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Preface

This note demonstrates the existence of a spurious mode in the 'Lorenz’ arrangement of ¢ and T that
is commonly used in the vertical differencing of primitive equation models. The note also shows that

the *Charney-Phillips’ arrangement of ¢ and T' does not have a spurious mode.

Written in spring 1975, the note was filed in a dusty drawer because the planning staff of ECMWF had
more pressing concerns. The text presented here is essentially as it was originally written. No attempt
has been made to take account of more recent work by A Arakawa and his associates at UCLA, and by
M Cullen and his associates at UKMO. 1t is being circulated now because the results in Fig 4 may be
relevant to current concerns in stratospheric modelling and data assimilation.

1. INTRODUCTION: AN EXAMPLE OF SPURIOUS GEOSTROPHIC BALANCE

The thermal wind relation in pressure coordinates is
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Tt follows that, if a geostrophic wind is independent of pressure, then the temperature field is independent
of position on a constant pressure surface and vice-versa. A non-zero geostrophic wind which is
independent of pressure can only be balanced by a surface pressure field. This latter result does not obtain
in certain finite difference formulations of the primitive equations. In some linearised finite-difference
formulations of a g -coordinate model one can specify a geostrophic wind which is independent of height,
and an arbitrary surface pressure field; one can then find a thermal field such that the fluid is in a steady

state.

Consider a g -coordinate model with N levels at which velocities U, V, geopotential ¢ and temperature T
are carried. Let T = T(p) + T' and ¢ = ®(p) + &'. Then the linearised pressure force F, at each levelk
is given by

E = V§/ + RTVlnp, 1.1

where p, is the surface pressure. The hydrostatic relationship is usually written in the form

& - bk = 2lT+ Tre) 1.2
where k is 1 at the top level and N at the bottom level. For example, in the scheme used by Corby,

Gilchrist and Newson (1972)
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Eq 1.2 can be written in the form
o -gT 14

where now ¢/, I’ are column vectors o1, [Tﬂ and g is a square matrix. g is specified by
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Suppose we consider the equations 1.1 and 1.2 as a problem to determine the Ti, knowing F . This

problem is under-determined as we must specify Inp, before a unique solution can be found. Once p, is
specified we can always find a solution. A fortiori, in the case of a geostrophic wind which is independent

of height, so that F . is independent of height_, we can specify Inp, arbitrarily and find a thermal field which

will give a steady state solution.

To consider the nature of this solution we consider the simple case of F . = 0, ie. zero pressure gradient

at each model level. Let us assume an unbounded plane geometry, and expand the column vectorsgy/, 7”

as Fourier Series
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where ¢, T' are of course column vectors.

Then 1.1 and 1.2 imply

0=¢ + T(RInp,)
$ =gl

where T is [T,], the mean temperature field. The dependence of T on Inp, is given by

T = -g! T (np)R. 1.6



It is easy to verify that, when g is of the quite general form (1.5), then g is given by

1.7

Moreover it is easy to verify that the row-sums of g are all of magnitude 1 and alternate in sign. Thus,
Oy

if N is even, then NJ2 row-sums have positive sign and NJ2 row-sums have negative sign, If N is odd,

then [Nj2] row-sums have negative sign and [Nf2]+1 rows have positive sign.

In the case when the mean field is isothermal, so that T is independent of height, we see from 1.6 thatT

has the same magnitude in each layer and changes sign from layer to layer. If the surface pressure consisted
of a pure sinusoid, then a temperature field of the form shown in Fig 1 would balance the surface pressure

field in that the net pressure force at each level would be zero.

Tables 1 and 2 show g, g'! for the case of 10 equally spaced layers for the finite difference scheme

specified by 1.3. Table 3 shows T and g T for a standard atmosphere in this same model. The two-grid

vertical wave nature of the solution is still dominant.

