is not a significant improvement
over the control, and in the two of the winter cases (December 1985 and January 1986) it is
noticeably worse. This by no means implies that ensemble forecasting does not offer
significant opportunity for forecasting within the limit of deterministic predictability, but
indicates that, in this forecast time range, time-lagged ensemble perturbations to the initial
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state are not a priori equally likely. As recognised by Hoffman and Kalnay (1983) one can
infer from this, that in order to show a consistent improvement using the time-lagged
technique, the individual members of the ensemble would have to be weighted in order to
minimise the impact of the earliest members.

For days 11-20 (Fig.6 left), the ensemble mean is more skilful than the control forecast for
most cases. In terms of RMS error, only one of the ensemble-mean forecasts (December
1985) is worse than its control. In terms of anomaly correlation, the ensemble-mean
forecast is almost always an improvement when it correlates positively with the verifying
analysis. One can again note that, in cases where the ensemble-mean anomaly correlation
is negative, it is lower than the anomaly correlation coefficient of the control forecast. For
850 mb temperature it can be seen that three winter forecasts (February 1986, December
1986 and December 1987) have an ensemble-mean anomaly correlation greater than 0.6, and
only one (December 1985) is slightly negative. Also there are four transition season
ensembles with anomaly correlation gréater than 0.5. It would appear that, at this forecast
time range, the unweighted ensemble-mean does show some benefit in predictive skill over
the single deterministic forécast.

For days 21-30 (Fig.6 right), most of the ensemble-mean forecasts display some reduction
in RMS error. However, this overall improvement is not seen in anomaly correlation scores
where, in terms of 500 mb height, 6 of the ensemble-mean forecasts show some
improvement, 4 show essentially no change, and 6 show the control forecast to be superior
to the ensemble mean. One therefore must conclude that the apparent improvement in RMS
error results in part from the lower asymptotic variance of the ensemble mean (compare in
Fig.2 a,c curve A for individual forecast against other curves at considered time range).

We have also compared the skill of ensemble forecasts against 'zero-cost’ forecasts provided
by persistence (of ten-day mean anomaly fields) and climate. On average, the RMS error
of a climate forecast asymptotes 1o 1N2 of the RMS error of a persistence forecast (since
equation (6) holds for e=persistence error, E=climate error and for a very large N).
Therefore, the climate RMS error is a more severe test of the skill of a numerical forecast
in the extended range. Results are summarised in Table 2 for days 1-10, 6-15, 11-20 and
21-30. The first column for each set of ten day mean forecasts indicates whether the
ensemble mean forecast was more skilful than the control forecast in terms of both RMS
error and anomaly correlation coefficient. A °+' indicates it was more skilful, a '-’ that it
was not. In a similar way, the second column indicates whether the ensemble-mean forecast
was more skilful than both persistence (RMS and anomaly correlation coefficient) and a
climate forecast appropriate to the relevant forecast period (given by the amplitude of the
observed anomaly; see section 3). We apply these tests to both 500 mb height (Table 2a)
and 850 mb temperature (Table 2b).
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Table 2a

Northern hemisphere 500 mb height skill of ensemble-mean forecast

against skill of control forecast, persistence and climate.

T850

Date

6-15

11-20

21-30

E/Citr

E/CIP

E/Ctr

E/CIP

E/Cir | E/CIP

850516
850916
851016
851116
851215
860119
860216
860316
860615
860914
861214
870315
870614
870913
871213
880313

S I T A S S I T NI

L+ 4

LI + +

+

o+ o+ o+

R LR I It U

+++ A+ F o+ o+

[} ] + + 3

R LS

L

+ +
1 L}

G T LI S S A AR
+

Table 2b  As Table 2a but for 850 mb temperature.
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" For the first ten days, it can be seen that only one of the ensemble-mean forecasts of 500
mb height (January 1986) was less skilful than persistence and climate. Only 4 of the 16
ensemble-mean forecasts are improvements over their control. For days 6-15, 9 of the
ensemble-mean forecasts of 500 mb height beat persistence and climate. However, of these,
only 6 were also more skilful than their control.

As discussed in section 4.2, the most promising period for the ensemble-mean forecasts
appears to be for days 11-20. For this ten-day mean, only one control forecast of 500 mb
height beats persistence and climate (not shown), whilst there are 6 ensemble-niean
forecasts of 500 mb height that beat persistence and climate. Five of these are also more
skilful than their controls, and four of the five (November 1985, February 1986, March
1986 and September 1986) were also deemed skilful for days 6-15. For temperature at 850
mb we find seven ensembles more skilful than both their controls and the zero-cost

forecasts.

For days 21-30, only two ensemble-mean forecasts of 500 mb height (September 1985 and
February 1986) beat persistence and climate. Of these, only the February 1986
ensemble-mean forecast showed skill in the 1-10, 6-15 and 11-20 day period. This case,
together with the exceptionally poor ensemble-mean forecast for January 1986 (having a
minus sign in all columns!), will be discussed in more detail in section 5.

The results shown in Table 2 can be summarised as follows. For the first 10 days, the
unweighted  lagged-average forecast gives no significant advantage over single
deterministic forecast from the latest initialisation date (control). Similarly, for the last
ten days, the ensemble-mean forecast is not consistently more skilful than its control,
except in the sense that its asymptotic variance is lower. The time range in which the
unweighted lagged-average technique shows the main benefit is for days 6-15 and 11-20,
where in most cases both RMS error and anomaly correlation coefficient scores are
improved. In terms of anomaly correlation coefficients the forecasts of 850 mb temperature
appear to be more skilful than 500 mb height.

The above discussion can be put in the following context. It is clear, from the theory and
from the results above, that model systematic errors seriously undermine the possible gains
from ensemble forecasting. However, as the model improves the benefit from ensemble
averaging, especially in the time range 11-20 days, will also increase. That is to say, more
ensemble-mean forecasts will beat their controls, and, at the same time, will beat climate and
persistence. At present, as the above results show, about 30% of ensembles achieve this
goal. If in the following years this percentage increases above a threshold of 50%, we
believe that the operational use of ensemble forecasting will be justified.
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4.4 Synoptic evolution of some ensemble-mean forecasts

In order to gauge synoptically the skill of some of the ensemble-mean forecasts of 500 mb
height, judged in the previous subsection to be skilful at days 11-20, we show in Figs.7-10
the forecast and observed anomalies of the SO0 mb heights for days 1-10, 11-20 and 21-30
of the November 1985, February 1986 and March 1986 ensembles. In addition we show
anomaly maps for the exceptionally poor forecast from January 1986. A brief interpretation
of the maps is given below.

