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Abstract

A probabilistic analysis is made of seasonal ensemble integrations, with emphasis on the Brier
score and related Murphy decomposition, and the relative operating characteristic. Results
from the analysis of relative operating characteristic are input to a simple decision model. The
decision model analysis is used to define a user-specific objective measure of the economic value
of seasonal forecasts. The analysis is made for two simple meteorological forecast conditions
or ‘events’ E based on 850hPa temperature. The ensemble integrations result from integrating
four different models over the period 1979-1993. For each model a set of 9-member ensembles
are generated by running from consecutive analyses.

Results from the Brier skill score analysis taken over all Northern Hemisphere grid points
indicate that whilst the skill of individual models ensembles is only marginally higher than a
probabilistic forecast of climatological frequencies, the multi-model ensemble is substantially
more skilful than climatology. Both reliability and resolution are better for the multi-model
ensemble, than for the individual-model ensembles. This improvement arises both from the
use of different models in the ensemble, and from the enhanced ensemble size obtained by
combining individual-model ensembles; the latter reason was found to be the more important.
Brier skill scores are higher for years in which there were moderate or strong El Nifio events.
Restricting to Europe, only the multi-model ensembles showed skill over climatology. Similar
conclusions are found from analysis of the relative operating characteristic. -

Results from the decision-model analysis show that the economic value of seasonal forecasts
is strongly dependent on the cost C to the user of taking precautionary action against E, in
relation to the potential loss L if precautionary action is not taken and E occurs. However,
based on the multi-model ensemble data, the economic value can be as much as 50% of the
value of a hypothetical perfect deterministic forecast. For the hemisphere as a whole, value is
enhanced by restricting to El Nifio years. It is shown that there is.economic value in seasonal
forecasts for European users. However, the impact of El Ninfio on economic value over Europe
is mixed; value is enhanced by El Nifio only for some potential users with specific C /L.

The techniques developed are applicable to complex events E for arbitrary regions. Hence these
techniques are proposed as the basis of an objective probabilistic and decision-model evaluation
of operational seasonal ensemble forecasts.
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1 Introduction

This paper discusses the meteorological skill and potential economic value of a set of seasonal
ensemble integrations of atmospheric global circulation models (GCMs). These integrations
were made as part of the PROVOST project (PRediction Of climate Variations On Seasonal
and interannual Timescales), supported by the European Union. Within the terms of this
project, ensembles of 120-day integrations were made by four different modelling groups. The
ensembles were made with prescribed observed sea surface temperature (SST) and initial dates
spanned the period of the ECMWEF 15-year reanalysis (1979-1993). More details concerning
the models and the ensemble construction are given in section 2.

The primary purpose of this paper is to discuss the skill and value of seasonal ensemble forecasts
within an explicitly probabilistic framework. Consider a meteorological condition or ‘event’ E
defined over a particular season and particular spatial location. Examples of E might be: the
seasonal- mean temperature is higher than normal, the seasonal-mean rainfall is one standard
deviation lower than normal, there are at least 10 days where daily-average wind speed exceeds
20m/s etc. For each member of a forecast ensemble, F is predicted to occur, or not to occur.
The ensemble as a whole provides a forecast probability p(F) for F, based on the fraction of
ensemble members in which E occurs.

There are a number of techniques available with which to assess the skill of the forecast prob-
abilities p(E); here we focus on two. The first is the reliability diagram and related Brier
score discussed in section 3. In analysing the Brier score, we make use of Murphy’s (1973)
decomposition into reliability and resolution. The second technique is the relative operating
characteristic (ROC; Stanski et al, 1989) discussed in section 4. This measures the success
and false-alarm rates of the ensemble, made by assuming E will occur if it is forecast with a
probability exceeding some specified probability threshold p;.

Although objective measures of skill can be obtained from the Brier and ROC statistics, it
is impossible to say what constitutes a level of useful skill for seasonal forecasts. The reason
is simply that on the seasonal timescale (arguably on all timescales), it is not possible to
define a level of useful skill that is independent of the needs of the forecast user. However,
the ROC statistics provide the required input to a simple decision model which allows one
to assess objectively the potential economic value of the ensemble seasonal forecasts from an
(idealised) user perspective. The user has available the probabilistic forecast information to
help decide whether to take (at some cost) some precautionary action to mitigate possible future
weather-related loss or damage. The decision model applied to the PROVOST ensemble data,
is discussed in section 5. It can be noted that readers only interested in the decision-model
analysis can skip section 3 (but not 4) without substantial loss.