We tested these ideas with a primitive equation model. Since we wish to refer to this model several times,
let us call it the 2D model. It is a two-dimensional (—% EO) plane-geometry version of the UK Universities
Atmospheric Modelling Group’s Model (Garp pub 13). We used 10 vertical levels, cyclic boundary

conditions in X of period L=10,000 km and no "physics" i.e. no internal smoothing, no convection scheme,

no heat sources apart from those to be specified explicitly later. There were 20 points in the X-direction.



For the present experiment we initialised with a northward velocity ¥ which was of the form

V= 50.(Sin3LEX) m/sec. This we balanced by a thermal field according to Eq 1.1 with Inp,=0. We took

the Coriolis parameter f=10* After 5 days of integration the fields had hardly changed. The maximum

surface pressure departure from its initial value was ~.002 mb.

In a second experiment we balanced a vertical two-grid wave in the temperature field (of amplitude 10 K)
by a surface pressure field (~2 mb), with zero wind initially and f=0. After 9 days of integration there was

again very little change in the fields. Thus the linearised arguments we presented above carry over to the
non-linear model.

These results help to explain the difficulties mentioned by Hoskins and Simmons (1975) when they
calculated balanced temperatures from winds, in a model of the type under discussion. Unless care is taken
with the specification of surface pressure, large two grid vertical waves will be found in the temperature.
In effect Hoskins and Simmons adjusted the surface pressure so that there was no two-grid wave in the
temperature. As shown by Table 3, this is a reasonable procedure since g 'T is almost a pure two-grid

wave for a standard atmosphere.

2. A SPURIOUS NORMAL MODE

The solutions of

0= Vi, + RT,V Inp, 1.1
& - bhs = a(TiTh,y) 12

which we have discussed are steady-state free mode solutions of this linearised primitive equation model

on a plane, an f-plane or a rotating sphere. All of the other variables u, v, ¢ etc are identically zero in this

free mode.

General circulation models of the type we are discussing predict u, v, T at each of N levels and also have
an equation for surface pressure, 3N+1 equations in all. Thus in a normal mode calculation there will be
N Rossby wave and 2N gravity wave solutions, together with one other solution which has no analogue in

the continuous primitive equations. This spurious solution is the one we have discussed in section 1 above.

In a normal mode calculation with a non resting basic state the frequency of this spurious mode will not
be zero and may well be complex. We have some evidence, to be discussed elsewhere, that this is in fact

the case.



3. DIRECT FORCING OF THE SPURIOUS MODE
One may enquire if this mode can be excited in a general circulation model. The linearised equations for

such a model may be written in the absence of rotation (Hoskins and Simmons, 1975)

g;u - VU&/+R T Inp) b
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where ¢, D, T', ¢/, Q are column vectors for vorticity, divergence, lemperature, geopotential and diabatic
heating. p,, T, g are as before, x is a square matrix containing the thermodynamics and JD is the vertical
integral, or weighted sum, of D. Let a subscript O denote values at an initial instant ¢,. Let D, # 0 and
suppose that

b, +RIlnp,a-g_T_"n + R[I‘_lnp*p = 0.
Then provided the diabatic heating Q is given by

Q=-g'1UD) + x D, 32

the equations 3.1 have the solution

T - T, + g TUD 3.3
(inp,) = Inp, - (JD¢ 34
D-D, 3.5
=& 3.6

In the expression 3.2 for the diabatic heating, the term ¢ D, is typically small by a factor of 50 or more

compared to the first for atmospheric values of D,. To a good approximation then
I -1, + g YD) 3.3
JD, isa scalar and g'T is almost a pure two-grid wave. Thus if the heating field Q has some roughness,

ie. if Q contains a two-grid wave component, then so long as the vertically integrated divergence is



sufficiently large, the two-grid wave in the fluid will grow linearly in time according to 3.3’ and the

dynamics are short-circuited as shown by 3.5 and 3.6. If the two-grid component is of amplitudeQ
deg/day, then the vertically integrated divergence must be of the order Qo N/T day™ where T is an overall

average temperature. For the ten-level model discussed earlier this is of order 2x10° sec™ for Q=1 deg/day.
Moreover a,~0 as N-0, so the spurious mode should be more easily excited as the number of levels is

increased.