There was an intense anomalous ridge over the north Pacific in the verifying analysis for
the first ten days of the November 1985 forecast (Fig.7; also discussed in Hollingsworth et
al., 1987). This subsided in the second ten days, leaving a relatively zonally uniform
band of positive height anomaly in high latitudes. In the third ten days strong ridging
occurred over the Gulf of Alaska. The ensemble mean-forecast amplitudes were somewhat
weak compared with the observed. However, the main synoptic features were captured
reasonably well from the first to second ten days, but largely missed by the third ten
days.

The development of a strong European blocking dipole during the second ten-day period of
the January 1986 forecast can be clearly seen in Fig.8. This continued into the third
ten-day period where ridging over the Gulf of Alaska also developed. The ensemble-mean
forecast for the second and third ten days is a complete failure - the forecast flow
developed towards a strong zonal circulation.

During the first ten days of the February 1986 forecast (Fig 9), there was a strong
positive height anomaly, centred over Greenland. This had disappeared by the second ten
days, and a strong negative height anomaly was positioned in ‘polar latitudes. In the
ensemble-mean forecast, the polar latitude negative anomaly developed in the second ten
days, and the Greenland anomaly weakened, though not as comprehensively as in the
observed field. In the third ten days a negative anomaly developed to the south of
Greenland with a positive anomaly over northem Europe. The forecast for days 21-30
captured the development of the north Atlantic anomaly, but not the European one.

During the first ten days of the March 1986 ensemble (Fig.10), the verifying analysis
showed an intense dipole anomaly across the Atlantic, and a moderate anomalous ridge in
the mid-Pacific. By the second ten days, both features had weakened, with the Atlantic
positive height anomaly moving westward over the US eastern seaboard. This development
was captured reasonably well by the ensemble-mean forecast. The development of ridging
over the north Pacific in the final ten days was only approximately captured by the

forecast.
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4.5 Relationship between spread and skill

Our discussion of objective and subjective measures of skill of the ensemble-mean forecasts
indicated that of all ensembles about one third appeared to give useful guidance for the
ten-day mean period 11-20. This is broadly consistent with results from the deterministic
T106 forecasts discussed in I. Without some a priori indication of reliability, this is an
unacceptably small number to be of operational use. By studying the dispersion of the
ensemble, we might be able to obtain such an a priori indication.

With perfect model assumptions, combining Eqs (5) and (6) for large N, the spread within
an. ensemble is correlated with the skill of the ensemble mean. We assess whether this
correlation holds in the present realistic conditions of an imperfect model and an imperfectly
sampled ensemble. ‘

Scatter diagrams of NH 500 mb height and 850 mb temperature ensemble RMS standard
deviation against ensemble-mean RMS ermor are shown in Fig. 11. For the first ten-day
mean (not shown), there is very little correlation between these two quantities. By days
11-20 (Fig.11 left) some correlation exists for the transition season forecasts of 500 mb
height, but none for the winter forecasts. For days 21-30, there is a correlation between
spread and skill taking forecasts of 500 mb height from all seasons into account, but none
for forecasts within a season. The correlation that exists in the full sample clearly reflects
the impact of the annual cycle on spread and skill of 500 mb heights. Such an effect
cénnot be seen for 850 mb temperature, indicating the relatively small impact of the annual .
cycle on hemispheric-scale low frequency variability of this parameter (see, for example,
Lau et al., 1981).

Within the winter season in particular there is no apparent correlation between RMS spread
and skill at any time within the forecast period. Hence, we conclude that in our imperfect
model environment, hemispheric-scale spread is not a good predictor of hemispheric scale
skill. The impact of the model systematic error can be seen from Fig.11 as an offset of
markers above the diagonal (for hemispheric 500 mb height this is on average about 20-30
m). The asymptotic ensemble-mean RMS error is typically about 1.5 times larger than the
‘asymptotic ensemble-mean spread (and over twice the ensemble-mean spread for the
January case). From equations (4) and (5) this gives values of the ratio Ve/V 5 used in
the theoretical calculations in section 3.2. For 850 mb temperature ensemble-mean error,
this offset is larger in the last ten days than in the days 11-20 and is explained by a much
slower approach of RMS error to its saturation level. In fact, in many cases saturation is
not reached even by the end of the integration period (not shown).
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It has been argued that a spread/skill correlation may be more apparent when the data is
calculated over a smaller region than the whole hemisphere. Fig.11 e,f show the scatter
points for 500 mb height forecasts over the Atlantic sector (22.5-85.0°N, 90.0°W-27.5°E).
It can be seen that there is no overall improvement in the level of correlation when
compared with hemispheric results.

Let us return to the practical question raised at the beginning of this section. We identified
three of the ensemble-mean forecasts (November 1985, February 1986 and March 1986) that
had apparent skill in the ten day mean 11-20, and one that had no skill (January 1986).
Can we use the spread of the ensemble to give an a priori indication of their apparent skill?
The scatter points associated with these three forecasts are indicated on Fig.11l. It can be
seen that the skilful forecasts are not distinguished by particularly small spread; indeed
the spread for the November 1985 ensemble is the largest of this set. Also, spread for the
(poor) January 1986 ensemble is not very much different from the others,

Thus, we must conclude that this spread diagnostic is an uncertain predictor of
ensemble-mean skill. However, we shall return to this topic in section 6, when we discuss
a cluster analysis of these ensembles.

