WNANYJOWIW 1VDINHDAL

184

A method for implementing adjoint
calculations in the discrete case

R.N. Hoffman, J F. Louis and T. Nehrkorn

Research Department

February 1992

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWF.

European Centre for Medium-Range Weather Forecasts
— Europdisches Zentrum fur mittelfristige Wettervorhersage
w Centre européen pour les prévisions météorologiques a moyen

ABSTRACT

We present a unified formalism of discreie adjoint calculations. The adjoint formalism is a technique
to efficiently calculate the sensitivity of a single measure of the output of a model to a set of control
variables. This formalism unifies the calculation of the sensitivity with respect to initial conditions,
the sensitivity with respect to model parameters and the forcing of the adjoint model due to the data
misfit. This view also results in a straightforward method for writing an adjoint model in practice.
Two steps are required. First, the full model is linearized. Second, the linear model is transposed.
The first step transforms the nonlinear model (NLM) into the linear tangent model (LTM). The last
two steps transform the LTM into the adjoint model. Usually the transposition of the linear model
is carried out by first dividing the model into parts (called stages here). In this case the order of

the transposed stages must be reversed.

)

1. INTRODUCTION

The adjoint formalism is a technique to calculate the sensitivity of an objective function with respect
to a set of control variables. The objective function is a single scalar measure of thc output of a
mathematical or numerical model, and the control parameters might be model initial conditions and/or
parameters (Hall et al., 1982; Le Dimet and Talagrand, 1986; Thacker and Long, 1988; Thacker,
1988). For numerical models, the chief advantage of the adjoint formalism is efficiency, since one
integration of the adjoint is sufficient to compute the derivatives of the objective function with respect
to all the parameters and initial conditions. While the adjoint formalism is entirely general, two of the
principal applications are meteorological and oceanographic models. One interesting application of
the adjoint formalism, which has recently gamered much attention, is to define the initial conditions
for numerical weather prediction (Talagrand and Courtier, 1987; Courtier and Talagrand, 1987
Lewis and Derber, 1985; Derber, 1987, 1989). In this case, the objective function is a measure of
the misfit of the model solution to observations of the atmosphere. This application is particularly
challenging, because such models already tax the largest computers and because the analysis of the
initial conditions together with the forecast must conform to the operational requirement of timeliness.
This work is underway for the models of ECMWEF and NMC (Rabier and Courtier, 1992; Thépaut
and Courtier, 1991; Le Dimet et al., 1991; Zou et al., 1991).

In general, the adjoint is defined for a particular linear operator and particular inner products defined
on the domain and range of the linear operator. In practical numerical cases, one can always choose
to define (as we will in the remainder of this paper) the linear operators as matrices and the inner
products as ordinary dot products for real (or complex) numbers. In these cases if A is a linear
operator and (z,y) is the inner product of z and y, then the adjoint of A, denoted A*, is simply the

transpose (or complex conjugate transpose) of A, and

The purpose of this paper is to define the formalism for the general discrete calculation in such
a way as to clarify the practical implementation of such a calculation. This formalism unifies the
treatment of tunable parameters and the forcing due to the verification data, with the calculation of the

adjoint solution. For the most part this material is implicit in earlier papers on the subject referenced

earlier. However our experience is that a considerable effort is required to bridge the gap between
the published accounts to a practical methodology for developing an adjoint for an actual computer
model. The audience for this paper are those contemplating coding an adjoint for the first time. A

caveat: This paper presents only one possible approach for implementing an adjoint.

It will be seen that implementing the adjoint version of a model involves two almost entirely
mechanical steps: First one writes the linearized version of the model, here denoted the linear tangent
model (LTM). The LTM must include all perturbations due directly or indirectly to perturbations in
those initial conditions and/or parameters under study. The LTM may be represented by a single,
possibly very complicated, matrix. The (complex conjugate) transpose of this matrix is then the
corresponding adjoint model. Usually, the LTM is considered to be the application of a series of
matrices, rather than a single matrix. The adjoint model may then be derived as the transpose of
the LTM matrices applied in reverse order. ‘'We note here that any type of time marching can be

accommodated by the formalism outlined here.

