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ABSTRACT

The local phase-space instability of the atmospheric general circulation is characterized by its (non-
modal) singular vectors, The formalism of singular vector analysis is described. The relations between
singular vectors, normal modes, adjoint modes, Lyapunov vectors, perturbations produced by the so-
called breeding method, and wave pseudomomentum are outlined. Techniques to estimate the dominant
part of the singular spectrum using large-dimensional primitive equation models are discussed. These
include the use of forward and adjoint tangent propagators with a Lanczos iterative algorithm. Results
are described, based firstly on statistics of routine calculations made between December 1992 - August
1993, and secondly on three specific case studies.

Results define three dominant geographical areas of instability in the northern hemisphere: the two
regions of storm-track cyclogenesis, and the north-African subtropical jet. Singular vectors can amplify
as much as 10-fold over 36 hours, and in winter there are typically at least 35 independent singular
vectors which quadruple in amplitude over this timescale, Qualitatively, the distribution of singular
vectors can be associated with a simple diagnostic of baroclinic instability from the basic state flow.
However, this relationship is not quantitatively reliable, as, for example, the chosen diagnostic takes no
account of the horizontal or time varying structure of the basic state flow,

We identify three basic type of singular vector. The most important and most frequent is located in
midlatitudes. At initial time, the singular vector is localized in the horizontal, with most amplitude in
the lower troposphere. Energy growth can be interpreted qualitatively in terms of wave
pseudomomentum propagation into the jet, resulting in peak amplitudes in the upper troposphere at
optimization time. During evolution the dominant horizontal wavenumber of the singular vector
decreases. Singular vector growth is therefore fundamentally non-modal. Singular vectors localized
firstly in the tropical upper troposphere, and secondly with equivalent barotropic structure in the high-
latitude troposphere, were also identified.



1. INTRODUCTION

A principal milestone in the development of dynamical meteorology theory was the description of
extratropical cyclones in terms of exponentially-growing shape-preserving solutions of the linearized quasi-
geostrophic equations (Charney, 1947; Eady, 1949). The horizontal scale, vertical structure, phase-speed
and e-folding time associated with such solutions correspond well with observations of typical midlatitude

depressions.

The existence of such unstable modal structures arises from Charney and Eady’s (inspired!) choice of basic
states to linearize the equations about. In both models, these basic states are stationary solutions of the
equations of motion; they describe highly idealized zonally symmetric flows which incorporate the essential
(interior or boundary) potential vorticity gradients necessary to support baroclinic instability.

Studies of atmospheric and oceanic instability have been a central component of geophysical fluid dynamics
over the following decades (see e.g. Gill, 1982; Pedlosky, 1987). Inevitably attention has been given to
the modal instability of more complex basic states, including those with zonal asymmetries. In some
studies, such zonally asymmetric basic states are taken directly from analyses of the real atmosphere (e.g.
Frederiksen, 1982; Simmons et al., 1983).

However, there are two profound theoretical problems associated with the application of modal instability
theory in atmospheric dynamics. The first (which, as highlighted by Farrell, 1982, applies to both Eady
and Charney problems, as well as to more complex flows) arises because the set of eigenvectors of the linear
evolution operator is not complete (see also Tung, 1983). As a result, a general initial disturbance cannot
be written as linear combinations of the normal modes, but can be expressed as an integral over the so-
called continuous spectrum of the linear evolution operator. However, this (Laplace transform) integral is
not constrained to evolve exponentially, and over physically-relevant timescales (e.g. associated with the
lifetime of an extratropical depression) the disturbance can grow significantly more rapidly than the fastest-

growing normal mode solution, and will not evolve with shape-preserving structure.

If the dynamical equations are truncated (in order to be integrated numerically), then the continuous
spectrum is approximated by eigenspectrum of a finite dimensional evolution operator. These eigenvectors
are generally linearly independent, so that any initial perturbation can be expressed in terms of the truncated
operator’s normal modes; however, they are not in general orthogonal. As above, over physically-relevant
timescales, linear combinations of two or more modal solutions can grow much faster than any individual

mode, and the physical structure of arbitrary perturbations is not time invariant.



The second problem in the application of modal theory arises when studying the instability of basic state
flows derived from observations. Typically such flows are not themselves stationary solutions of the
equations of motion (even when the basic state is itself a time-average of observed flows). In such a
situation, exponentially growing normal mode solutions (of either the continuous or finite system) will not
exist. A siniple expedient might be to apply a fictitious forcing to the equations of motion to render the
basic state a stationary solution. However, this expedient cannot be justified rigorously, and moreover its
prescription is not unique (Andrews, 1984). This problem gives rise to difficulties of a more practical
nature. In particular, as discussed in more detail below, it implies that the time mean instability of the

general circulation cannot be deduced from the instability of the time-mean flow.,

A restriction to analysis of modal solutions is clearly convenient mathematically (essentially removing one
degree of freedom from the problem to be solved), but it is not a necessary ingredient of the physical
problem being addressed: to determine those structures whose (suitably-defined) amplitudes grow linearly

by an amount A4/A>1 over a physically-relevant (e.g. synoptic) timescale At relative to some prescribed
solution of the nonlinear dynamical equations. As described below, a solution of this physical prescription
can be formulated mathematically without reference to modal solutions, exponential growth, or time-
invariant basic states. Mathematically, the derived structures are known as singular vectors, and their
growth over the prescribed time interval are given by the corresponding singular values (see e.g., Noble and
Daniel, 1977).

In addition to increasing our understanding the phenomenon of extratropical cyclogenesis, singular vector
calculations also provide estimates of the predictability of the atmospheric circulation (Lorenz, 1965; Farrell,
1990; Molteni and Palmer, 1993). Essentially the predictability problem is concerned with determining the
evolution of the probability distribution of initial errors. If the initial error distribution is isotropic in phase
space, evolving to an ellipsoid at some forecast time, then the major axes of the ellipsoid are determined
by the dominant singular vectors. Related to this, singular vectors can be used to provide sets of initial
perturbations for ensemble forecasts (Mureau et al., 1993; Palmer et al., 1993). This application of singular

vector analysis is not discussed in this paper, but will be dealt with in detail elsewhere.

The singular vectors of an operator L are eigenvectors of the product operatorL*L, where "*" denotes the
adjoint operation, equivalent to matrix transposition. (The terminology derives from the fact that the number
of positive singular values determines the rank of the operator.) In this paper L determines the evolution
of small perturbations relative to some chosen (phase-space) time-evolving trajectory of the nonlinear

equations. The completeness of the eigenvectors in the continuous case (with compact L), or their

orthogonality in the finite case arises if L*L=LL* i.e. L is normal (e.g. Taylor, 1958).



For relatively low-dimensional systems (e.g. up to about O(1000) degrees of freedom) conventional matrix-
based algorithms can be used to find the full singular spectrum (such as in the barotropic-model studies of
Lacarra and Talagrand (1988) and Borges and Hartmann (1992), or the quasi-geostrophic model of Molteni
and Palmer (1992)). For more complete multi-level basic state flows e.g. associated with the solution of
the primitive equations in numerical weather prediction models, such singular vectors can only be obtained
using iterative algorithms (Buizza et al., 1993). In such cases, the adjoint operation must be coded into the
FORTRAN statements that describe the evolution operator L. At the European Centre for Medium-Range
Weather Forecasts (ECMWF), such coding has been done in order to implement a 4-dimensional data
assimilation system (Thépaut and Courtier, 1991).

In this paper we describe the calculation of singular vectors and singular values from a multi-level primitive
equation model using an iterative Lanczos algorithm (Strang, 1986). The technique is not restricted to
stationary basic states, and the time interval and region over which the amplification AA/4 is determined
can be specified arbitrarily. In this sense the technique corresponds to one of the most general extensions

of the original Chamey and Eady instability calculations.