5. CASE STUDIES
From the skill assessment above, two forecasts are distinguished by their skill, or lack of

skill. Already within the first ten days the January 1986 ensemble-mean forecast was
poorer than a ‘’zero-cost’ forecast. Conversely, the February 1986 forecast was skilful
throughout the forecast period. In an attempt to shed more light on characteristics of
successful and unsuccessful ensembles, we investigate in more detail these two wintertime
forecasts. As already mentioned, this period is also of considerable interest as it covered
the development of a strong European block, which has been the subject of intensive
diagnostic study (Hoskins and Sardeshmukh, 1986; Sardeshmukh, 1988).

A synoptic evolution of the ensemble-mean forecast and verifying analysis anomalies for
these two cases has been made in the previous section. To summarise, during the period
covered by the January 1986 ensemble, the atmosphere underwent a transition to strongly
meridional flow, and the ensemble-mean forecast largely failed to predict this transition.
By contrast, at the beginning of the period covered by the February 1986 ensemble, the
atmosphere was already in a 'meridional’ regime, and predictions were quite skilful.

In section 5.1, we display some reduced phase space trajectories of each ensemble,

calculated from the principal empirical orthogonal functions (EOFs) for each of the two
forecast ensembles. These trajectories show clearly the evolution of the ensemble
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- dispersion for the two case studies, and highlight the failure of the January 1986 forecast
ensemble in the medium range.

In section 5.2, we discuss reasons for the failure of the January 1986 ensemble, and show
results from two further experiments, in an attempt to find causes of the failure. Firstly,
we have rerun one member of the ensembie with a more recent version of the ECMWF model
(including, for example, a parametrization of orographic gravity wave drag). Secondly,
motivated by Hoskins and Sardeshmukh’s diagnosis of the January 1986 block, we have run
a forecast in which model variables in the tropics are relaxed towards their analysed
values.

5.1 Phase space trajectories of forecast ensembles

As discussed in section 4.5, the 10-day mean RMS spread of the winter ensembles was not
well correlated with their skill. In this section we study the evolution of the ensemble
dispersion in more detail. Our initial attempts were through maps of standard deviation of
forecast 500 mb height. As expected, these showed maxima in regions of large
low-frequency variability (e.g. over FEurope), but the local magnitudes of standard
deviation did not clearly distinghish between the skilful and unskilful ensembles. We
therefore decided to study the dispersal of only the large-scale features of the ensemble
forecasts. A convenient way to study this is through the evolution of the leading EOF
coefficients that explain the highest proportion of total forecast variability within the
ensemble. The time-evolution of an ensemble can be illustrated as trajectories on a
low-dimensional phase space cross-section. In our case, for each ensemble, the axes of the
phase space ftrajectories are coefficients of the first two EOFs of the 5-day mean forecast
500 mb height fields (from days 1-5 to days 26-30 inclusive). These cross sections can be
thought as optimal in the sense that, of all two-dimensional cuts through the phase space of
the ensemble-mean forecast, they capture the most varability of 5-day mean 500 mb height
within each forecast ensemble. These two EOFs are shown in Fig.12a for the January
ensemble, and in Fig.12b for the February ensemble. The percentage of explained
variance associated with each EOF is given in each diagram. (The EOF decomposition, with
less severe truncation, has also been used to define possible clustering behaviour of
subsets of each forecast ensemble. Results from this clustering analysis is described in
detail in section 6.)

Whilst the EOFs are hemispheric in extent, the first EOF of the January ensemble shows
maximum (negative) amplitude over the north east Pacific. Indeed the pattem of
geopotential height over the Pacific and North America projects significantly onto the
Pacific/North American (PNA) mode (Wallace and Gutzler, 1981; Bamston and Livezey,
1987). The second January EOF appears to be composed of a number of north/south
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oriented dipoles, one of which (with negative EOF coefficient) characterizes the European
blocking dipole. The first February EOF has most amplitude in high latitudes, whilst the
second February EOF also has projection onto the PNA mode, though in opposite sense to
the first January EQF.

The trajectories themselves are illustrated in Fig.13 for the January ensemble, and in
Fig.14 for the February ensemble. The trajectories of the individual forecasts are
numbered by the arrow head. The forecast from the earliest analysis is numbered 1, the
forecast from the latest (i.e. most recent, see Fig.l) analysis is numbered 9. The
trajectory of the projection of the verifying analysis onto these EOFs is also shown in these
diagrams (trajectory with open arrow head, numbered 0).

The trajectories for the January 1986 ensemble show that between the first and second
5-day mean each member was evolving in a consistent but erroneous manner. This error
became greatly amplified betweeﬁ the second and third pentads (days 6-10 and days
11-15), when the direction of analysis and ensemble were quite contrary. Note that up to
this point the spread of the ensemble in this low dimension phase space appears to be
modest compared with the error of each forecast. After the third pentad, the forecasts do
scatter quite significantly, and are apparently chaotic by the last pentad.

The relative scatter in the January ensemble can also be gauged by comparing the
percentage of explained variance of the first two EOFs (shown in Fig.12). For January it
is 36%, whilst for February it is 53%. Hence the large scatter observed in the second half
of the January ensemble apparently occurred in a significantly larger dimensional space
than shown in Fig.13. '

Nevertheless, it is interesting to note that the members of the January ensemble began to
disperse significantly when the trajectories migrated from the right hand part of the
phase-space plane to the left hand part, i.e. from positive to negative values of the first.
EOF coefficient. From the discussion above we can say that significant ensemble spread
occurred when the forecasts began to develop negative PNA index. This behaviour of the
January 1986 ensemble trajectories is consistent with results from Palmer (1988), who found
that atmospheric barotropic instability is enhanced for flows with negative PNA index.

Because of this eventual large scatter, not all of the individual forecasts from the January
ensemble developed towards anomalies typical of the ensemble-mean forecast. From Fig.13
it is apparent that, in this reduced EOF phase space, forecast 2 is closest to the analysis
towards the end of the forecast period. Indeed, its position at days 21-25 is very close to
the position of the analysis at days 26-30. At days 26-30 it can be seen that only the
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- analysis and forecast 2 have a strongly negative EOF2 coefficient. Forecast 2 has the
lowest 500 mb height RMS error in the last ten days and in the whole 30-day period, 122 m
and 76 m respectively. This RMS error is about 20 m less than the mean RMS error from all
individual forecasts in both periods.