In our notation we distinguish between initial conditions and parameters, because our work involves
tuning the parameters of a meteorological forecast model. In other applications the distinction may
be less clear. In general, parameters are variables whose values are imprecisely known *‘constants’’,
while the initial conditions are all other variables needed for a complete specification of the problem.
In other words, the initial conditions vary from case to case, while the parameters are constant, at
least within the ensemble under study. The separation of initial conditions and parameters is not

absolutely necessary in what follows — either set could be empty.

Ik

2. THE UNIFIED FORMALISM

We divide the model into a series of calculations, each of which might be simple or complicated.
This division of the calculation is arbitrary aﬁd the divisions themselves we will call the stages of the
calculation or simply stages. A stage might alternatively be defined in terms of time steps, procedures
(i.e., subroutine calls) or individual equations (i.e., assignment statements). Ultimately we will apply
our results to individual lines of computer code. In this case we may identify each execution of an
assignment statement as a stage. This distinction - between an assignment statement and its execution
- will be important in applying our results. When we derive the linear tangent model (LTM) we will
view the full or nonlinear model (NLM) as the execution of a series of assignment statements. The
model of course may contain conditional and looping structures, but these may be thought of as just
a convenient short hand for specifying a series of assignment statements. Thus, all control structures
of the NLM. are inherited with no change by the LTM. For the LTM to be well defined the NLM
should be continuously differentiable with respect to the control variables. For example, in the case
of a conditional (IF) statement which depends on the value of a model variable, the solution and its
derivatives should agree for the critical value of the model variable. (Iterative processes within the
NLM are also troublesome in this regard if the convergence criteria depend on the model variables.

We comment on this in the next section.)

Let z,, be the model state at the end of stage n of the calculation, and let J be the objective function.
The model state vector contains all the variables needed to continue the model calculation, including
the evaluation of the objective function. Therefore when J is a sum which is calculated during the
model run, as is usually the case, the partial sum of J at the end of stage n, which we will call
Jn is included in the model state z,,. At the end of the calculation, i.e. for the final value of =,
Jn is equal to J. As we will see, the advantage of including J,, in the model state vector, is that
the forcing of the adjoint solution due to data misfit and the proper choice of the initial conditions

for the adjoint calculation arise naturally.

We also include in the model state all parameters which might be adjusted to minimize the objective
function. Such parameters are usually quantities which do not vary during one model run, such as
coefficients appearing in parametrizations of surface drag, cloud fraction and diffusion. We might
even consider the size of the time step to be such a parameter. Thus our model state vector

is an augmented model state, containing not only z,, the variables of the model, but also ay, the

tunable parameters of the model, and J,, the objective function, as calculated through the end of
stage n of the calculation,
2n
Zn= | an|. ‘)
Jn
Note that 2, and a, are themselves column vectors. In this section and in section 3, all partitioned
vectors and matrices will be partitioned in this way. Since the «,, are constant in the NLM and
LTM we may drop the subscript n. However the variables in the adjoint model which correspond to
ay, do depend on n. These variables are used to calculate the sensitivity of the objective function

to the model parameters.

The object of the adjoint calculation we are about to describe is to determine V, 7, the gradient of J
with respect to the initial augmented model state. Since z contains zg and a, this gradient contains
the gradient of J with respect to the model initial conditions and model parameters. Given V. 7,
we can calculate the perturbation of the cost function, 7, for any infinitesimal initial perturbation,

8z, of the model state vector zp, according to
0T = (Vg T, 6z0). 3)
To derive V,,J, we begin by constructing 8 7 for an arbitrary §zg, and then manipulate our solution
so that it is in the form of (3).
The linear tangent model (LTM) may be written
bz, = Apnbzn_1. | ¢y

where A,, is the linearized model dynamics for stage n. We note that the equations for da are trivial,
since the parameter perturbations are (arbitrary) constants. To integrate the LTM from arbitrary
initial conditions §zo we repeatedly apply (4), obtaining dzy in terms of the perturbation of the

initial model state,

62:N = ANAN_]_ .. 'A2A16(Bo. (5)

Now let N identify the last stage of the calculation, so that J = Jn. Our partitioning of vectors

and matrices makes §.7 the last element of §z . Thus we may isolate §.7 by constructing the dot

N

)

product of §zx with the unit vector u,

67 = (u, ban), - ©)

where - -
u=10{. _ o @)

1

Substituting the value of §zx from (5), and méking repeated use of (1), we obtain
8T = (ATAS - Ax_,Aju, b2o). ~ ‘ ()
Since this relationship is true for any ézo, the desired gradient is given by