An outline of the paper is as follows. In section 2 we describe the formalism of singular vector analysis.
We define the conditions under which the singular vectors reduce either to the normal modes, to their
adjoints, to the Lyapunov vectors (e.g. Parker and Chua, 1989), or to perturbations obtained by the so-called
"breeding" technique (Toth and Kalnay, 1993). (Throughout this analysis we deal with a finite dimensional
system. In this way, when normal modes exist, we assume that they are complete.) Moreover, to aid
interpretation of singular vector structure, we discuss energy amplification in idealized systems where
pseudo-momentum (or "wave activity") is conserved (e.g. Andrews et al., 1987; Held, 1985). We also
describe a general "local projection operator”, which enables calculation of singular vector growth, optimized
for a specified region of the atmosphere. The numerical implementation of this formalism in the ECMWF
Integrated Forecasting System (Dent, 1993) is also described in this section.

In section 3 we review some results of singular vector calculations using idealized time-invariant basic state

circulations in barotropic and multi-level quasi-geostrophic models.

The implementation at ECMWE of code to calculate the singular spectrum on a routine basis took place in
December 1992. In section 4 we analyse some of the principal characteristics of the statistics of these
routine calculations over 3 separate seasons. In sections S and 6, we study singular vectors from three
contrasting basic state flows from the winter of 1992/93; in these cases the dominant singular vector was
located over one of the three regions where, from the statistics in section 4, singular vector amplitude at

initial time was maximized. In section 5 the analysis is made with global energy optimization; in section 6



we analyze singular vector growth optimized for specific regions around the northemn extratropics.

Concluding remarks are given in section 7.

2. SINGULAR VECTORS, THEIR RELATIONSHIP WITH OTHER DYNAMICAL QUANTITIES,
AND THEIR CALCULATION IN A PRIMITIVE EQUATION NUMERICAL WEATHER
PREDICTION MODEL.

2.1 Basic Formalism

We start by writing the ECMWF forecast model in terms of the (finite M-dimensional) nonlinear evolution

equation

L @.1)

Here the components of the state vector x are the spherical-harmonics expansions of vorticity, (,
divergence, D, temperature, T, humidity, q, together with the logarithm of surface pressure n (Simmons

et al., 1989). The operator A includes not only the nonlinearity of the resolved dynamics, but also

nonlinearities in the physical parametrizations.

Consider a small perturbation x/ of the state vector x. For sufficiently short time intervals, its evolution

can be described by the linearized approximation

/

i‘g—t— - A/ (2.2)
of 2.1). 4, = % |1(‘) is the linear evolution operator evaluated on the nonlinear trajectory x(f).
Equation (2.2) can be written in the integral form

x'(8) = L{t1px'(t) 2.3)

The operator l.(t,to) is referred to as the forward tangent propagator; it maps small perturbations along the

(nonlinear) trajectory from an initial time #, to some future time #. From here on we drop the ’primes’ on

the perturbation quantities.

We now deﬁne an inner product (see also section 2.3)

(x,y)-—f f(VA"C VAT, +V A"'D_VA™'D, + RT Jum Jnm, + E’iTT gf\ M (2.4)

The quantities {,, D, ... denote the vorticity, divergence etc components of the state vector x.
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In (2.4), Cp, R and T, are constants, n is the terrain following vertical coordinate used in the ECMWEF

model and horizontal integration is over the entire globe §. Using (2.3) the perturbation norm at time ¢

is given by
I®I? = x@sx(D) = (8L *Lx(ty) (2.5)
where L* is the adjoint of L with respect to the energy inner product, i.e.

(Ly) = (L*x;y). (2.6)

Unlike L itself, the operator L*L is normal. Hence its eigenvectors v(#,) can be chosen to form a complete

orthonormal basis in the M-dimensional tangent space of linear perturbations with real eigenvalues 0320
(e.g. Noble and Daniel, 1977) i.e.
(L*L)v ) = a2ty @7
At future time £, these eigenvectors evolve to v,(#) = Lv(f,) which in turn satisfy the eigenvector equation
(LLYv @) = ofv) (2.8)
From eqgs. (2.5) and (2.8),

VO = (vtpL Ly ft) = of 2.9)

Since any x(z)/|x(%)| can be written as a linear combination of the set v(f), it follows that
max, ., o OV X)) = o, (2.10)

The o,, ranked in terms of magnitude, are called the singular values of the operator L, and the vectors

v, (1) are called the singular vectors of L. Maximum energy growth over the time interval t-1, is therefore

associated with the dominant singular vector: v,(#) at initial time, and v () at optimization time.

2.2 Relationship to normal modes, adjoint modes, Lyapunov vectors, the "breeding method", and
pseudomomentum conservation

We introduced the notion of singular vector analysis as a generalization of classical normal mode instability

analysis. This can be made explicit by linearizing about a stationary solution, so that the operator 4, does

not depend on time. Normalized eigenvectors £, of A, with eigenvalues p, give rise to modal solutions

E ,e“'("'“) of (2.2). The integral operator L(t,%) can be written as exp[(r-7,)4], with eigenvectors £, and

. (S
eigenvalues e %,



In general the linear evolution operators associated with realistic stationary basic state flows are generally
non normal (with energy inner product) because of vertical and horizontal wind shear (e.g. Farrell and
Moore, 1992). Because of this, the normal modes are not generally orthogonal to one another. However,

irrespective of normality, normalized eigenvectors v, and eigenvalues 6, of the adjoint operator L* must,

from (2.6), satisfy the biorthogonality condition

(1;~67)<n,E>=0 2.11)
where "cc" denotes complex conjugate. This condition ensures that the eigenvalues of an eigenvector/adjoint
eigenvector pair that are not orthogonal, must form a complex conjugate pair. The magnitude of the inner

product <n,§> for such eigenvector pairs depends on the angle, a,, they subtend in phase space. Zhang

(1988) refers to the factor 1/cos(et) as the "projectibility” of ;.

We can generally take the normal modes to be complete in our finite dimensional system so that any initial

disturbance can be written as a linear combination of the E; i.e.
xH=ScEeM™ (2.12)
i

and from the biorthogonality condition (2.11)
ci=<npxtp>/<n,8 > (2.13)
From (2.12), the fastest growing normal mode will ultimately dominate the linear combination. Hence for

sufficiently long optimization times, the dominant singular vector at optimization time will correspond to

the most unstable normal mode.

In order to maximize the contribution of the first normal mode at optimization time, ¢, in (2.12) should be
as large as possible. If x(f) equals g, then ¢;=1 which could be highly sub-optimal. If fact, if x(¢,)

projects onto 7, then ¢, is maximized and is given by the projectibility factor 1/(cos a,) (Zhang, 1988).

Hence, at initial time, the dominant singular vector will be determined by the first adjoint eigenvector, whilst
at (indefinitely long) optimization time the dominant singular vector is determined by the first normal mode
itself. This is illustrated schematically in Fig. 1 for an idealized 2-D system with decaying normal modes.
The singular value will depend on both the e-folding time of the dominant normal mode and its
projectibility. For finite optimization time the dominant singular vectors will no longer project onto
individual normal mode solutions (and their adjoints), and the amplitude of finite-time instabilities need not
be bounded by properties of the dominant normal modes alone. (It should be noted that, since the

eigenvalues are complex whilst the singular values are real, there is some choice as to which phase of the



adjoint mode the initial singular vector should be aligned with. This choice does not affect the amplitude
growth of the singular vector.)