The 10-day mean anomalies for forecast 2 from the January 1986 ensemble are shown in
Fig.15 (for analysis anomalies refer to Fig.8). It can be seen that, like other members of
the ensemble, the forecast fails to predict the Euro/Atlantic Block. However, unlike the
ensemble mean (Fig.8), forecast 2 does develop positive height anomalies over Alaska and
the north-east Pacific in days 11-20. These intensify in the last ten days, and the
large-scale forecast anomaly ficld over the N.America bears some resemblence to reality.
Forecast 2 is quite unlike the others in that it never develops into an anomaly pattern
characteristic of the ensemble-mean (or indeed the model’s systematic error; see below). '

The accuracy of the two-dimensioﬁal phase space trajectories of the February 1986 ensemble
(Fig.14) is impressive, showing that the evolution of the large scale flow even in individual
forecasts is captured well right to the end of the forecast. By the end of the forecast
period, the February ensemble has noticeably less scatter than at the end of the January
forecast period. However, it can be seen that at the beginning of the forecast period, the
scatter of the February forecast is not noticeably less than the January forecast.

It. is interesting to note, in addition, that the spread in the February ensemble appears to |
increase most substantially between days 16-20 and days 21-25 (see Fig.14). During this
period the first EOF coefficient was roughly constant, whilst the second was increasing
from negative to positive values. Again, from the discussion above, this is consistent with

the PNA index decreasing from positive to negative values.

The scatter of the phase space trajectories towards the end of the two 30-day forecasts
does in fact give an indication of the relative skill of the two forecasts. However, this is
not the case for the first half. It could be argued that the failure of the January 1986
ensemble reflected a fundamental inability of the model to simulate blocking activity (see,
‘for example, Tibaldi and Molteni, 1988). On the other hand, it is possible that none of the
initial perturbations introduced by the time-lagged forecasting technique was sufficient to
cause at least some of the members of the ensemble to develop into blocking patterns. We
investigate these issues further in the next subsection.

5.2  Further experimentation for the January 1986 case
Figs 8 and 9 suggest that to first order, the different skill of the January and February
ensemble-mean forecasts can be accounted for by the fact that, broadly speaking, the
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verifying analysis anomalies developed in the same sense as the model systematic error in
February, and developed in the opposite (different) sense as the model systematic error in
January. However, this explanation is too superficial. Why did all the January forecasts
miss the development of the Euro/Atlantic block in the third pentad? In order to study
this further, we have performed two additional experiments from 19 January 1986.

Since the time of integration of the January 1986 ensemble forecast, the operational model
at ECMWF has three additional vertical levels, a parametrization of orographic gravity wave
drag and revised vertical diffusion scheme in the free atmosphere (see Table 1). Al of
these modifications are known to have reduced the model’s systematic error, and by
alleviating the problem of systematic too strong westerlies improved the model climatology
Miller et al., 1989, Simmons et al, 1989). In addition, longer timescale integrations
suggest that the gravity wave drag parametrization improves a GCM’s ability to simulate
low-frequency variability, particularly over the 'European region (Slingo and Pearson,
1987; Palmer, 1987). |

In order to test whether these modifications could improve the skill of the January 1986
forecast, we have rerun the last member of the ensemble (12Z 19 January 1986) with the
late 1988 version of the ECMWF model (’cycle 30°). The 10-day mean anomalies of this
additional experiment for days 11-20 are shown in Fig 16. Despite the model changes, it
can be seen that there is no essential improvement in the forecast skill. Development of
the block is still missed. (The relatively skilful forecast 2 of the January 1986 ensemble
was also rerun with model cycle 30, but yielded no substantial improvement over results
shown in Fig 16).

The impact of the improvements in model formulation is felt principally in the extratropics.
However, serious systematic deficiencies in the tropical flow associated with insufficient
large scale divergent flow still persist. These deficiencies affect the model’s ability to
simulate low-frequency variability in the tropics. This may be significant, since Hoskins
and Sardeshmukh (1987) have concluded in a diagnostic study of the Euro/Atlantic block
during the winter 1985/6, that whilst changes in the momentum and heat fluxes due to
synoptic weather systems were crucial, a catalyst for the block could have been provided
by an unusual diabatic forcing in the S.American - Caribbean region, and in particular to
the development of anomalously intense convection over the northem part of S.America
associated with strong convergence over the Caribbean.

Fig.17 shows the 5-day mean 200 mb divergence over the Caribbean area for the analysis

and the latest member of the forecast ensemble. The strong Caribbean convergence
pattern begins to develop during days 6-10 of the forecast, and is well-established during
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~ days 11-15 (see Fig.17, top). On the other hand, the latest individual forecast (Fig.17,
bottom) has hardly forecast this area of convergence, and errors are large, both in
amplitude and scale. The patiern of divergence field for the January 1986 ensemble-mean
forecast is essentially similar to that shown in Fig.17, bottom. However, due to ensemble
averaging, amplitude is weaker than in individual forecasts.

In order to test the importance of the loss of skill in the tropics on the prediction of the
Euro/Atlantic block, a 20 day forecast experiment from 12Z on 19 January 1986 has been
run, in which the model fields in the tropics were relaxed strongly towards their analysed
values. This technique has already been used by Haseler (1982) and Klinker (1989) to
study the impact of the tropics on medium-range exiratropical forecast skill. For technical
reasons, this integration had to be made | at T42 resolution, and so a control experiment was
also run at T42. Both integrations were run with cycle 30 of the ECMWF model. The basic
technical details of the relaxation are as follows. The forecast prognostic equations contain
the additional term -c(X-Xa), where X is a prognostic variable (vorticity, divergence or
temperature), X, is the appropriate analysed value of X, and c is the relaxation
coefficient. Equatorward of 15 degrees latitude, ¢ took the value of 1/8hr . Between 15
and 25 degrees ¢ varied smoothly between 1/8hr and 0. There was no relaxation poleward
of 25 degrees. To achieve a continuous relaxation, the 6 hourly analysed fields were
interpolated to values matching the timestep of the model. Full details of this aﬁd other
relaxation experiments are described in Ferranti et al. (1989).