VeoJ = 4143 Ay 1 Aju. ©)

Comparing the expression for the gradient (9) with Eq. (5) we see that calculating the gradient is
entirely analogous to integrating the LTM, but in reverse order and beginning from initial conditions

u. For this reason, it is convenient to define the adjoint model by
=&
and
Ty = u. = (11
Repeated substitution of (10) into (9) results in

Ve J = 25 ' (12)

In the same manner as before, z§ is partitioned into three parts denoted zj, ay and Jg, which are
respectively the gradients of J with respect to zg, a and Jo. (The last of these derivatives is identically
one, as we will see in the discussion below.) In conclusion, we may calculate the desired gradient by

integrating the adjoint model (10) for n = N, N —1,---,2,1, beginning with initial conditions (11).

3. DISCUSSION

The above formalism, while simple, treats in a unified way the general adjoint calculation for discrete
models. With this approach, the gradient with respect to parameters of the model, and the forcing
due to the data misfit do not require any special treatment in the adjoint model. All we must do
is augment the model to calculate the objective function and include perturbations of the tunable
parameters in the LTM. Considering the LTM to be the multiplication by a series of matrices, the

adjoint model is simply the (complex conjugate) transposed LTM matrices applied in reverse order.

As we mentioned earlier, the division of the calculation into stages may be arbitrarily fine or coarse.
The model state vector z, must contain everything needed to continue the calculation. At any
particular stage, say stage k of the calculation, the adjoint variables zj, whether they correspond
to model variables, model parameters or the objective function, respectively denoted 2, ajand J};
may be interpreted as the sensitivity of 7 with respect to the corresponding components of the NLM
variables, zj at the end of stage k. (This can be seen by repeating the derivation of (12) for a

calculation beginning with stage k + 1.)

We now consider some special cases of (4). For this purpose, we first divide the computations finely
enough so that we may consider a stage either to not increment the objective function or to only
increment the objective function. In the first case, for example at stage k of the model integration,

the parameters and the objective function are unchanged and this stage of the NLM may be written as

2, = Fr (2p-1,0). (13)

In the LTM, this is represented by

V.F. Vo F, 0
Ay=1] 0 I o]. (14)

0 . 0 1
Here we see that small changes in a influence the calculation of éz, at each stage involving a,
through the V. F} term. These effects are carried along as §z; evolves, and accumulate during the
solution. In the second case, for example at stage m, only the objective function is changed and this

stage of the NLM may be written as

IJm = JIm-1+ Hp (zm—laa) . (15)

I

I

In the LTM, this is represented by
I 0 0
Am = 0 I 0]. (16)
V.H, V.H, 1
In either case, the transpose of the LTM (1'4, 16) shows that J;_; = J;;. The initial conditions (7,
11) therefore implly that J; is always one, consistent with the fact that J; is the derivative of J

with respect to its partial sum at stage n.

While the parameter perturbations, §a,,, are unchanged by the LTM, the corresponding adjoint model
variables, o, accumulate the contributions to 87 /0a from the stages of the calculation. Usually,
the objective function does not depend explicitly on the model parameters a, i.c., Vo H,, = 0. For

this case (16) shows that a stage incrementing 7 reduces to
Zpo1 = Zp + VaHm, (17)

since J;, = 1. The term V_.H,, represents the forcing of the adjoint solution due to data misfit.

Furthermore, when Vo Hy, = 0, specializing (16) shows that a evolves according to

Cafj_y =of +VaFe zp. : (18)

4, PRACTICAL IMPLEMENTATION

In the methodology described here, there are two main steps in writing an adjoint model. A required
preliminary is to augment the full nonlinear model (NLM) to calculate the objective function J.
Then the first step is to write the LTM and the second step is to transpose the LTM. The second step
is usually done for small subdivisions or stages of the calculation. Once the adjo‘int of each stage is
created, it is necessary to reverse the order of the transposed stages. Before continuing we note that
other approaches may be taken, but the rules described here are particularly straightforward. Many of
the procedures described here can be performed nearly automatically. Further, the approach described
here avoids errors associated with overwriting an adjoint variable which should be incremented or

vice versa. Such errors are the most common errors made in writing an adjoint model.