If, instead of linearizing about a single stationary point on the climate attractor, we consider the other

extreme of linearizing about a (time-evolving) trajectory portion which is sufficiently long to approximately
cover the entire attractor, then the singular values again have exponential dependence e on optimization
time. In this limit, the A; do not themselves depend on position on the attractor, and are referred to as the

Lyapunov exponents (see e.g. Parker and Chua, 1989). The corresponding set of singular vectors v,(9) can

be referred to as the Lyapunov vectors. Note that although the Lyapunov exponents are themselves global
quantities, the Lyapunov vectors are still defined locally, and thus vary with position on the attractor, and

hence with time.

The correspondence between Lyapunov and singular vectors is important in understanding the relationship
between singular vectors and perturbations created by the so-called "breeding" technique (Toth and Kalnay,
1993). This technique was introduced as a means to initialise ensemble forecasts (at the National
Meteorological Center, Washington), without using adjoint equations. In Toth and Kalnay, a sequence of
twin integrations of a full nonlinear weather prediction model are made. Each integration is of length 8¢.
Each pair of integrations comprises a "control", corresponding to the normal "first-guess" forecast used for
data assimilation, and a second forecast with initial conditions that differ from the control analysis by a
small perturbation. At the end of each integration period, the difference between control and perturbed
integratiohs is rescaled by the initial perturbation amplitude for use in perturbing the initial conditions of
the next control integration. This rescaling effectively linearizes perturbation growth at least for
meteorologically-relevant scales. Each integration pair can therefore be thought of as defining the

propagation operator L”(tm,tm_l) acting on the difference field. Toth and Kalnay start the sequence with

arandom initial perturbation xm(to). In the breeding technique, this perturbation develops through operation
by the sequence

L™t DL, 8, e LTt 58 (2.14)

where ¢, -t =08t (n<mx<1). Strictly speaking, in (2.14) the basic state trajectory is not continuous since

m “m-1
at the end of every assimilation cycle, an analysis increment is added to the first guess field. This will not
fundamentally change the nature of the calculation,

Acted on by a sufficiently long sequence (2.14), an initial random perturbation will converge to the
dominant Lyapunov vector (Toth and Kalnay, 1993) in much the same way as a random intial perturbation

would converge to the dominant eigenvector in the stationary case, using the power method (see below).
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As mentioned above, the dominant Lyapunov vector varies with position on the climate attractor; hence a
perturbation produced by the breeding method will evolve from day to day. However, on any given day,
the growth of this dominant Lyapunov vector over some specified finite time interval (e.g. the interval 8¢)

will be smaller than the growth of the dominant singular vector optimized for that same time interval since

ILGt 8, )2 ™(, )] 1L, )2, )
max, 2.15
™, )i < P00 T e, @)
where
xTR(t, =L, b, ) LT(t 1,805 ™8 (2.16)

For example, for the stationary case, x’x(tn_l) converges to the dominant normal mode, whilst x(z,_,) on

the right hand side of (2.15), in the limit of long 8¢, converges to the adjoint of the normal mode. The
right and left hand sides of (2.15) then differ by the projectibility of the dominant normal mode. As shown
by Zhang (1988), this factor can be as large as 20 for time-averaged wintertime barotropic flows. In some
sense, the sub-optimality of the breeding perturbation as a local phase-space measure of growth is inevitable,
as it has been calculated without use of the adjoint equations. (Of course, this does not necessarily diminish

its importance as a technique for generating initial perturbations for ensemble prediction.)

Whilst it is useful to be able to relate theoretically the general notion of singular vector growth with normal
mode and Lyapunov vector analysis, from a practical point of view, for reasons already discussed, these
relationships are of limited value in the physical interpretation of singular vector structure and growth from
realistic basic state flows. We therefore seek an alternative concept as an interpretive tool for the general

results presented in sections 3-6. As such, consider the Eliassen-Palm theorem (Andrews et al., 1987)

_g_t[i_’:)mp-o @.17)

24,

for small amplitude conservative quasi-geostrophic perturbations of a zonally-symmetric flow u with

meridional potential vorticity gradient Ey. (The ’overbar’ denotes a zonal average.) The divergence of the

Eliassen-Palm vector F is equal to the meridional flux of eddy potential vorticity.

Under WKBJ conditions (ie assuming a slowly varying basic state) it can be shown that (e.g. Palmer, 1982)
F-L (2.18)

where ¢, is the perturbation group velocity. Equation (2.17) is often referred to as the conservation

equation for (wave) pseudo-momentum or wave-activity. Its existence derives from the longitudinal
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symmetry of the basic state. In order to analyze this conservation law from an energy point of view, we

can derive the equivalent wave-action conservation equation (Bretherton and Garrett, 1968)

o E ek | ;
A E o @19)

for small amplitude wave packets with local zonal wavenumber k& and frequency w. From (2.19),
propagation of pseudomomentum to a region of increasing intrinsic frequency (w-ku) will be associated

with an increase in wave energy E.

Fig. 2 (from Zeng, 1983) shows the evolution of a dominant trough or ridge line associated with a pseudo-
momentum conserving Rossby wavepacket propagating on an idealized zonally symmetric westerly jet
(Fig. 2a). Fig. 2b illustrates an energetically-developing barotropic wavepacket, Fig. 2¢ an energetically-
developing baroclinic wavepacket. The phase lines are shown at two different times. The group velocity,
shown by double-shafted arrows, points normally to the phase line axis. The zonal phase speed is shown
by single-shafted arrows. At the earlier time, both developing solutions have phase surfaces tilted such that
the group velocity is focused towards the jet core. The propagation of the wavepacket into the jet leads to
a decrease in the tilt of the dominant trough or ridge line at the later time. By (2.19), the focusing of
pseudomomentum into the jet leads to an increase in intrinsic frequency and therefore to energy growth (see

also, for example, Orr, 1907; Tung, 1983; Shepherd, 1987 for discussion of this type of process).

As will be shown, the structure of many of the computed singular vectors appears to be linked with this
process. This appears to be a useful approximation to the full primitive equation calculation because many
of the individual singular vectors are strongly localized (compared with their normal mode counterparts).
As such, it is possible to approximate their development as if they were propagating on a locally zonally
symmetric flow. Of course, as noted above, this approximation must be treated with caution; if the basic
state has asymmetries with the same scale as the perturbations, singular vector evolution cannot be

approximated by such a solution; we give examples of this below.

2.3 Choice of inner product
In section 2.1 it was stated that calculations in this paper have been made with an energy-based inner

product. Another choice might have been the enstrophy inner product
o> - [ q,q,d5 (%)dy 2.20)

where g, and ¢, denote perturbation potential vorticity, and <..;..> is the canonical L? inner product. Yet

another choice (at least for zonally-symmetric basic state flows) might be the conserved pseudo-momentum



inner product (Held, 1985)

<x;22F = [x; —-1:-z 2.21)
2q

y

where g is the meridional gradient of the basic state potential vorticity.
a4,

The choice of an energy inner product was motivated by the application of this technique to the study of
predictability of weather. Maximizing a quadratic quantity based on winds and temperatures is clearly
directly relevant to the practice of weather prediction. However, there is another more subtle reason for
preferring an energy inner product to, say, an enstrophy inner product. As will be shown below, there is
typically an upscale energy cascade between a singular vector at initial time and optimization time (from
sub-synoptic to synoptic scale) using the energy inner product. By contrast, initial singular vectors produced
with an enstrophy inner product tend to be dominated by planetary-scale perturbations; large scale
perturbations have a relatively small enstrophy to energy ratio. During evolution enstrophy generation is
maximized by downscale cascade to synoptic scales between initial and optimization time (F. Molteni,

personal communication).

In the idealized situation where the atmospheric circulation is measured at the nodes of a uniform grid,
measurement error is dominated by its sub grid scale components. The energy inner product is therefore
more relevant to describing error growth than the enstrophy inner product. In practice, this idealized
situation is not entirely realistic, though it could be argued that operational analyses produce relatively
accurate estimates of the planetary scale flow, though relatively poor estimates of the sub-synoptic scale

flow.