Fig.18 shows the 500 mb height fields for the control (left) and relaxed (top right)
experiments for days 16-20, together with the verifying analysis (bottom right). Whilst
the control experiment develops towards strong zonal flow over the Euro/Atlantic region,
the relaxed forecast has comectly developed cut-off low over Europe (though its position is
not perfect), and a resonably strong ridge over the north-east Atlantic. It should be
noted that 500 mb height over the Pacific and N.America are also more redlistic in the
relaxed experiment than in the control experiment (notice in particular the intensity of the
ridge off the west coast of N.America in the relaxed experiment compared with the
control).

The improvements obtained with the relaxation experiment are even more clearly seen in the
northemn hemisphere skill scores (Fig.19). (Skill scores are calculated north of 30°, thus
avoiding overlapping with the area of relaxation). Apart from the first 5-day mean, the
RMS error in the relaxation experiment is reduced progressively in all 5-day mean periods
towards the end of integration (20 days). The 20-day mean RMS error (far right lines in
Fig.19) has been reduced by 13 m; this improvement is even more impressive in the
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anomaly correlation coefficient which rises from 0.23 in the control experiment to 0.50 in
the relaxation experiment (see Ferranti et al, 1989). The additional graph seen in Fig.19
(dashed) refers to another relaxation experiment in which model fields in the tropics were
relaxed throughout the integration towards the initial data. Clearly, the worsening of the
skill for this experiment indicates that comect prediction of tropical low-frequency
variability is essential for extratropical extended-range forecasting.

These results certainly lend some support to Hoskins and Sardeshmukh’s conclusions; an
incorrect forecast of the tropical flow during this period led to a deterioration of forecast
skill over Europe. However, one cannot say that the intensity of the block was well
captured in the relaxed experiment. One must conclude that the failure to forecast
accurately aspects of purely exiratropical variability (for example associated with the
transport of low potential vorticity northward to the region of blocking) was crucial in
accounting for the poor skill of the January 1986 ensemble.

Phase-space trajectories for the January 1986 ensemble-mean forecast, the ’cycle 30 model’
forecast (shown in Fig.16), and the tropical relaxation forecast are displayed in Fig.20
using the same two EOFs illustrated in Fig.12. Here, an open arrow (numbered 0)
indicates verifying analysis, the January 1986 ensemble-mean is denoted by 1, the cycle 30
experiment by number 2 and the relaxation experiment by number 3. Fig.20a shows that in
the medium-range (days 6-10), the cycle 30 integration has had more impact, relative to the
ensemble mean than the tropical relaxation experiment, the latter following approximately
the same trajectory as the ensemble-mean forecast. Despite the fact that the direction of
the cycle 30 experiment trajectory is incorrect, it follows a path not traced out by any of
the ensemble forecasts. In other words, it would appear that the dispersion of trajectories
associated with a perturbation in model formulation is not simulated by the time-lagged
perturbations (of initial conditions). This indicates that future methodologies for Monte
Carlo forecasting should have the potential for both types ~of perturbation (model
formulation and initial conditions).

Between days 6-10 and 11-15, the relaxation forecast trajectory completely reverses its
“direction, and between days 11-15 and 16-20 follows approximately the direction of the
analysis (Fig.20b). In this reduced phase space it can be clearly seen that at days 16-20
the relaxed experiment is closest to the analysis. This is further confirmed by the forecast
trajectories projected onto the planes of EOF1 and EOF3 (Fig.20c) and EOF2 and EOF3
(Fig.20d). In both of these planes, the relative closeness of the relaxation experiment
trajectory to the analysis trajectory can be seen.
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6. CLUSTER ANALYSIS OF ENSEMBLE FORECASTS
As discussed in the introduction, it is necessary to establish procedures for condensing

the enormous information content of an ensemble of forecasts. From a practical point of
view, one potentially important advantage of the ensemble technique is the ability to give
probabilities of possible alternative developments. If an extreme event is predicted in just
one member of the ensemble, it would be associated with a small probability. Nevertheless,
this may be valuable information for a user. Information about possible extreme events
would not be available from the ensemble-mean forecast.

In formulating a probabilistic approach to the forecast ensemble, one can calculate
probabilities that a forecast variable falls within different predefined categories. This
technique has been explored using the ECMWF time-lagged ensembles by Brankovic et al
(1988). In this paper we propose an alternative strategy where clusters of ensemble
forecasts are objectively identified, and assign .probabi]ities to each cluster according to
the density of population. A ' ‘

Clearly, the skill of these probability forecasts is only as good as the forecasting system.
If the model has serious systematic errors, or if the technique for constructing the
ensemble is unrepresentative in some way, then the estimated probabilities could be quite
misleading. Indeed, as discussed in the previous section, the model is not free of
systematic errors, and there are still critical questions conceming the required size of an
eﬁsemble, and the representivity of perturbations generated by the time-lagged technique. -
Despite these caveats, the results described below indicate that cluster techniques can help
to improve the potential of ensemble forecasting.

In section 5.1 we described phase space trajectories of the January 1986 ensemble by
calculating EOFs of the forecast 500 mb height fields. We noted from a visual inspection of
the trajectories of the ensemble in the two-dimensional plane spanned by the first two
EOFs, that forecast 2 appeared to be somewhat unique, and quite different from the
ensemble mean. In section 6.1, we shall describe the technique used to study objectively
the tendency of forecasts to cluster, and discuss the application of the technique to the
‘January 1986 and February 1986 cases. In section 6.2 we describe the resulis of the
analysis applied to all the winter cases, together with the two skilful forecasts from
November 1985 and March 1986. |

6.1 Cluster analysis and the January 1986 ensemble

The technique we use is the application of a Ward hierarchical clustering algorithm to the
EOF coefficients of each forecast ensemble (see Anderberg, 1973). For the -calculations
shown here we use as many EOFs as is necessary to explain about 80% of the variance of
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500 mb height within the forecast ensemble. (For example, for the January 1986 ensemble
11 EOFs are used; for the February 1986 ensemble 8 EOFs are used.) Hence these
calculations use many more degrees of freedom than are shown in the phase space
trajectories in Figs 12 and 13. Calculations have been performed with different EOF
truncations to confirm the approximate independence of results to truncation.