The dependence of the LTM on the solution of the NLM is formally through the A,. Since the LTM
is an infinitesimal perturbation about the NLM solution, all control structures - loops, if-then-else
blocks, étc. - are inherited with no changes from the NLM. For this reason, a conditional involving
a perturbation quantity is‘ an error. In a practical implementation, matrix storage for the A, must
be avoided, since they are very sparse. Of course, the variables from each stage of the fu]l model
which are needed to evaluate the coefficients in the perturbation model must be saved or recreated as
the perturbation model is evolved. In the adjoint model this becomes somewhat awkward since the
adjoint model evolves backwards relative to the NLM. It is generally good practice to save the results
of as many intermediate complex nonlinear calculations as possible. Simple nonlinear calculations

may be repeated rather than stored and retrieved.

For each assignment statement in the NLM, there may be a corresponding statement in the LTM. If
there are perturbations to any of the variables on the ris of a NLM equation, then a perturbation form
of the equation must be written. In this case a perturbation is defined corresponding to the variable
on the lhs of the NLM. We note that in the case of the LTM, the initial conditions are arbitrary. We

now briefly mention some situations one should be aware of in writing the LTM.

1. A procedure which is linear in terms of the model state vector may be used as originally written,
simply by replacing the model state vector with the perturbation state vector.
2. When writing the perturbation equation of a complicated product, one can take advantage of the
properties of logarithms. For example, a NLM assignment statement given by,
f = ((a+tb)**2 * sqrt(c)) / (d*e)

h

i

becomes

Df = f*(2*(Da + Db)/(atb) + Dc/(2*c) - Dd/d - De/e)
where the upper case D prefix denotes a perturbation variable. We note that the convention in
the ECMWEF Integrated Forecast Sysiem (IFS) is to add a suffix 5 to the full model state or
trajectory variables. That is, the same variable name is used for the full model state variable in
the NLM code as is used for the perturbation variable in the LTM and adjoint codes. But in the
LTM and adjoint codes, the full variables, called trajectory variables in this context, are suffixed
by a 5. This convention eliminates rewriting linear equations, but requires rewriting equations
for nonlinear temporaries. Either approach, consistently used, is workable.
Use caution when code executed conditionally changes the value of a NLM variable which was
used to evaluate the condition. For example,

a = min(a, amax)
should be considered equivalent to .

if (a .ge. amax) a = amak
which may be written in the LTM as

if (a .ge. amax) Da = 0
Note the condition remains true after the change in the value of a, so that Da will be properly
set to O if a is initially larger than amax. This would not be true if the conditional was written
as (a .gt. amax).
In the case of a convergent iteration, it may not be necessary to repeat the control structure of the
NLM in the LTM. This will be true when the process converges to machine accuracy; otherwise
all the concems one has about making sure the gradient one calculates, is the gradient of the
actual finite process, come into play. In the former case, once a set of equations is iterated to
machine accuracy convergence, the NLM variables may be taken to be known exactly. Then
the corresponding perturbation equation can be easily solved since the perturbation form of the
equations is linear in the perturbation quantities. (We do not have to worry if these equations
are singular, since we already solved the nonlinear version.) As an example, we consider the
calculation of z, the surface roughness length in a stable oceanic planetary boundary layer model
we have studied (Hoffman and Louis, 1990),

2 = v/y?
y =In(z/z0)

where z is the constant elevation of the observations of the atmospheric variables and v depends

(19)

on the wind speed and atmospheric stability. (In the unstable case v depends on 2 as well.)

These equations converge fairly quickly but we also accelerate the process by using Newton’s

method after a few iterates. Perturbing these equations yields a system of two equations for 8z

and §y, whose solution is ’
8z = (ﬁv/yz) /(1 —2/y)

8y = —6z0/ 2.

20)

One can therefore use (20) in the LTM instead of the iterative structure used to solve (19).

To create the adjoint model, it is useful to consider each assignment statement in the LTM to be a
stage. Then converting the LTM into the adjoint model is divided into two steps, as mentioned before.
In the first step, each single LTM assignment statement is converted into a series of simple adjoint
assignment statements. In the second step, the order of execution of all the adjoint assignment

statements is reversed.