For zonally symmetric flows, conservation of <x;x>” implies from (2.5) that L**L = LL*? = I where L*P

is the adjoint with respect to the pseudomomentum inner product and I is the identity. In this degenerate

situation, all the singular values are equal to unity, and hence any orthonormal basis including the basis

formed by the orthogonal normal modes can be chosen 10 form the set of singular vectors.

Whilst the singular vector problem is trivial and degenerate in a space with conserved norm, the complete
solution to the physical problem then requires explicit specification of the transform between the inner
product space with conserved norm and the inner product space that relates more directly to primary
variables such as velocity or vorticity. For example, a perturbation with zero conserved pseudomomentum
could, on transformation to the energy or enstrophy norm, be found to be associated with an unbounded

exponentially growing instability (Charney and Stern, 1962).
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In general, however, there are no conserved norms for the perturbations considered in sections 3-5 (since

the basic states have no symmetries), and degeneracy of the form discussed above does not appear to arise.

2.4 The Local Projection Operator

The energy inner product (2.4) is defined through integration of perturbation quantities over the whole
atmosphere. As such the optimal perturbations are defined to maximise global energy. On the other hand,
it is of considerable practical and theoretical interest to be able to identify perturbations whose energy is
maximised over a specified region of the atmosphere. This can be achieved by defining a so-called local
projection operator. An operator of this type has been studied in a barotropic model by Barkmeijer (1992).
The operator can also be used to study perturbation growth in local regions of spectral space.

As mentioned above, the components of the state x(7) are largely defined in spectral space. Let Sp represent
the spectral-to-grid-point transform, and define a "hat” function
8p)=-1 if peX (2.22a)
gp) =0 if peXx (2.22b)
where p is a point and X is ‘a specified local region in physical space. Denote by Gx, the multiplication
of a vector x, defined in physical space, by the hat function. The local projection operator T is defined

as

T =5,'Gs, (2.23)

Since G is diagonal, it is symmetric. Also it is easy to show that Sp is orthogonal, i.e. S, 1. S; . Hence
T is self-adjoint, and perturbations chosen for growth inside ¥ have norm

Ol = (TxERTH) = (x(2); L*T°Lx(s,)) 2.24)
and can be computed from the singular vectors of TL with the (global) energy inner product. It should be

noted that the projection operator only acts on perturbations at the final time t; as such there is no
constraint that the initial perturbation must be localised within the target area.

The singular values of this operator give the amplification, within the target region, of perturbations with
- initial unit amplitude in the global energy norm. As with global singular vectors, perturbations produced

using the local projection operator are orthogonal in the global sense.

2.5 Numerical Solution of the Singular Value Problem
When systems with a large number of degrees of freedom are considered, the eigenvalue problem (2.7, 2.8)

cannot be solved using conventional matrix algorithms. However, iterative techniques provide an alternative
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possibility if the adjoint propagator has been coded. The power method, whereby a random initial vector

is operated on repeatedly by L*L, is an example (used to calculate the dominant singular vector in a limited

area model by Vukicevic, 1991).

A more sophisticated technique is required if more than the largest singular vector is required. The Lanczos
algorithm (Strang, 1986) is such a technique. As with the power method, a random initial vector is
repeatedly operated on by L*L, but this time the (N<<M) iterates are used to construct an orthonormal

(Krylov) basis p, of an N-dimensional subspace which satisfies the recurrence relationship
L™*Lp; = B;4py1+ &P+ By (2.25)
The coefficients o p B ; can be determined from this recurrence relationship (and its contraction with p* j).

If the p; are taken as columns of an orthogonal matrix P, then from (2.25)

W=P*L"LP (2.26)
is a symmetric tridiagonal mairix. The eigenvectors of W give an approximation of the dominant singular

vectors of L.

In practice, we solve a linearized equation in which (2.2) is not the precise linearization of (2.1). In
particular, whilst the adiabatic dynamics are precisely linearized, tendencies from the physical
parametrizations are not. In fact the only physical parametrization scheme used in the linearized calculations
is a simplified boundary layer scheme. This includes a surface drag and vertical diffusion scheme, described
in Buizza (1994). (It was found necessary to include these processes to suppress fast growing but extremely
shallow singular vectors near the surface. These perturbations were deemed meteorologically spurious since
they were strongly damped when integrated with the full ECMWF forecast model; Buizza et al., 1993.)

Moreover, no humidity components are carried in the tangent models. We note here that it is critical to the

success of the calculation that L* is the precise numerical adjoint of L. In general, we are able to calculate

about N/3 singular vectors with acceptable accuracy from N iterations. Results from sections 4-6 have been
made with N=100.

The propagator L is itself compounded from the individual operators Ly Ly, L These denote,

Phys’
respectively, the action of the Non Linear Normal Mode Initialisation (NNMI) procedure (see Buizza et al.,
1993), and, for each time step, the action of the adiabatic part of the model equations and of the physical

parametrization processes. More precisely, L(t,»#, on an initial state x(tp) in (2.3) can be decomposed as

(I—I:::, Lphyl(tn’tn-l) Ldyn(tn’tn—l)) Lmvm('o) x(to) (227)
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where ¢,-¢, | = 8¢, the model time step (unrelated to the time interval for the breeding scheme). Similarly

the application of the adjoint operator L*(t,t)) to the vector x(z,) is given by

Lanaat ) (TIh Lnltn-sta) Lyt 158 306) (228)

Here, the adjoint operator is coded with respect to the Euclidean inner product. In all the results shown in

sections 4-6 of this paper, a T21L19 truncation of the continuous equations are applied.

The full nonlinear forecast model, the forward and adjoint tangent models, and the Lanczos algorithm, used
for the calculations in sections 4-6 of this paper, are components of the ECMWF Integrated Forecast System
developed in collaboration with Météo-France (Courtier et al., 1991).

3. STATISTICS OF ATMOSPHERIC SINGULAR VECTORS

In this section we describe the instability characteristics of the climate attractor educed from routine singular
vector calculations (three consecutive days per week) made as part of the ECMWF ensemble forecast
system. The singular vectors were computed from 100 iterations of the Lanczos algorithm based on a
36 hour optimization time. (For typical initial analysis errors and typical growth rates the linear assumption
will break down at about 3 days. Between this time, and about 12 hours, experimentation has indicated that
the precise choice of optimization time is not fundamental; Buizza et al., 1993. Our choice for these routine
calculations was based on technical expediency.) In this section, we describe an analysis of the statistics

of these archived singular vectors and singular values.

Fig. 3a-c shows time series of a selection (1st, 5th and 10th) of singular values for three periods:
19 December - 19 March ("winter"), 20 March - 18 June ("spring") , 19 June - 17 September ("summer").
The vertically-oriented arrows in Fig. 3a are marked against the dates of 3 specific case studies described
in sections 5-6. The drop in singular values between the end of the winter and beginning of spring periods
is associated with the introduction of the local projection operator (with ¥ as the northern hemisphere north
of 30N) at this time. (This was done to avoid including as perturbations for the ensemble forecast system,
singular vectors e.g. from the southern hemisphere which had little impact on ensemble dispersion over
Europe in the early medium range. As mentioned in section 2¢, the singular values give the ratio of the
perturbation amplitude within the target area at optimization time, to the initial global amplitude. Hence
application of the local projection operator inevitably leads to smaller singular values compared with the

equivaleht global calculation.)

Apart from this sudden drop, the time variation of the singular vectors clearly shows evidence of the

seasonal cycle, with largest growth rates in winter, smallest in summer., Moreover, intraseasonal variations
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in singular values are also largest in winter and smallest in summer. This accords (respectively) with

seasonal dependence on atmospheric high and low-pass transient variability of the northem extratropics.