As mentioned above, the ensembles discussed here have been run with four different models.
For each model, an ensemble comprises 9 integrations initiated from consecutive 24- hour
analyses. The combination of ensembles from the four individual models provides a 36-member
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multi-model ensemble. In some sense, this multi- model ensemble spans uncertainties in both
initial conditions and model formulation. We assess, on the basis of the probabilistic forecast
techniques discussed in this paper, whether results from the multi-model ensemble provide a
more skilful and more valuable set of data than that obtained from any one individual model.

2 Experimental Details and Systematic Error

The four model formulations used in this study are as follows: a) ECMWF IFS cycle 13r4,
T63L31 resolution with semi-Lagrangian timestepping; b) Météo-France Arpege cycle 12, T42L31
with Eulerian timestepping; ¢) the UKMO Unified Model HADAM3, 2.5x3.75 degree L19 reso-
lution with Eulerian timestepping; d) as b) but with T63L31 resolution, the integrations being
run by Eléctricité de France.

For each of the GCMs a)-c), 9-member ensembles were run over all seasons for the period 1979-
93 (coinciding with the period of the ECMWF 15-year reanalysis, ERA-15; Gibson et al, 1997).
In addition, a set of 9-member ensembles was created using model d) for the winter seasons.
In this paper, attention is focussed on results for these winter seasons. For technical reasons,
only 14 winter seasons from 1979/80-1992/93 from the 15 year reanalysis were studied.

For each model, the ensemble members were initiated from consecutive 12Z ERA-15 analyses,

. from 1 to 9 days preceding the beginning of the season (here taken as 1 December for the winter
.+ season). The length of each integration was 4 months plus 1 to 9 days, depending on the intial
« date. The integrations were run with prescribed observed SSTs, also taken from ERA-15, and
updated daily in the integrations. Model output was archived every 24 hours at 12Z and stored
in common format at ECMWF. Data from ERA-15 was used for verification purposes.

Monthly-mean SST anomalies were averaged over the area 7TN-7S, 160E-80W in order to define
an El Nifio/Southern Oscillation (ENSO) index. Within the reanalysis period, two strong
ENSO events occurred, a warm event in 1982/83 and a cold event in 1988/89. In addition
there were moderate warm events in 1986/87 and 1991/92, and a prolonged cold event from
1984/1986. As in Brankovic and Palmer (1998), these are used in the analysis below to define
a subset of ENSO years.

Before discussing the probabilistic skill scores associated with these ensembles, Fig 1 shows
the 500-hPa systematic error from the 4 models (for January to March, JFM) The patterns of
systematic error in the ECWMF and both Arpége models are quite similar; only the UKMO
model has a distinct pattern of systematic error. Comparing the two Arpége models, it is clear
from this study that seasonal-mean systematic error is not particularly sensitive to horizontal
resolution in the range T42 to T63. Although it appears that both the ECMWF and Arpége
models may have a common deficiency, it is difficult to draw any definite conclusions about
the causes of the systematic error from these results. The ECMWF and Arpége models do
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Figure 1: 500hPa height systematic error for January-February for a) ECMWF model, b)
Arpége T42 model, c) Arpége T63 model, d) UKMO model.
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not have the same set of physical parametrizations, and have somewhat different numerics (eg
Lagrangian vs Eulerian timestepping), yet their mean systematic errors are similar. On the
other hand the ECMWF and UKMO models have both different numerics and different physics.

The main purpose of showing the systematic error is to note that, in many parts of the extratrop-
ics, the systematic error of four state-of-the-art prediction models is comparable in magnitude
with the standard deviation of atmospheric interannual variability (this is shown explicity for
the ECMWEF model in Brankovic and Palmer; 1998). The fact that the model error is as large
as the signal to be predicted, lends some support to the use of a multi-model ensemble. On the
other hand, the fact that three of the four models have similar systematic errors suggests that
this particular choice of multi-model ensemble has an inherent bias, and may not be optimal.

For each model, the simulated climatology is defined as the mean of all ensemble members
for that model, taken over the whole 14-winter period. A simulated anomaly field is defined
with respect to the appropriate model climatology. In this way, a linear correction is applied
to take account of some of the model error discussed above. When multi-model ensembles
are constructed, we combine the anomaly fields computed in this way. The verifying analy31s
anomahes are computed using the ERA—15 chmatology

3 The Brier Score and its Decomposition

 As discussed in the introduction, we- consider an event E which, for a particular ensemble
- forecast, occurs a fraction p of times within the ensemble. If, when the verifying analyses are
- available, E actually occurred then let v = 1. Otherwise v = 0. Repeat this over a sample of N
different ensemble forecasts, so that p; is the probability of E in the ith ensemble forecast and
v; = 1 or v; = 0, depending on whether E occurred or not in the ith verification (i = 1,2...N).
In practice, the N ensemble forecasts could be taken not only from different years, but also
from different gridpoints. '

The Brier score (Brier, 1950) (used routinely to evaluate the ECMWF medium-range ensernble-
forecast system; Molteni et al, 1996, Palmer et al, 1996, Talagrand et al, 1998) is defined by

1 N
b= N > (i —u)? 0 < p; <1, ve{0,1} : (1)

i=1

Like the conventional rms score, the Brier score is positive, equalling zero only in the ideal limit
of a perfect deterministic forecast. The worse the forecast, the higher the Brier score (up to a
maximum of 1 for a consistently incorrect deterministic forecast).