To initialize the adjoint model, as per (11), all adjoint variables are set to zero, except that J* = 1. In
particular, local adjoint variables must be set to zero. Accomplishing this depends on the programming
environment. In standard Fortran, one approach is to set to zero any actual adjoint variable or array
at the start of the program unit in which they first become defined. Dummy arguments should not be
initialized in this way. Variables and arrays appearing in COMMON and SAVE statements should be
initialized before the adjoint model begins execution. (A precise technical definition of how entities
become defined or undefined is given in Section 17.2 and 17.3 of ANSI X3.9-1978. Likewise see

Section 15.9 for dummy arguments.)

In order to transpose a single LTM assignment statement and to properly initialize the adjoint variables,
it suffices to consider two very simple cases. Since the LTM is linear in the perturbation variables,
any LTM statement may be considered (and in fact may be easily rewritten) as a series of simple

LTM statements, the first of the form
§r = abr 21)
and subsequent ones of the form
br = 87 + bés. 22)

These statements may be represented in the form of (4), in which the matrix A, is equal to the
identity matrix except for one diagonal element equal to e in the first case and for one off diagonal

element equal to b in the second case. It is then easy to see that the adjoints of these two cases are
™ = ar* (23)

10

Ib

and

* = 5% 4 br* ' (24)

Often a = 0 that is, 7* is reinitialized This case must not be overlooked. These equations must
be put in reverse order from that shown here In other words, for each snnple LTM assignment
statement ar1s1ng from the s1ng1e ongmal LTM ass1gn1nent statement, there results a single simple
adjoint statement and of these, the first, which redefines r* w1ll be executed last, once all the adjoint

statements have been put in reverse order.

One result of this approach is that there will sometimes be code which sets a variable equal to
itself, or which sets a variable equal to zero when that variable is not referenced again, or in which
several statements incrementing a variable might’easily be combined. We prefer not to clean up such
code, so that the derivation of the adjoint code is clear. An optimizing compiler will eliminate any

inefficiency in such cases.

In order to reverse‘ the order of the adjoint assignment statements, it is useful to have a properly
indented code, in‘ which ever}r time the start (or end) of a control structure is encountered, the
indentation level is incremented (or decremented, respectively). All control structures and assignment
statements at the sarne indentation 1eve1 within a single control structure (or procedure) must be reverse
ordered In general all looping structures must be rewritten to execute in reverse order. In cases
when the order of execution of the loop is immaterial, this reversal is not necessary. Recalculation of
NLM variables must occur before they are used. Often, it is sufficient to float the NLM calculation

to the top of the control structure in which they are found.
It should be remembered that it is not always necessary to develop an adjoint code. In some cases an

operator is self-adjoint, or nearly self-adjoint. Transforms between different sets of orthogonal basis

functions often fall into this category. (See for example,‘Courtier and Talagrand (1987).)

11

5. AN EXAMPLE

As an example we consider a very simple predictive model, namely the model of the growth of
forecast error variance of Dalcher and Kalnay (1987). In this section, we will optimize the initial
" conditions of this model for an ensemble of 5 cases while simultaneously optimizing the 3 parameters
of the model. For this demonstration we treat one term of the tendency equation semi-implicitly.
Further, the data used in the objective function are not model variables, but are calculated from the

model variables, through what may be termed a diagnostic relationship.

The Dalcher and Kalnay model is

o = (aV +5) (1= V/Ver) =V 25)
where V is the mean square forecast error, averaged over some region, and a, S and V,, are empirical
parameters. Here a is the inherent growth rate, S is the error source and Vo, is the asymptotic level
of V. These parameters should be constant for a given data assimilation and forecast system, but
depend on the variable in question, the region, the data sources, etc. A closed form solution of (25) is
given by Dalcher and Kalnay. For our purposes we discretize the time domain, using a superscript m

to denote time level m. During the initial forecast period, V' grows rapidly. Accordingly, we treat the

linear term oV’ semi-implicitly. That is, we replace aV™ by a (uV™*1 + (1 —) V™). We obtain

(V™ V™) ALt = V™ 4 ap (V™ - V™), (26)
or
Vil ym L GTIAL V™, @7
where
G = (1 - apAt). (28)

We will choose At = 0.1 days and g = 1/2 in what follows.