In general, it can be seen that there is little case-to-case correlation between the time series for the selected
| singular values (except for exceptional periods such as around 13 February when all singular values were
relatively large). This indicates that in general, the chosen singular values are associated with distinct
patterns of instability. This contrasts with time series of 1st and 2nd singular values, and to a lesser extent
3rd and 4th singular values, which were strongly correlated (not shown). Such correlations generally signal

the existence of local structures in phase quadrature.

In winter, the dominant singular value ¢, (maximum amplification factor over 36 hours) varies from about

6 to about 10. This corresponding to an initial amplitude doubling time 36/(c,-1) hours of between 7 and

4 hours based on linear growth rates. By contrast the 10th singular value is much less variable, around 5.5.
Although the 10th singular values do not have strong intraseasonal variability, it should not be concluded
that the spatial structure of the higher-order singular vector also has little case-to-case variability (see below).

Fig. 4 shows the mean singular spectrum for the first 35 singular values averaged over the winter, spring
and summer cases. (Beyond the 35th singular value, the Lanczos algorithm, based on 100 iterations, was
not deemed sufficiently accurate.) It can be seen that the spectra do not decay strongly with increasing
singular value index. For example, in winter, the 35th singular value is equal to about 4 (an equivalent
initial amplitude doubling time of about 12 hours). This can be compared with the growth of current
forecast errors which typically double in amplitude in about 36 hours. This has implications for assessing
the desirable size of an ensemble forecast which will be discussed in a forthcoming paper. Even for the
summer season (and with singular vectors optimized for the northern extratropics), the 35th singular vector

doubles in amplitude in about 36 hours.

Fig. 5 shows the distribution of the first 5 singular vectors (at initial time) for every case within each of the
three seasons. Each square in this figure shows the location of vorticity maximum (at whatever vertical

level this occurs) of one such singular vector.

For the winter grouping (Fig. S5a), it can be seen that the amplitude maxima are not distributed
homogeneously. Rather they tend to occur in three principal areas in the northern hemisphere: the east
Asian/weét Pacific region, the northeast American/west Atlantic region, and the northern subtropical African
region. The tropics and southemn hemisphere extratropics also appear in the northern winter statistics though
to a lesser extent. For the spring period (with northem extratropical local projection operator applied), the

east Asian/west Pacific region is further accentuated as an area of instability, whilst there are fewer singular
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vectors in the northeast American/west Atlantic region. Finally, for the summer period, the singular vectors
are more uniformly distributed around the extratropical northern hemisphere than for either of the two

previous seasons.

In order to be able to relate these distributions of singular vectors to the underlying basic state flow, we

show in Fig. 6 the "Eady index’

0550.31-5 % 3.1)

which is an expression for the growth rate of the most unstable Eady mode (see, for example, Hoskins and
Valdes, 1990). In (3.1) the static stability N and vertical wind shear dufdz have been estimated using 300

and 1000 hPa potential temperature and wind data from ECMWF archives. Here u denotes the magnitude
of the vector wind.

Fig. 6 shows this index for winter, spring and summer, based on 3-month time-mean statistics of wind shear
and static stability. Fig. 6a, for winter (December 1 1992 - February 28 1993) shows three principal regions
where the Eady index is relatively large: over the western Pacific, over the north Atlantic, and over the
middle east. These areas of local maxima are positioned just downstream of the three regions (Fig. Sa),
where the wintertime singular vectors are most populous. Fig. 6b, for spring (March 1 1993- 31 May 1993),
indicates that the Eady index for the Atlantic is much weaker than for the East Asian/west Pacific region,
or indeed for the subtropical African region. As noted above, this is consistent with the distribution of the
spring singular vectors (Fig. 5b) for which the Atlantic sector is relatively unpopulated. Finally, Fig. 6c,
for summer, shows that the Eady index is much more longitudinally symmetric than for either previous
season. Clearly this is related to the relative weakness of the planetary waves in summer. Again, we noted

above that the distribution of dominant singular vectors (Fig. 5¢) was most zonally uniform in summer.

In a broad sense, therefore, the Eady index is a qualitative diagnostic of the principal regions where singular
vectors are located at different times of year. Clearly, the index is not specific to modal growth; its strong
dependence on upper tropospheric jet strength makes it a simple measure of both barotropic and baroclinic
energy growth. On the other hand, with maximum growth rates of about 1/day, implying amplification
factors of about 4.5 over 36 hours, the index (based on seasonal-mean circulation characteristics)

underestimates the seasonal-mean growth of almost all the calculated singular vectors.
Retuming to winter, the east Asian/west Pacific and northeast American/west Atlantic regions are well

known as areas of midlatitude cyclogenesis, as exemplified by climatological maps of (high-pass) transient

variance. In contrast, the subtropical African region is not generally thought of as a region of particularly
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strong instability, in so far as it is not associated with high climatological transient variability (although
desert depressions crossing north Africa have been documented in the literature; Pedgley, 1972).

One might postulate two reasons for this. The first is that the singular vector calculations are purely
adiabatic. It is possible that in a moist tangent model, the relative importance of the instability of the
African jet will be weakened. For example, Hoskins and Valdes (1990) have argued that diabatic heating

anomalies associated with storm-track activity are necessary to maintain the zone of maximum baroclinity.

However, a second reason is that there is relatively less upstream transience to excite the dominant singular
vectors of the African jet. For example, Fig. 7 shows the upper tropospheric jet for the winter 1992/93.
Consider the following Gedanken experiment. Imagine a Rossby wave source positioned at the jet entrance
(defined by the 30m/s contour) near the west African coast, generating small-amplitude small-scale
stochastic transient disturbances propagating downstream and trapped within this mean jet. Imagine also
a Rossy-wave sink at the jet exit near Scandinavia. According to the results above, the transient
disturbances will be amplified in the three key regions of instability. Since there is a discontinuity in the
latitude of the jet maximum over the eastern Atlantic, wave activity from the source region would not be
channelled back into the subtropical jet over Africa. As a result, perturbation kinetic energy will be
maximized over the two regions of storm track cyclogenesis, rather than in the African jet. This second
possibility is consistent with Farrell and Ioannow’s (1993) speculation that the mean extratropical general
circulation should be considered a fairly broadband amplifier of stochastic noise, rather than as an unstable

oscillator.

Table 1 gives the initial date for each singular-vector calculation at initial time during the winter period.
Against this date is shown the broad location of the dominant singular vector as determined by the position
of the initial vorticity maximum. Most of the cases can be categorized according to the three dominant
regions: a) over the east Asian/west Pacific region (denoted by "P" in Table 1) b) over the northeast
American/west Atlantic region (denoted by "A" in Table 1) and c) over the subtropical African region
(denoted by "NA" in Table 1). According to this categorization, the dominant singular vector was
positioned most often over the Aflantic region, though during the winter period as a whole, the position

of this dominant singular vector varied considerably between the three key winter regions.

We have composited the basic state flow for dates in which the dominant singular vector was positioned
in the 3 key regions. For the cases where the dominant singular vector is located in the Atlantic region,
there is an enhanced jet over the west Atlantic, consistent with an increase in the Eady index there. For
cases where the dominant singular vector is located in the North African region, the composite flow has an

anomalous ridge over western Europe, and an anomalous trough over eastern Europe, giving rise to
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enhanced flow over north Africa. On the other hand, for cases where the dominant singular vector is located
over the Pacific sector, the composite flow does not appear especially anomalous, especially over the west
Pacific region itself. We have also studied the variability in the magnitude of the first singular value within
each composite; this was largest for the Atlantic singular vector composite, and smallest for the Pacific

singular vector composite.