To test these ideas we performed some experiments with the 2D model in the case of no-rotation. The fluid

was initially isothermal at T=275° K and the velocity U, = .002 Sin%x cm/sec. The initial divergence

was then ~2x10? Sin—z—L71 sec’. We imposed a heating field Q; = (-1)% CasgL’l deg/day so that the
maximum heating or cooling was 1 deg/day. Fig 2 shows the behaviour with time of the surface pressure,
while the inset shows the pressure evolution at the point of largest amplitude. The growth is very nearly
linear after the first day and is close to the theoretical rate of .187 mb/day. Table 4 shows the behaviour
with time of the temperature in the vertical column where the heating/cooling has largest amplitude. Again
the growth is close to the linear theory. Over the same five-day period the maximum velocity in the field
increased from 2x10? cm/sec to something less than 1 cm/sec. If the pressure force were due only to the
surface pressure field we would expect to find velocities of order 2 m/sec by this time. These results bear
out the validity of the linear theory.

We have repeated this experiment in the situation where the mean U velocity increases from 5 m/sec at the

lowest level to 50 m/sec at the top level. The same qualitative effects are found, although the phase lines
are tilted by the shear.

We may conclude that in a multi-level model of the type under discussion any roughness, i.e. two-grid
component, in the heating field can, in the presence of very weak divergence, lead to the growth of a two-

grid wave in the vertical temperature structure.

Depending on the nature of the convection scheme being used in a model of this type, the effect we are

discussing could lead to spurious rainfall and convection.

4. ELIMINATION OF THE SPURIOUS MODE

In this section we propose a re-formulation of the finite difference equations which eliminates the spurious

mode. We propose that u, v, ¢ be carried at the main levels and that T and & be carried at the
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intermediate levels. Thus T is predicted only at N-1 levels. For didactic purposes the scheme we propose
here is as simple as possible. A number of refinements will immediately suggest themselves to the
interested reader. Temperature is advected horizontally by the average of the velocities above and below.

The original 2D model is very similar to that proposed by Corby Gilchrist and Newson (1972). In their

formulation the energy conversion term, KTow is written
4]
kTw KTyl Op o 0, &
= -—{ln—— Vp YV + h—— Vpy
( o] ) k 2 o, Z; O 1 Z;
Kp.; e
+ acose[U"ﬁ‘allnp‘ »4V,c0s0T%, 8,lnp, °].

In the revised 2D model let T},,, denote T at the level between levels k and k+1. Then the expression

xTw Y k
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will lead to energy conservation provided we express

(R TVinp,), = R [Ty,yd,inp, *i+T} ,c0888.mnp, ° 1.

At the lowest layer we use T} _,, rather than T; ,, in these expressions. The hydrostatic equation is written

Okl
(pk - q’k+1 =Rln o Tk+Vz‘
k

To define ¢, we assume the lowest layer is isothermal at T, ,. At the top and bottom levels

d . oT

—_—|, Or .
do 1.5A0 l2 07 [x-1

Several improvements can be made to this scheme. For example, vertical averaging of the winds in the

xTw term and the temperatures in the pressure gradient term would certainly improve the scheme. The
o

simple version suggested here is used to demonstrate that this arrangement of ¢ and T eliminates the
spurious mode: if the pressure force is zero at N levels then the surface pressure gradient and the thermal

gradient at the N-1 relevant levels must be identically zero.



As a test of the revised scheme and to demonstrate the absence of the spurious mode we have re-run an
experiment performed some years ago by E Doron (personal communication). We used the 2D model with

the original and the revised vertical schemes. We cooled the lowest layer between 0 and L/2 with a

specified function 5 Sin(%’f—x) deg/day. We heated the top layer between % and L with the same

functional dependence. The situation is illustrated in Fig 3. One would expect a re-distribution of mass
within each layer with very little activity in the bulk of the fluid. Figs 4 a and b show the behaviour of the

temperature in the two models in the column marked AB in Fig 3.