The cluster algorithm is applied separately to the EOF coefficients for 10-day mean periods,
i.e. for days 1-10, 11-20 and 21-30. For each 10-day mean the algorithm works in nine
separate steps. In the first step it finds those two members of the forecast ensemble which
are the most similar in the sense that their RMS difference is minimized. These two
forecasts are then merged to form a single sub-ensemble (cluster). In the next step, the
algorithm merges either two more forecasts, or any of the remaining forecasts with the
cluster obtained in the first step, with the objective of finding the combination in which the
internal variance of the new cluster is minimized. Hence the nine steps of the algorithm
have a tree-like structure; at each step the number of clusters is reduced by one. In the
last step, all nine members of the ensemble are merged to form the ensemble mean. At an
earlier step n, 1<n<9, probabilities could be assigned to each cluster according to the
number of individual members of the ensemble that have been merged into that ensemble.
The tree diagrams for the three 10-day means of the January 1986 and February 1986
ensembles are shown in Fig.21. '

Let us consider first the January 1986 ensemble. The tree diagram for the first ten day
mean is the least interesting. At each step of the clustering algorithm, adjacent forecasts
are merged; that is to say, the procedure merges forecasts which are initialised from
adjacent initial analyses. This is what one would expect, at least in the short range, and
demonstrates that the algorithm is dperating sensibly. In the penultimate step, the two
sub-ensembles are formed from forecasts (1,2,3,4) and (5,6,7,8,9) respectively.

For the second ten day mean, the clustering algorithm produces more interesting results.
At the fourth step, two non-adjacent forecasts are merged, numbers 2 and 4. At step 7,
the first forecast is merged with a sub-ensemble which includes the last member of the
ensemble, forecast 9. In fact, at step 7 the first of the three clusters is composed of
forecasts 2 and 4; the second consists only of forecast 7 and the third is composed of
forecasts 1,3,5,6,8,9. In the penultimate step, the two sub-ensembles are formed from
forecasts (2,4) and (1,3,5,6,7,8,9) respectively.

For the third 10-day mean, forecasts from non-adjacent analyses have been merged by the

third step of the algorithm (where forecast 3 is merged with the mean of forecasts 5 and
6). This demonstrates quite clearly that in the extended range, there is no obvious way to
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'weight’ individual members of the ensemble as a means of reflecting the time-lagged
technique used to construct the initial perturbations.

The uniqueness of forecast 2 is further highlighted in the tree diagram for the third
ten-day period. By the seventh step, the first of the three clusters consists purely of
forecast 2, the second consists of forecasts 4 and 7, the third is comprised of all the
others. By the eight step, only forecast 2 continues to remain distinct from the others;
the two sub-ensembles are formed from forecasts (2) and (1,3.4,5,6,7,8,9) respectively.
This cluster analysis has confirmed our assessment in section 5.1 of the uniqueness of
forecast 2. As discussed earlier, forecast 2 has the lowest 500 mb height RMS error of any
of the ensemble forecasts at days 21-30.

As mentioned above, probabilities could be assigned to the clusters according their densify
of population. However, this may not be appropriate in a practical, rather than perfect
model environment. If a densely populated cluster indicates an anomaly field strongly
correlated with the known model systematic error, then its probability might be
overestimated by the clustering technique. On the other hand, if a cluster develops away
from the known model systematic error, then its probability is likely to be underestimated.
Hence there is some scope for a statistical adjustment of cluster _probabi]ities to take into
account the synoptic development of the clusters. On this basis, one would in practice
give considerably more weight to forecast 2 of the January 1986 ensemble than the ratio 1.8
suggested by the cluster analysis at step 8.

The tree diagrams for the February 1986 ensemble show that in the first ten days, with the
exception of one step, only adjacent forecasts are merged. In the second ten days
non-adjacent forecasts are merged by the third step. For the third ten days there is
considerable merging of non-adjacent forecasts, and, by the penultimate step, the two
ensembles are formed from forecasts (1,3,5,7) and (2,4,6,8,9) respectively.

6.2 Probability forecasts for the extended winter period

In Table 3 we give the anomaly correlation scores at days 11-20, and 21-30, respectively,
of forecast northern hemisphere 500 mb heights for the centroids of the three clusters
obtained at step 7 of the clustering analysis technique outlined above. We show the set of
five winter ensemble forecasts, supplemented by the forecasts from November 1985, March
1986 and September 1986, deemed to be ’skilful’ in section 4. The first three columns give
the scores calculated for three forecast clusters; most populated cluster always being in
column A, and the individual forecasts comprising each cluster are shown in brackets. We
discuss here the stage in the cluster analysis algorithm when only three clusters are
defined, because it has been found that, on average, with three clusters about 50% of the
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Table 3

11-20 Cluster Ensemble
mean
Date A B C
851116 (2,3,4,6,9 (5,7,8) (D
.51 .76 .09 .66
851215 (1,2,3,4) (5,6,8) (7,9
-.16 -.24 .06 -.15
860119 | (1,3,5,6,8,9) 24 @)
-.28 -.43 -.44 - -.36
860216 (1,34.,5) (7,8,9) (2,6)
58 .60 - .62 .64
860316 (1,3,6,7,8) .5) 49
46 .55 27 .49
860914 (1,3,4,5.6) 2,7,8) )
29 58 -.10 44
861214 (24,589 (1,6,7) 3)
18 23 .19 .22
871213 (3,6,7,8,9) 24,5 6
35 31 .04 .32

Table 3a  Days 11-20 northern hemisphere 500 mb height anomaly correlation
coefficients for three clusters and ensemble-mean.

variance of the full ensemble is explained (100% being explained by nine ’clusters’, i.e. all
individual forecasts). In the fourth column, the score for the single cluster (ensemble

mean) is shown.