Based on a composite wintertime mean basic state and a 3-level quasi-geostrophic model, Molteni and
Palmer (1993) concluded that the dominant singular vector of the winter circulation was located over the
east Asian/west Pacific region. However, analysis in this paper using time-varying flow supports the
conclusion that the dominant singular vecior is by no means strongly tied to this particular region. On the
other hand, the results suggest that the east Asian/west Pacific region will tend to support the dominant
singular vector, unless the flow is particularly anomalous elsewhere. Over the north Atlantic, for the winter
1992/93, the jet over the north Atlantic was anomalously strong, and intraseasonal variability was

particularly large (E. Klinker, personal communication).

4, CASE STUDIES OF GLOBAL SINGULAR VECTORS

We choose for individual study, three specific cases during the winter 1992/93, illustrating examples where
the dominant singular vector (with global optimization) was positioned either in the Atlantic, Pacific and
north African sectors. In order to study developing instabilities over periods closer to the natural timescale
set by synoptic-scale disturbances, and yet within the linearity limit of analysis error growth, we have set
the optimization time in this section to 3 days. The calculations were made from time-evolving trajectories

beginning on 9 January 1993, 8 February 1993 and 6 March 1993 respectively.

From Fig. 3a it can be seen that the first singular value was especially large for the first and third of these
dates. The synoptic evolution across the north Atlantic during the period around 9th January included the
development of an exceptionally severe depression in the north Atlantic, named the "Braer Storm" because
of its unfortunate consequences for the stricken oil tanker "Braer" which ran aground on the Shetland Islands
at this time (Mansfield, 1993). The period around 6 March 1993 also proved to be exceptionally unsettled
over the middle east. This was particularly noticeable from satellite cloud imagery (G. Kelly, personal
communication). It is interesting to note that north African desert depressions are most common in the
springtime (Pedgley, 1972). By contrast singular values for the third period were not exceptional (see
Fig. 3a); in some approximate sense this case could be thought of as corresponding to the idealized time-

averaged basic-state calculation of Molteni and Palmer (1993).

Figs. 8-10 show the streamfunction of the dominant singular vector at initial (left hand panels) and
optimization time (right hand panels) for the three chosen dates. They are illustrated on model levels 7, 13
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and 15; corresponding approximately to 200, 700 and 850 hPa respectively. Note that at optimization time,

the contour interval is 20 times larger than at initial time.

At initial time, the singular vectors have greatest amplitude in the lower model levels, and are spatially
localized to the three specific regions of interest. In all three cases there is evidence of barotropic tilt in
the trough or ridge lines, particularly at the lower levels, similar to the WKBJ solution in Fig. 2b. Between
levels 15 and 13, these trough and ridge lines also show evidence of a westward tilt with height consistent
with upward propagation of wave activity. At optimization time, the structure of the singular vectors reflects
their upward and downstream propagation, upscale development and energy growth. Downstream
propagation is largest for the 9 January case (Fig. 8) associated with the strong zonal winds throughout the
depth of the troposphere across the Atlantic (see below). Upscale development can be seen clearly at the
lower model levels where the relatively short horizontal wavelength at initial time evolves to a longer
wavelength more typical of the upper-tropospheric singular vector perturbations. In all three cases, the final
structure has lost most of the energy-amplifying barotropic tilt. On the other hand, the singular vectors
exhibit evidence of continued pseudomomentum propagation in the vertical, particularly in the upper

troposphere, where amplitude is largest.

The growth in energy apparent in Figs. 8-10 is shown explicitly as a function of model level in Fig. 1la-c.
The initial (dashed) energy profile has been multiplied by a factor of 20 in order to show it clearly in
relation to the final (solid) energy profile. For the two mid-latitude singular vectors, perturbation energy
is largest in the lower model levels at initial time and is largest at the jet level at optimization time. This
result is consistent with the WKBJ analysis in section 2. In particular the evolution in the amplitude
distribution with height, and the westward phase tilt, can be interpreted in terms of wave activity propagating
from a region in the lower troposphere where the intrinsic wave frequency is small, to a region in the upper
troposphere where the intrinsic wave frequency is large. From 2.19 this would result in a relatively large

growth in energy.

However, of the three cases illustrated, the amplification of energy is largest for 6 March where the
dominant singular vector was located over north Africa, and energy was maximized in the lower
troposphere. In fact this behaviour was not typical of north African singular vectors; more usually the
energy at final time peaked in the upper troposphere, similar to that in Fig. 11a,b. It can be seen from
Fig. 3 that the large singular value for 6 March was not repeated on the two following days, despite the fact
that the dominant singular vector for 7 and 8 March continued to be located in the north African region (see
Table 1). It is possible that the uniquely large singular value for 6 March may have arisen, not only as a
result of growth from the locally zonal flow, but also from quasi-resonant interaction between the singular

vector perturbation, and similar scale zonal asymmetries in the basic state. Such resonances may be more
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likely if downstream singular vector propagation is relatively small; of the 3 cases shown, such propagation
was weakest for the 6 March case. Further studies are required to clarify the importance of such a

mechanism.

The non-modal character of the singular vectors has been demonstrated through the time evolution of the
horizontal and vertical structure. One aspect of this structure, the upscale energy transfer, is shown
explicitly in Fig. 12a. This shows, for the 9 January 1993 case, the initial and final energy of the dominant
singular vector, as a function of the total (horizontal) wavenumber. As in Fig. 11, the solid line refers to
values at optimization time; the dashed line refers to values at initial time muliiplied by‘a factor of 20 to
make them visible. It can be seen that at optimization time the energy peaks at about wavenumber 10, well
within the range of synoptic scales. By contrast, at initial time the singular vector peaks at a wavenumber
close to the truncation limit of the model, and below the range of synoptic scales. Further calculations with
a higher resolution (T42) singular vector calculation (Fig 12b) suggest that the initial spectrum is fairly
broad at subsynoptic scales, but peaking at about wavenumber 25.

These calculations suggest that the singular vectors, albeit linear, are capable of describing an upscale energy
transfer reminiscent of a nonlinear turbulence cascade. Since the basic state is an unapproximated solution
of the equations of motion, Rossby triad interactions between the basic state and the perturbation field can
generate such upscale evolution. Indeed it could be argued that these singular vector calculations would
describe (with a sufficiently high resolution model) the "butterfly effect" in its original (Lorenz, 1963) sense,

that small scales can influence large scales,

The position of the vorticity maxima of the first 10 singular vectors is shown in Fig. 13 for each of the three
cases. These maxima are marked by the index 'i’ of the singular value ¢,. In the 9 January and 6 March

cases, the first two singular vector maxima are close together, indicative of a propagating phase-quadrature
pair. For 8 February, the first and second singular vectors are located in distinct regions (the Pacific and
Atlantic respectively). As noted above, this latter situation is unusual. Also, for two of the three cases,
there are singular vectors in the tropics and in the southern hemisphere. Indeed, for the 9 January, the 3-9th
singular vectors lie outside the northern extratropics. Whilst higher order singular values may not have
substantial case-to-case variability (see Fig. 5), Fig. 13 shows that the associated higher-order singular
vectors do vary significantly in their physical location,

As discussed above, with 100 iterations, the Lanczos scheme is used to calculate reasonably accurately the
first 35 singular vectors and singular values. The spectrum of singular values is shown in Fig. 14 for the
three cases. Whilst the first and second dominant singular values are overwhelmingly the largest for the

6 March case, singular values further down the spectrum are generally larger for the 9 January case. We
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can compare growth rates for the 72 and 36 hour optimization times by comparing the equivalent exponents
In o, / At. On average, growth rates decrease with increasing optimization time, e.g. for the 9 January

and 6 March cases, the exponent equals about 1.5 for 36 hour optimization, and about 1.0 for 72 hour

optimization.