For a large enough sample, the Brier score can be written as
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b= [ o Pol)g)dn+ [ 211~ o(p)lo(r)dp @)

where g(p) is a probability density function (pdf) such that g(p)dp is the relative frequency
that E was forecast with probability between p and p + dp, and o(p)g(p)dp gives the relative
frequency of cases when E was forecast with probability p and p+dp, and F actually occurred.
To see the relationship between (1) and (2) note that f;[p — 1]%0(p)g(p)dp is the Brier score
for ensembles where E actually occurred, and f [p — 0]*(1 — o(p))g(p)dp is the Brier score for
ensembles where E did not occur.

Simple algebra on (2) gives

b= [ - o) Po)dn— [ 1o~ olp)Pop)dp+ 31 — 3] ©)
where )
o= [ olp)glp)dp (4

is the (sample) climatological frequency of E. This is Murphy’s (1973) decomposition of the
Brier score. :

There are three terms on the right-hand side of (3). The first is the ‘reliability’

bra = | 0= o)Po(o)dp. )

A reliability diagram (Wilks, 1995) is one in which o(p)g(p)dp is plotted against pg(p)dp for
some finite binning of width dp. In a perfectly reliable system o(p) = p and the graph is a
straight line oriented at deg 45 to the axes, and b, = 0. Reliability measures the mean square
distance of the graph of o(p) to the diagonal line.

The second term on the right-hand side of (3) is ‘resolution’. A simple but reliable probability
forecast would be to always predict the climatological probability 6 of E. However, such a
forecast would have no power of discrimination between years because the same forecast would
be made every year). Resolution is defined as

bres = [ Io = olp)Po(p)dp ©)

Note that the negative of b..; enters the Brier score decomposition. Hence the more skilful
the system, the larger is b.¢;. A system with relatively high b,..; is one where the dispersion of
o(p) about 0 is as large as possible. Conversely, a forecast system has no resolution when, for
all forecast probabilities, the event verifies a fraction o(p) = & times. Resolution measures the
mean square distance of the graph of o(p) to the sample climate horizontal line.

The third term on the right-hand side of (3) is the ‘uncertainty’
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bunc = 5[1 - 5] (7)

and ranges from 0 to 0.25. If E was either so common, or so rare, that it either always occurred
or never occurred within the sample of years studied, then b,,. = 0; if E occurred 50% of
the time within the sample, then by,, = .25. Uncertainty is a function of the climatological
frequency of E, and is not dependent on the forecasting system itself. It can be shown that the
resolution of a perfect deterministic system is equal to the uncertainty.

When assessing the skill of a forecast system, it is often desirable to compare it with the skill of
a forecast where the climatological probability 6 is always predicted. The Brier score of such a
climatological forecast is by; = byn. (using the sample climate), since, for such a climatological

forecast bre; = bres = 0. In terms of this, the Brier skill score, B, of a given forecast system is
defined by

B=1-b/by. (8)

B < 0 for a forecast no better than climatology, and B = 1 for a perfect deterministic forecast.

Skill-score definitions can similarly be given for reliability and resolution, ie

Brel = 1_brel/bcli ‘ (9)
Bres = bres/bunc (10)

the latter recognising, as noted above, that the largest possible value of bres is equal to bype.
Hence, for a perfect deterministic forecast system, Bye = Bpes = 1.