For the means of both days 11-20 and days 21-30, in 7 out of 8 ensembles studied, at least
one of the three clusters is superior to the ensemble mean. However, for days 11-20, in
only 2 of the cases considered in Table 3, is the most skilful cluster also the most densely
populated cluster. For days 21-30 in 5 cases the most skilful cluster was the most dense;
but in three of these the density was equal to at least one other cluster (November 1985,
December 1986 and December 1987). This suggests a problem of sampling because of the
relatively small number of ensemble members.

To demonstrate the technique, anomaly and full maps of 500 mb height for days 11-20 for
the three clusters are shown in Figs 22 and 23 for the ensemble forecasts from November
1985, and February 1986; the verifying fields are shown as two top panels.
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21-30 Cluster Ensemble
mean
Date A , B C
851116 |  (5.6,7,9) (2,3,4,8) (1)
08 -.14 -.10 - .06
851215 | (2,3,4,5.8) (6,7,9) 1 -
35 36 17 37
860119 | (1,3,5,6,8,9) @,7) )
- .34 -.15 -.07 -.30
860216 | (2:4,6,8,9) (1,3) - (5.7
44 20 25 39
860316 | (2:4,5,7.9) (1,6,8) NG
36 28 -.07 32
860914 | (1,4,5.9) (3,7,8) (2,6)
15 19 32 11
861214 (2,5,.8) (1,6,7) (3,4,9)
30 14 28 29
871213 (1,2,5) (3,8,9) 4,6,7) :
34 - .05 13 15

Table 3b  Same as Table 3a but for days 21-30.

For the November 1985 case (Fig.22), it can be seen that the height fields of the three
clusters are dramatically different. The first cluster, (with highest density) has positive
anomalies over high latitudes but fails to correctly develop the negative anomalies over the
north Pacific and north Atlantic. The second cluster is clearly the most skilful (see Table
3a); the major anomaly centres are correctly predicted. The third cluster (with lowest
density) develops intense ridging over Europe and the north Pacific. On the basis of the
discussion for the clustering of the January 1986 ensemble in the previous section, it might
‘be imagined that since the latter cluster represents a development away from the model
systematic error, this development should be given higher weighting than suggested by the
cluster density. In this case, however, it represents incorrect development.

For the February 1986 case (Fig.23), all clusters correctly show the extensive region of
negative height anomaly over the high latitude Euro/Asian continent. They differ in other
arecas, however, for example in the strength of the Rockies ridge, and the trough over
south-western Europe. Overall it can be seen, and is confirmed in Table 3a, that the third

(least dense) cluster is the most skilful.
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These results are certainly encouraging. However, they cannot be considered definitive.
Firstly, problems associated with cluster density may well be associated with poor
sampling, This suggests that the size of the ensemble should be much larger than the size
studied here. This would probably require a different Monte Carlo technique to generate
the ensembles. Secondly, the practical efficacy of the cluster analysis is certainly reduced
by the presence of systematic model error. Nevertheless, we envisage continuing this type
of analysis using future generations of ECMWF model.

7.  CONCLUSIONS AND SUMMARY
A set of 16 ensembles of time-lagged extended-range forecasts have been run at different

times of year using the T63 version of the ECMWF operational model. Each ensemble was
composed of 9 integrations from consecutive 6 hourly analyses.

By definition, the RMS error of the ensemble méan forecast is inevitably smaller than the
mean RMS error of the individﬁal forecasts; the magnitude of the anomaly correlation
coefficient of the ensemble mean forecast is similarly larger than the mean magnitude of the
anomaly correlation coefficient of the individual forecasts, provided that the ensemble-mean
forecast has smaller spatial variance than any of the individual forecasts.

Skill scores from the forecast ensembles confirm these results, though they show a smaller
improvement then expected from perfect model theory, in particular during the winter
period. However, they are consistent when the theory is extended to an imperfect model.

For the middle ten days (days 11-20), when all members of ensemble forecast can be
considered as a priori equally likely and no weighting of individual forecasts is required,
the ensemble mean is in most cases more skilful than the latest member of the ensemble
(control forecast). However, at this time range only about a third of the ensembles were
more skilful than both climate and persistence. The e¢nsemble-mean forecasts of 850 mb
temperature are more skilful than 500 mb height.

Under perfect model assumption, the ensemble spread and ensemble-mean skill are perfectly
correlated for a large, properly sampled ensemble. For the integrations, there is an overall
correlation between 10-day mean spread and 10-day mean skill; however, a substantial part
of this correlation reflects the impact of the annual cycle on both spread and skill. Only
within the transition season (i.e. neither winter, nor summer) does there still appear to be
some positive correlation for 500 mb height at days 11-20 which does not bear any obvious
relation to the annual cycle. In the winter period, however, there was no clear correlation
between 10-day mean spread and 10-day mean skill. Therefore, the ensemble spread
cannot be considered as reliable predictor for ensemble skill.
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. Within the winter period, there was considerable case-to-case variability in forecast skill.
The January 1986 ensemble was the poorest of all the ensembles; the February 1986
ensemble was one of the most skilful. These two ensembles have been studied in more
detail to try to find some reasons to explain this apparent lack of spread/skill correlation.
This period has also been the subject of a diagnostic study of the large-scale flow, as it
encompassed blocking events in both the Euro/Atlantic sector, and the north Pacific

sector.

The January 1986 ensemble forecasts were initialised before these events developed. None
of the forecasts correctly predicted the onset of the Euro/Atlantic block between days
10-15 of the forecast period, though at least one of the forecasts (but not the latest one)
predicted the development of the north Pacific ridging. By contrast, the flow was already
quite anomalous at the beginning of the February 1986 ensemble, and subsequent
developments were well predicted, at least to day 20. .

The different character of these two ensembles was clearly shown by considering phase
space trajectories of the ensemble forecasts in the plane spanned by the two principal
forecast EOFs of 500 mb height. During the first 15 days, the trajectories of the January
1986 ensemble forecasts were all very consistent with each other, but contrary to the
observed atmospheric trajectory (such a behaviour would explain the lack of spread/skill
correlation). During the second half of the forecast period, as the forecasts migrated from
positive to negative PNA index, the trajectories dispersed quite strongly, becoming chaotic. ’
By contrast, the trajectories for the February 1986 ensemble forecasts remained throughout
most of the forecast period, both mutually consistent and in agreement with the real
atmosphere’s trajectory.