In the previous section, we were able to relate some aspects of the statistics of the singular vectors to the
basic state flow, using the Eady index (3.1). Here we show the index for the initial dates of the three cases
under investigation (Fig. 15). As above, this index is a good qualitative predictor of the regions where
dominant singular vectors will be located. For example, over north Africa, the index is clearly largest for
6 March , whilst over the Atlantic it is largest for 9 January. In general it can be seen, comparing Figs. 13
and 15, that there is a region of relatively large Eady index (exceeding 1/day) close to, or just downstream
of, an extratropical singular vector maximum. On the other hand, there is no indication in Fig. 15 of why
the dominant singular value was so large for the 6 March caée; also there are regions of large Eady index
with no close singular vector maximum. As mentioned above, one must therefore treat this diagnostic with

caution as it only partially describes the envelope of the singular-vector structure of the general circulation.

We conclude this section by noting that not all the higher order singular vectors correspond in structure to
the examples illustrated above and cannot be understood in terms of the WKBJ concepts outlined above.
For example, the 4th singular vector for the 9 January case is essentially tropical (see Fig. 16a,b). At initial
time it describes an essentially north-south dipole disturbance in the upper tropospheric streamfunction over
the tropical Atlantic. There is little amplitude in the lower troposphere (see Fig. 12d). At optimization time,
the dipole has an east-west orientation in the tropics, again with amplitude concentrated in the upper
troposphere (again see Fig. 12d). Over Europe, the perturbation has some amplitude through the depth of
the troposphere (and projects onto the singular spectrum with European local projection operator; see section
6). We have replicated the linear evolution of this singular vector in identical-twin integrations of the full
diabatic nonlinear ECMWF model, and therefore believe it to be realistic. The 4th singular vector for the
6 March case is also illustrated in Fig. 16. Unlike other extratropical singular vectors shown, the initial
structure shows significant amplitude in the upper troposphere, with a zonal perturbation over polar latitudes,
and a secondary perturbation over Scandinavia and the north-east Atlantic. These features are relatively
large scale, and have an equivalent barotropic structure in the vertical. At optimization time, the dominant
region of amplification is over Europe, particularly in the upper troposphere. In all three cases studied we
were able to find examples of this type within the first 35 singular vectors.

5. SINGULAR VECTORS USING THE LOCAL PROJECTION OPERATOR
In section 2.4 we described the formalism for estimating the dominant singular vectors with energy growth

optimized for a specified region of the atmosphere. Apart from the intrinsic value of being able to study
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geographically-localized instability, the technique is of practical value for estimating short-range forecast
predictability in specified regions. Local singular vectors for the case studies above have been calculated
for local regions between 30N and 60N, and intervals of 30 degrees longitude. We will illustrate some
examples of these focusing in particular on the longitude intervals 0-30E, which includes part of Europe.
In all the cases described the energy integrals are taken over the entire depth of the atmosphere (though in
principle the local projection operator can be applied in the vertical as well as in the horizontal). As in

section 5, optimization time is 72 hours.

As examples, Fig. 17 shows the dominant singular vectors, optimized for the region 30-60N, 0-30E for the
9 January and 6 March initial dates. For brevity we only show level 7 and 13 streamfunction at initial time.
It can be seen that the basic state flow has a major influence on the location of initial perturbations. For
9 January, there is a maximum in initial amplitude over the north American eastern seaboard, whilst for the

6 March case, the initial amplitude is maximized over Europe, north Africa, and the eastern Atlantic.

This sensitivity of initial pattern to basic state has some obvious practical consequences. For example, a
skilful three day forecast for Europe from 9 January will require an accurate wind near the eastern seaboard
of north America. On the other hand, a skilful three day forecast for Europe from 6 March requires an
accurate in situ analysis. The relatively larger dominant singular value for 9 January (8.5 compared with

7 for 6 March) places particular importance on accurate measurements for the January case.

In Fig. 18 we show the position of the vorticity maxima of the first 10 singular vectors for the 3 cases, and
for three chosen areas: the European area above, and the regions 30-60N, 120E-150E and 30-60N, 90-120W.
For the European area 9 of the 10 local singular vectors lie upstream of the target region for the 9 January
case (the 10th lies in the tropics). By contrast, for the other two cases, the singular vectors lie within or
close to the European target region. Comparison of the Eady indices (Fig. 15) close to, and upstream of,
the target region, reveals basic-state differences that can account qualitatively for this result. The
distribution of the local singular vectors for the other target areas similarly depends on the basic state flow.
For example, for the sector including Japan, most singular vectors are located in situ for 9 January (though
the dominant singular vector is positioned over the middle east), whilst for the 8 February, most singular
vectors are located over central Asia. Similarly, for the North American sector, all the initial singular
vectors lie close to Hawaii for 6 March, whilst for other dates, a number of singular vectors are located 1o
the north, e.g. near the Gulf of Alaska. For these regions, the relationship between singular vector location

and the in situ and upstream Eady index (Fig. 15), is plausible, though not clear cut.

We have calculated the projection of each of the local singular vectors in Fig. 17 onto each of the global

singular vectors, for each of the three chosen dates. For example, the dominant global singular vector for
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the 9 January case (Fig. 8) has a correlation of 0.81 with the dominant singular vector computed using the
European local projection operator. In the subspace comprising the first 10 global singular vectors, no other
singular vector correlates with this dominant local singular vector by more than .04. By conirast the
dominant local singular vector for the 6 March does not correspond to a pure global singular vector, but
correlates principally with the first second and fourth global singular vectors. As discussed above, the first
and second global singular vectors both describe the instability of the subtropical African jet, and form a
phase-quadrature pair. The third global singular vector, a Pacific perturbation, has no projection onto the
dominant local singular vector. The fourth global singular vector, which at initial time has a strong

equivalent barotropic vertical structure over northern Europe, was shown in Fig. 16.

In general, our analysis has suggested that, at least in wintertime, the dominant singular vectors computed

using a local projection operator as above, can be reconstructed from the first 35 global singular vectors.

As mentioned in section 2.4, it is also possible to apply the projection operator directly in spectral space.
Using this, it has been shown that if the initial and final singular vector for the 9 January case are both
constrained to be in the wavenumber 0-10 band, then energy growth is severely reduced (not illustrated).
On the other hand, if the initial singular vector is constrained to the wavenumber band 11-20, whilst the
final singular vector is constrained to the wavenumber band 0-10, then energy growth is similar to that

shown in Fig. 13. Again this confirms the non-modal character of the singular vectors.

7. CONCLUSIONS AND DISCUSSION

We have described a singular-vector formalism for characterizing the growth of linear perturbations over
finite times and arbitrary target regions, relative to general (finite dimensional) time-evolving solutions of
the nonlinear primitive equations of the atmospheric general circulation. Maximal linear growth is
associated with the singular vector with largest singular value. Incorporation of an iterative Lanczos scheme
allowed calculation of the first 35 singular vectors to be estimated from the ECMWF Integrated Forecasting
System. This system includes the forward and adjoint tangent equations of the full nonlinear forecast model.

The technique offers a complete generalization of classical normal-mode instability analysis.