In the original model it appears (Fig 4a) that the spurious mode is forced to grow over the five-day period.
This is borne out by the fact that the temperature at the point of greatest heating is significantly higher than
the average temperature for the layer. The disturbance pervades the entire fluid and already by 5 days the

integration is beginning to break down.

There is no sign of a spurious mode with the revised model (Fig 4b). The asterisk in the top layer of
Figs 4a and b shows the average temperature of the layer at the time in question. The results for the revised
model show that there is indeed very little activity in the middle of the fluid. The re-distribution of mass
is rapid, particularly in the upper layer where the temperature at the point of most intense heating is very
close to the average temperature for the layer. We repeated these experiments with two models each with
nine main levels. The results were similar in all essential points. Thus the results do not depend on whether

we have an even or odd number of layers.

5. SUMMARY

We have pointed out the existence of a spurious mode in some formulations of the primitive equations. We
have discussed the relevance of this mode for violations of the thermal wind relation, for the deduction of
temperatures from winds in either geostrophic or balance calculations with these models, and for the study
of diabatic effects in these models. We have also suggested a way to eliminate the spurious mode altogether

and have shown that this revised scheme works well in a test case.
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55 805 424 204 226 184 155 134 118 107
225 424 294 226 .184 155 134 118 107
168 294 226 184 155 134 118 107
126 226 184 155 134 118 107
100 184 155 134 118 107
.084 .155 134 118 107
072 134 118 107
.963 118 107
.056 107
051
Table 1 The matrix g for the case of 10 equally spaced layers for the scheme specified by Eq 13.
1.82 -5.74 9.86 -13.9 17.9 219 259 -30.0 34.0 -37.5
3.92 -9.86 13.9 -17.9 21.9 -259 30.0 -34.0 375
5.94 -13.9 179 -21.9 259 -30.0 34.0 -37.5
7.96 -17.9 219 -25.9 30.0 -34.0 375
997 219 259 -30.0 340 -37.5
12,0 -25.9 30.0 -34.0 375
14.0 -30.0 34.0 -37.5
16.0 -34.0 375
18.0 -37.5
19.5
Table 2 The inverse g! of the matrix g in Table 1.
216 -5636
216 5636
221 -5657
235 5573
T 247 P -5661
257 5580
265 -5650
272 5551
278.5 -5655
284.5 5548

Table 3 The mean temperature T of a standard atmosphere and the vector g-'T where g is as in Table 2.



Level Day 1 Day 2 Day 3 Day 4 Day 5

1 1.022 2.006 3.031 4.012 4.984
2 -997 -2.015 -3.014 -4.022 -5.010
3 .998 2.033 2.998 4.006 5.038
4 -1.006 -1.984 -3.010 -4.018 -5.035
5 993 1.995 3.009 4,028 4.987
6 -1.002 -2.013 -2.995 -3.966 -4.995
7 1.007 1.976 2.970 3.996 4.999
8 -.983 -2.009 -3.024 -4.012 -5.013
9 1.032 2.028 3.010 3.981 4.957
10 -.954 -1.928 -2.921 -3.937 -4.956

Table 4 Temperatures from the experiment described in Section 3 where we directly force the spurious mode in the
original 2D model. The temperatures are for the column where the heating/cooling had an amplitude of 1
deg/day.
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Fig. 1 Schematic of the distribution of temperature in a three-level model which would balance a
sinusoidal pressure wave so that the net pressure force at each level is zero.
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Fig. 2 Behaviour in time of the spatial distribution of surface pressure for the same experiment as
Table 4. The inset shows the behaviour of the pressure at the mid-point over the same period.
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Fig. 3 Schematic of the distribution of heating and cooling in the experi-
ment described in section 4. The column AB is the column for which
the perturbation temperatures are plotted in Fig 4.
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Fig. 4 Time evolution of the perturbation temperature in the column AB of Fig 3 in the
experiment described in section 4. The asterisk shows the mean temp-erature
in the top layer.
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