For this exercise we simulated data every 0.5 days from 0.5 to 4.0 days, for 5 different initial

conditions, V , i = 1,---,5 and take as our observables the root mean square forecast error,

Ry, = |/ V5 29)

for the 5 forecasts (i = 1,---,5) and the 8 observing times (k = 1,---,8). The factor of 5 in

the superscript of V' accounts for the fact that observations are made only every 5 time steps. The

12

i

Case Objective -~ -Scaled rms . Numberof - Number of

function (m?) gradient function calls gradient calls
Initial estimate 1340 11.4 0 ’ 0
UMING 2E-8 AE-4 30 28
UMIDH 3.3E-8 3E-4 13 47

UMCGG 1.0E-8 2E4 84 V 84

Table 1 -Results of minimization experiments.

different initial conditions might correspond to different scenarios. For example, in a set of observing
system experiments one might have forecast scores for several forecasts which differed only in the

data sources used in the initial analyses.

In order to simulate the true data, denoted Rik wé usé the vaiues a=1 ,‘day‘l, S =.1000 m2/day,
Voo = 10000 m? and Vio =100 m? fori=1,--- ,'5. These data and parameter values, which we
will refer to as the truth, are the right order of magnitude for a 500 mb‘ geopotenﬁai helght forecast.
We will try to recover these parameter values in what follows by mirlirﬁizing an objective function,
starting from an incorrect initial estimate. For this initial estimate a, S, and Vw;take on the true

values given above, but V? = 0 m?.

We now seek to minimize the objective function

J = Z (Rzk - Rik)z ‘ - (30)
ik

with respect to the parameters a, S and V,, and initial conditions Vio. Note that R;. depends on
the parameters and. initial conditions, -but the Rik are the constant true observations we calculated
previously. The initial estimate used corresponds to a value of J of 1340 m? and an rms scaled
gradient of 11.4 (see Table 1). By way of comparison, a value of 49.3 m? for J is calculated by
comparing the analytic solution of (25) for the true values of the parameter and initial conditions, to
the true observations obtained from the finite difference scheme (27). To accomplish the minimization
we first write a computer program to evaluate J. This is shown in Fig. 1. In writing this program
we have made several choices which are significant for the form of the particular LTM and adjoint
model we develop, but not for applying our appro‘ach in general. Note that Ginv is calculated every
time Model is called, that the array V has values for all time levels m, that V contains data only

for the ith forecast and that a temporary variable Vdot is defined.

13

subroutine ObjFun (V0,a,S,Vvinf,Rhat, J)
parameter (Nm=40,Nk=8,Ni=5, Ns=Nm/Nk)
real VO(Ni),V(0:Nm),Rhat (Ni, Nk)
real J |
J=0
do 100 i=1,Ni

call Model (VO0(i),a,S,Vinf,V)

do 50 k=1,Nk

J=J+ (sqrt (V(Ns*k))-Rhat (i, k)) **2

50 continue
100 continue
return
end

subroutine Model (VO0,a,S,Vinf,V)

real mu

parameter (Nm=40,mu=0.5,dt=0.1)

real V(0:Nm)

Ginv=1/(l-a*mu*dt)

vV (0)=v0

do 200 m=0,Nm-1
Vdot=(a*V (m)+S) * (1-V (m) /Vinf)
V{(m+l)=V(m)+Ginv*dt*Vdot

200 continue
return
end

Fig. 1 The NLM code for the calculation of the objective function described in the text.

The code for the LTM is shown in Fig. 2. This routine calculates § 7 corresponding to particular
ba, 65, §V,, and §V?. The transformation from Fig. 1 to Fig. 2 is for the most part mechanical,
requiring one to write the first order variation of each equation, bearing in mind which quantities may
be perturbed. Note that substantial amounts of code from the NLM must be repeated because we
have not saved V™, G~ and V. Clearly, deciding which variables to save and which to recalculate
is an important concern in a large model. Passing from the LTM to the adjoint model (Fig. 3)
is also fairly mechanical. Note that in Fig. 3 the prefix "D" denotes an adjoint variable, while it
denotes an LTM variable in Fig. 2. In Fig. 3, note the initialization of the local adjoint variables
DV, DGinv and DVdot. We note that the order of execution of the DO 50 loop is immaterial and
one might easily augment this loop with a calculation of J, so as to calculate the objective function

and its gradient in tandem.