It can be said, therefore, that in terms of this large-scale measure of spread, the forecast
dispersion at the end of the January 1986 forecast period gave an indication of the forecast
skill. However, the dispersion in the first half did not. This is clearly related to the fact
that all members of the ensemble consistently failed to predict the Euro/Atlantic block.

‘In order to investigate possible reasons for this, we conducted two additional experiments.
In the first we reran the control integration with a later version of the ECMWF operational
model (which has higher vertical resolution than the earlier model, a parametrization of
orographic gravity wave drag, and a revision of the vertical diffusion scheme in the free
atmosphere). The prediction of the Furo/Aflantic block was still missed, though the
phase-space trajectory of this forecast was quite different to any of the members of the

original ensemble.
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In the second experiment, we ran an integration in which the model’s tropical fields were
relaxed towards the verifying analysis. This was motivated partly in the knowledge that
the model’s tropical divergence fields suffer serious systematic error (see II), and partly
by the suggestion of Hoskins and Sardeshmukh (1987) that the development of anomalous
upper convergence over the Caribbean -region provided a catalyst for the block, and the
fact that the large scale divergent flow in the tropics is poorly simulated in the model.
Enhanced ridging over the Euro/Atlantic area certainly occurred in this experiment, and
extratropical skill scores improved; however, it could not be said that the intensity of the
block was well captured.

It would appear therefore that the failure of the model to predict the onset of the January
1986 block was partly associated with systematic deficiencies in the model and partly
associated with a problem of predictability in the presence of imperfect sampling. We have
seen that one of the members of the ensemble was able to capture some of the developments
over the Pacific region in the extended range. A similar contradictory "success" has been
reported by Hollingsworth et al. (1987) for November 1985 case.

By definition, extended range forecasting is concemed with prediction beyond the limit of
deterministic predictability. In this sense it has an inherently probabilistic component. We
used a clustering algorithm based on the EOFs of some ensemble forecasts to define
sub-ensembles, and hence possible altemnative developments of the large-scale flow. At .
any step of the cluster analysis algorithm, probabilities could be assigned' according to the
density of population of the cluster. For the cases studied one of the three clusters
considered was invariably more skilful than the ensemble mean. However, this cluster was
not always the more densely populated. It is possible that this is associated with a
sampling problem, and that more realistic probability estimates could be obtained with a
much larger sample. If this is the case, then the time-lagged method of generating
ensembles may not be the most suitable. Systematic errors also play an important role in
altering the probabilities of various circulation regimes.

Whilst these results do not suggest that extended-range ensemble forecasting is at present
viable operationally, the rapid advances currently being made to reduce systematic error in
NWP models, particularly in the tropics, together with new techniques for generating
forecast ensembles that can identify a priori the most rapidly growing perturbations,
suggest that probabilistic forecasting of extratropical time-mean weather using ensemble
forecasting up to three weeks into the future is a feasible goal.
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DATE 8S11i8

; o * ) - ///".""-.
Z 500 M8 DATS 01-10 LAF PANCGMe Z S00 M8 DATS 01-10 083 AN
EXPe DATE 6511186 T63 DATE 651118
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EXPa DATE 851118 63 - : DATE 851116
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Z 500 M8 DAYS 21-30 LAF ANOMa Z 500 KB DAYS 21-30 085 AN

Fig.7 Ensemble-mean forecast (left) and verifying analysis (right) of days 1-10, 11-20
and 21-30 500 mb height anomaly for November 1985 ensemble. Contours every 6
dam starting from +3 (-3), positive anomalies solid, negative dashed; zero contour
not drawn. ’
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Fig.8
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As Fig.7 but for January 1986 ensemble.
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As Fig.7 but for February 1986 ensemble.
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Fig.10

As Fig.7 but for March 1986 ensemble.
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Time—lagged forecasts 16 ensembles
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Fig.11  Scatter diagram of RMS ensemble spread (m) vs. RMS error (m): days 11-20
(lefty and days 21-30 (right). Northem hemisphere 500 mb height (top),
northem hemisphere 850 mb temperature (middle) and Atlantic region 500 mb

height (bottom).
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Zero contour not drawn.
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in the plane defined by the first two EOFs of the January 1986 ensemble (see
Fig.12). 1 to 9 denote individual forecasts as depicted in Fig.l1. Zero and open

arrow denote verifying analysis.
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ExP. DOV DATE 860117 18 183 EXP, DOV DATE 0660117 18 763

Z 500 K8 DAYS 21~30 DET ANOM.

Fig.15 500 mb height anomaly of days 11-20 and 21-30 for forecast 2 of the January 1986
ensemble. Contours as in Fig.7.
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EXP. 170 DATE 860118 122 71863

Z 500 HO DAYS 11-20 DET 8NC

Fig.16 500 mb height anomaly of days 11-20 for repeated <_:ont-r01 forecast (19 January
1986 at 12Z) with the model cycle 30 (see text). Contours as In Fig.7.
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a) EXP. IN3 DATE 880119 N2 b) EXP. IL1 DATE 880118 T2

5.,
oL

Z 500 M8 DAYS 16-20 DETERM.

Z 500 M8 DAYS 16-20 DETERM.

c) DATE 860118

Z S00 #8 DRYS 18-20 OBSERVED

Fig.18 = 500 mb heights for days 16-20 of a) T42 control forecast, b) T42 relaxation
experiment and c¢) verifying analysis. Initial date was 19 January 1986, 12Z.
Contours every 10 dam.
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Fig.19 RMS error (m) of the S5-day and 20-day mean northem hemisphere 500 mb
heights for T42 experiments from 19 January 1986, 12Z. Control solid, relaxation
towards analysis dotted, relaxation towards persistence dashed.
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DATE 851116 DARTE 851118

Fig.22  Verifying analysis of 500 mb height (top) and day 11-20 for the three forecast
clusters associated with the November 1985 ensemble. Full field (left) and
anomaly (right). Contours as in Figs.18 and 7 respectively.
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As Fig.22 but for February 1986 ensemble.

Fig.23
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