The relationships between singular vectors, normal modes, adjoint modes, Lyapunov vectors, and
perturbations created using the breeding method (Toth and Kalnay, 1993) have been explored. However,
these relationships only hold in rather restrictive conditions (e.g. linearizing about stationary nonlinear
solutions, or in the limit of long phase-space trajectory portions). In order to aid further interpretation of
singular vector evolution we also described the relationship between energy growth and wave

pseudomomentum conservation.
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We have described some statistics of the singular vector structure of the atmospheric general circulation,
derived from calculations made routinely as part of the operational ECMWF forecast suite. Three preferred
regions were identified for significant singular vector growth: the east Asian/west Pacific sector, the
northeast United States/ west Atlantic sector, and subtropical north Africa. The first two of these are
familiar regions of cyclogenesis, and correspond to areas in which high pass transient variances are
maximized. The subtropical region is not distinguished as an area of high transient variability; however,
we speculate that, in part, this can be understood from a paradigm of the atmospheric general circulation
as a broadband amplifier, rather than an unstable oscillator, and that transient disturbances entering the west

Atlantic or west Pacific areas are much larger than those entering the subtropical north African region.

To a first approximation, the distribution of the singular values as a function of time of year was related to
the classical Eady measure of baroclinic instability. On the other hand, for a 36 hour optimization period,
the growth rates associated with the singular vectors were larger than implied by this diagnostic. For
example, for winter, the dominant (synoptic-scale) singular vector increased as much as ten-fold over

36 hours; even the 35th fastest growing singular vector typically increased by a factor of 4.

For the cases studied, the dominant singular vector at initial time had maximum amplitude in the lower
troposphere with strong phase-line tilts indicative of energy growth from both barotropic and baroclinic
processes. At optimization time, this type of singular vector typically had maximum amplitude in the upper
troposphere, with greater horizontal scale. This structure can be partially understood from pseudomomentum

conserving wave propagation in a inhomogeneous medium.

We also studied the upscale transfer of energy between initial and final time. In particular, at initial time,
energy was dominaied by sub synoptic scales (especially when the resolution of the singular vector
calculation was increased); on the other hand, at optimization time, the energy was dominated by synoptic
scales. This illustrates graphically the butterfly effect in the full sense it was originally intended (Lorenz,
1963), i.e. not only small amplitudes, but also small scales could ultimately influence large scales. The
spatial transformation of the singular vectors between initial and final time is indicative of their profoundly

non-modal structure,

The ability to simulate upscale energy transfer is a consequence of the fact that the basic state is itself an
unsmoothed solution of the nonlinear equations. This raises the issue that the instability characteristics of
a smooth time-mean atmospheric state will not correspond to the time-mean instability characteristics of the
climate attractor. This non-commutativity of time averaging also applies to simpler nonlinear systems than

the atmosphere.
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In setting up the formalism for calculating linear perturbation growth, we described the ability to find
optimal amplification, not only for the globe, but also for a specified region of the atmosphere, using a so-
‘called local projection operator. Some examples showed the dependence of local singular vector structure

to basic state.

Although the calculations described in this paper have been made with time-evolving trajectories, the
specific cases were not chosen on the basis that the large-scale flow pattern evolved significantly over the
optimization period. However, as highlighted in Palmer (1993), one of the most potentially useful
applications of singular vector analyses both for weather forecasting and climate prediction, is for studies

of transient periods in which the atmosphere evolves from one specific weather regime to another.

For such studies, the trajectory length should be sufficiently long to be able to identify such regime
transitions. This would appear to suggest optimization periods of around 5 to 7 days, somewhat longer than
those we have studied so far, and possibly outside the range in which analysis error growth can be
confidently treated as linear. One way of alleviating this problem might be to apply the local projection
operator in spectral space to optimize energy growth onto the large synoptic and planetary-scales, where
amplitude doubling times are smaller. Indeed since such scales are more directly associated with regime

transitions, use of such a projection may be most appropriate in any case for this type of study.

Finally we note that the methodology employed here may also be of use in diagnosing model systematic
error. Specifically, it should be noied that in order to have a significant impact on the systematic error of
medium range forecasts, errors associated with either physical or numerical processes (or some interaction
between the two) should have maximum projection onto the initial singular vector structure, rather than the
final structure. Hence, for example, if a model has a tendency to produce excessive eddy kinetic energy
near the jet level at the beginning of the medium range, the error may be associated with a systematic
misrepresentation of processes near the top of the boundary layer in regions of cyclogenesis, rather than with
an in situ systematic error in the upper troposphere. We intend to explore further the use of singular vectors

in the diagnosis of model systematic error.
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Fig. 1

This diagram illustrates schematically the crucial difference between normal mode and singular vector growth,
and the relationship between singular vectors and adjoint modes. An idealized 2-D system has two very non
orthogonal decaying modes &, and &, We take g, to have the larger real eigenvalue component. The adjoint
modes 1, and 7, are shown, with n;, n, orthogonal to §,, , respectively (according to the biorthogonality
condition 2.11). A normalised vector v, is shown parallel to n,. its time evolution can be estimated by mapping
the tip and tail of v, along the &, and &, directions (shown as dashed lines) using the modal decay rates. The
sequence of vectors v, n=1,2 .. giving the time evolution of v, increases in amplitude up to some finite n=N, and
is aligned almost entirely with &, for large n. The projection of v, onto &, for large n is much larger than that
associated with the evalution of a second normalized vector i which is initially aligned along &,. The sequence
v, describes singular vector growth over a long time interval.
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Fig. 2 The evolution of an energetically-amplifying Rossby wavepacket in a linear WKBJ approximation (from Zeng,

. 1983) with conserved pseudo-momentum. a) The basic state comprising an Idealized zonally symmetric jet.
b) The evolution of a dominant wavepacket ridge or trough line associated with barotropic energy growth. c) The
evolution of a dominant wavepacket ridge or trough associated with baroclinic energy growth. The wavepacket
group velocity is shown as double arrows, the zonal phase speed as single arrows (From Zeng, 1983).
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Fig. 6 The distribution of the Eady index, defined by equation (3.1) and using seasonal-mean wind and potential
temperature. a) winter 1992/93 b) spring 1993 c) summer 1993. Data from ECMWF operational analyses.

Contour interval 0.2/day.
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Fig. 12 Energy distribution of singular vector for 8 January case as a function of total wavenumber. Dashed - at initial
time (x20). Solid - at optimization time. a) T21 calculation, b) T42 calculation.
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Fig. 16 As Fig. 8 for the 4th singular vector for 9 January (model level 7 only). Tob panel initial time. Bottom panel
optimization time. ~
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optimization time.
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Fig. 19 Position of first 10 singular vectors at initial time, as determined by vorticity maxima, for the three target areas
(30N-80N, 0-30E), singular vectors shown as circles; (30N-60N, 120E-150E), singular vectors shown as
triangles; (30N-B0N, 120W-90W), singular vectors shown as crosses. a) 9 January case, b) 8 February cass,
¢) 6 March case.
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TABLE 1

19 December 1992 NA
20 December 1992 P
21 December 1992 P

6 February 1993 A
7 February 1993 A
8 February 1993 P

26 December 1992 P
27 December 1992
28 December 1992 A

13 February 1993 NA
14 February 1993 P
15 February 1993 NA

2 January 1993 NA
3 January 1993 P
4 January 1993 P

20 February 1993 NA
21 February 1993 A
22 February 1993 A

9 January 1993 A
10 January 1993 A
11 January 1993 A

27 February 1993 NA
28 February 1993 NA
1 March 1993 P

16 January 1993 P
17 January 1993 P
18 January 1993 A

6 March 1993 NA
7 March 1993 NA
8 March 1993 NA

23 January 1993 P
24 January 1993
25 January 1993

13 March 1993 A
14 March 1993 A
15 March 1993 A

30 January 1993 A
31 January 1993 A
1 February 1993 A

Initial dates of singular vectors calculated with the ECMWF operational forecast system. A "P", "A", or "NA" against a
date indicates that the dominant singular vector for that date was positioned over the east Asian/ west Pacific, north-east
American/ west Atlantic, or north Africa region respectively. Where no symboal is shown against a date, the dominant

singular vector was located elsewhere. The position of a singular vector was determined by the its vorticity maximum

at initial time.
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