Several minimization algorithms from the IMSL package were tested. IMSL routine UMIDH uses a

14

subroutlne lObjFun (VO a, 'S, Vlnf Rhat, DVO Da, DS, DVlnf DJ)
parameter (Nm=40,Nk=8,Ni=5, Ns—Nm/Nk)
real VO (Ni),V(0:Nm),Rhat (Ni, Nk)
real DVO(Ni),DV(0:Nm),DJ
DJ=0
do 100 i=1,Ni
call Model (VO(i),a,S,Vinf,V)
call 1Model (a,S,Vinf,V,DV0(i),Da,DS,DVinf,DV)
do 50 k=1,Nk ' V
DJ= DJ+(sqrt(V(Ns*k)) -Rhat (i, k))*DV(Ns*k)/sqrt(V(Ns*k))
50 - continue
100 continue
return
end

subroutine 1Model (a,S,Vinf,V,DV0,Da,DS,DVinf,DV)
real mu
parameter (Nm=40,mu=0.5,dt= O 1)
real V(0:Nm)
real‘DV(O.Nm)
Ginv=1/ (1-a*mu*dt)
DGlnv—Da*mu*dt*Glnv**Z
DV (0)=DV0
do 200 m=0,Nm-1
Vdot=(a*V(m)+S) * (1-V (m) /vVinf)
DVdot= (Da*V{(m) +a*DV (m) +DS) * (1-V (m) /Vinf) -
+ (a*V(m) +S) * (DV (m) /Vinf-V (m) *DVinf/Vinf**2)
DV (m+1)=DV (m) +dt* (DGinv*Vdot+Ginv*DVdot)
200 continue
return
end

Fig. 2 The LTM corresponding to Fig. 1.

Newton method modified by a trust region restriction (Gay, 1983). IMSL routine UMING is quasi-
Newton method which uses BFGS updates (Dennis and More, 1977). IMSL rbutine UMCGG is
based on the conjugate gradient method described by Powell (1977).

All three algorithms were successful at finding the true solution. Their relative performance is
summarized in Table 1, which shows results using 32 bit IEEE arithmetic. Of the three algorithms,
UMCGG is the least sophisticated and requires the most function and gradient calls. UMIDH requires
fewer function calls, but more gradient calls than UMING for this case. In all cases shown in Table 1,

the control variable, cost function and its gradient were scaled before being passed to the minimization

15

25

50

100

200

subroutine aObjFun (V0,a,S,Vvinf,Rhat,DV0,Da,DS,DVinf,DJ)
parameter (Nm=40,Nk=8,Ni=5, Ns=Nm/Nk)
real VO(Ni),V(0:Nm), Rhat (Ni, Nk)
real DV0O(Ni),DV(0:Nm),DJ
DJ=1 .
do 25 m=0,Nm
DV (m) =0
continue
do 100 i=Ni,1,-1
call Model (V0O(i),a,S,Vinf,V)
do 50 k=Nk,1,-1
DV (Ns*k)=DV (Ns*k) + (sqrt (V(Ns*k)) -Rhat (i, k)) *DJ/
sqgrt (V(Ns*k))
DJ=DJ
continue
call aModel (a,S,vinf,Vv,DV0(i),Da,DS,DVinf, DV)
continue
return
end

subroutine aModel (a,S,Vinf,V,DV0,Da,DS,DVinf,DV)

real mu

parameter (Nm=40,mu=0.5,dt=0.1)

real V(0:Nm)

real DV (0:Nm)

Ginv=1/ (l-a*mu*dt)

DGinv=0

DVdot=0

do 200 m=Nm-1,0,-1
Vdot=(a*V (m)+S) * (1-V(m) /Vinf)
DVvdot=DVdot+dt*Ginv*DV (m+1)
DGinv=DGinv+dt*DV (m+1) *Vdot
DV (m) =DV (m) +DV (m+1)
DV (m+1)=0
DVinf=DVinf+ (a*V (m)+S) *V (m) *DVdot /Vinf**2
DS=DS+DVdot* (1-V (m) /Vinf)
DV (m) =DV (m) +a*DVdot * (1-V (n) /Vinf) - (a*V (m) +S) *DVdot /Vinf
Da=Da+DVdot*V (m) * (1-V (m) /Vinf)
DVdot=0

continue

DVO=DVO0+DV (0)

DV (0)=0

Da=Da+DGinv*mu*dt*Ginv**2

DGinv=0

return

end

Fig. 3 The adjoint corresponding to Fig. 1.

16

UK

éi!

i

I

algorithm. The scales used were (.1 day‘1 for a, 100 mz/day for S, 1000 m? for V,,, 100 m? for
V? and 100 m? for J. - ,

Without scaling the results for the three algorithms were very different. Without scaling, UMIDH
was again sutcessful at locating the true solution exactly, but required 58 function and 65 gradient
evaluations. UMING did not converge at all. Tt appears to have taken a poor first step and was unable
to recover. UMCGG stopped after using 28 function and gradient evaluations with an error condition,
having reduced J to a value of 10 m2. This is a reasonable fit to the data, but the parameter values

found in this case are far from correct.

17

ACKNOWLEDGMENTS

The preparation of this report was supported in part by National Science Foundation grant ISI-
8960592, Department of Energy grant DE-FG02-90ER61065 and JPL contract 957644,‘ a subcontract
to NASA contract NAS7-918. We thank our colleagues and reviewers who provided valuable
comments on an earlier manuscript on this topic. In particular, suggestions of Jean-No&l Thépaut

lead to considerable improvement of Section 4.

18

Il

]

REFERENCES

[1] Philippe Courtier and Olivier Talagrand. Variational assimilation of meteorological observations
with the adjoint vorticity equation. Part 2: Numerical results. Quarterly Journal of the Royal
Meteorological Society, 113:1329-1368, 1987.

[2] A. Dalcher and E. Kalnay. Error growth and predictability in operationall ECMWF forecasting.
Tellus, 39A:474-491, 1987.

[3] J. E. Dennis and J. J. More. Quasi-Newton methods, motivation and theory. SIAM Review,
19:46-89, 1977.

[4] John C. Derber. Variational four-dimensional analysis using ' quasi-geostrophic constraints.
Monthly Weather Review, 115:998-1008, 1987. |

[5] John C. Derber. A variational continuous assimilation technique. Monthly Weather Review,
117:2437-2446, 1989,

[6] David M. Gay. Algorithm 611: Subroutine for unconstrained minimization using a model/trust-
region approach. ACM Transactions on Mathematical Software, 9:503-524, 1983.

[7] M. C. G. Hall, D. G. Cacuci, and M. E. Schlesinger. Sensitivity analysis of a radiative-convective
model by the adjoint method. Journal of the Atmospheric Sciences, 39:2038-2050, 1982.

[8] Ross N. Hoffman and Jean-Francois Louis. The influence of atmospheric stratification on
scatterometer winds. Journal of Geophysical Research, 95(C6):9723-9730, 1990.

[9] F.-X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assimilation of

meteorological observations: Theoretical aspects. Tellus, 38A:97-110, 1986.

[10] F. X. LeDimet, I. M. Navon, and X. Zou. Incomplete observations and control of gravity waves in
variational data assimilation. Part I: Theoretical aspects. Technical Report 91-91, Supercomputer

Computations Research Institute, The Florida State University, Tallahassee, 1991.

[11] J. M. Lewis and J. C. Derber. The use of adjoint equations to solve a variational adjustment

problem with advective constraints. Tellus, 37A:309-322, 1985.

[12] M. J. D. Powell. Restart procedures for the conjugate gradient method. Math. Programming,
12:241-254, 19717.

[13] F. Rabier and P. Courtier. Four-dimensional variational assimilation in the presence of baroclinic

instability. Technical Memorandum 183, ECMWF, Reading, U.K., 1992.

19

[14] Olivier Talagrand and Philippe Courtier. Variational assimilation of meteorological observations
with the adjoint vorticity equation. Part 1: Theory. Quarterly Journal of the Royal Meteorological
Society, 113:1311-1328, 1987.

[15] W. C. Thacker. Fitting models to inadequate data by enforcing spatial and temporal smbéthncss.
Journal of Geophysical Research, 93(C9):10655-10664, 1988.

[16] W. C. Thacker and R. B. Long. Fitting dynamics to data. Journal of Geophysical Research,
93(C2):1227-1240, 1988.

[17] J.-N. Thépaut and P. Courtier. Four-dimensional variational data assimilation using the adjoint of
a multilevel primitive equation model. Technical Memorandum 178, ECMWF, Reading, UK.,
February 1991. Submitted to QJRMS.

[18] X. Zou, I. M. Navon, and F. X. LeDimet. Incomplete observations and control of gravity waves
in variational data assimilation. Part II: Applications and numerical results. Technical Report 91-

92, Supercomputer Computations Research Institute, The Florida State University, Tallahassee,
1991.

20

Il