We illustrate these skill measures in Figs 2-3, which are reliability diagrams for the ECMWEF-
model ensemble, and for the multi-model ensemble (using all 4 models), respectively. For Fig
2a and 3a, the event Ey is: December-February (DJF) seasonal mean 850hPa temperature
anomaly is below normal. For Fig 2b and 3b, the event E._; is: DJF 850hPa temperature
anomaly is less than -1K. All points in the extratropical Northern Hemisphere (NH), and all
years in the PROVOST data set are used. For each event, the horizontal axis gives the forecast
probability p, the vertical axis gives the observed frequency o(p), based on a binning of data in
probability bins of width 0.1 (or 0.05 in the case of the extreme probabilities). The number of
occurrences within these bins are given next to the data points. The frequency of occurrences
are also plotted as histograms next to the reliability diagrams; these give the pdf g(p). The
sample-mean climatological probability of occurrence & for F is shown as the horizontal dashed
line on the reliability diagram. For E., (Fig 2a and 3a), 6 = 0.5; for E._, (Fig 2b and 3b),
0 ~ 0.2. For each reliability diagram B, B, and B, are also shown in the top left-hand
corner.
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Figure 2: Reliability diagram, Brier skill score, and Murphy decomposition, for Eg (top) and
E<_1 (bottom) for ECMWZF-model ensemble. All extratropical NH points. The values on
the reliability graph give the number of occurences where E' was forecast within each of the
probability category bins. These values are also plotted as a frequency distribution to the right
of the reliability diagram.
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Figure 3: As for Fig 2 but multi-model ensemble.
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For the ECMWF model (Fig 2), the Brier skill score B for Ey is equal to zero; ie, for this
event, the skill of probability forecasts is no better than the skill of a climatological probability
forecast. Looking at the Murphy decomposition, the ensemble probability forecasts are certainly
reliable (B, = 0.92), and graph of o(p) has positive slope, and parallels the diagonal in places.
On the other hand, the probability forecasts are ‘over confident’. For example, for occasions
where all ensemble members predict Eg, the event only verifies 80% of the time. Similarly,
for occasions where no members forecast the event, it occurs about 20% of the time. Since
such cases of forecast unanimity are relatively rare, this over-confidence does not contribute
substantially to Bre (which could be taken as a shortcoming of the score). In contrast to
reliability, the ensembles have poor resolution By, = 0.07. The corresponding pdf is strongly

weighted towards the climatological frequency where o(p) is tilted towards the climatological
frequency line.

For E._,, the Brier skill score for the ECMWF model is slightly positive B = 0.03 and therefore
indicates somewhat higher skill than that of a climatological forecast. Looking at the decom-
position, it can be seen that the reliability is only slightly better than for E,. At first sight
this may appear surprising given that the slope is consistently less than that of the diagonal.
However, the slope in the vicinity of the pdf maximum is similar to that for Ey. On the other
hand, the resolution is clearly better (Bye; = 0.10) than for E.

By contrast, the Brier skill score for the multi-model ensemble (Fig 3) is better than climatology,
and better than the ECMWF model, for both events (B = 0.12 for Ey, B = 0.13 for E._,).
Visually, it can be seen that the reliability is considerably improved for both events, and for
Eo, the graph of o(p) is very close to the diagonal (where B,y = 0.99). In addition, B, is
improved using the multi-model ensemble. In some respects the increase in resolution might
appear surprising, since the pdf of the multi-model ensemble is more sharply peaked towards
the climatological frequency of the event in question. However, the tilting of the graph of o(p)

away from the horizontal in the multi-model ensemble, more than offsets for the sharpening of
the pdif.

Tables 1-2 give a summary of Brier skill scores for all extratropical NH gridpoints and for the
subset of all European gridpoints respectively. In each table the top sub-table is for E.q, the
bottom is for E._;. For both events, and for both regions, it can be seen that the multi-
model Brier skill score is more skilful than the equivalent score from any of the single model
ensembles. Note that in the case of the European region, the Brier skill score is either negative
or identically zero for all individual models, whilst the multi- model scores are (just!) positive.

The improvement in multi-model Brier skill score over the ECMWTF skill score can arise both
from the use of multiple models, and from the fact that the multi-model ensemble is four
times larger than the individual-model ensembles. In order to assess which of these factors was
most important, Brier skill scores have been estimated by constructing a 9- member ensemble,
taking the first three members from the ECMWF, T63-Arpege, and UKMO ensembles. For
the extratropical NH, this 9-member multi-model ensemble has B = 0.04 for E.; and B = 0.06
~ for E._;. For both events, this corresponds to about one third of the improvement over the
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ECMWF ensemble when using the full 36-member multi-model ensemble. On this basis, the
improvement in the multi-model ensemble over the individual model ensemble arises partially
from the use of more than one model, but, perhaps more importantly, from the larger ensemble
size implied by combining individual-model ensembles.

As discussed in Brankovic and Palmer (1998), the ensemble-mean skill is improved if one
restricts onself to ENSO years within the PROVOST integration period. Tables 1-2 also show
the Brier skill scores calculated over the subset of 5 ENSO winters. For the NH, there is an
improvement in skill using this subset of years, for each individual-model ensemble, and for the
multi-model ensemble. For Europe, on the other hand, Brier skill scores are actually worse,
restricting to ENSO years. This impact of ENSO over Europe, between different measures of
skill, will be further discussed in the sections below.

As discussed above, the theoretical maximum value for B is unity, corresponding to a perfect
deterministic forecast. This theoretical maximum is not a reasonable least upper bound on
what can be achieved, since, even with a perfect model, inevitable uncertainties in initial
conditions lead to chaotic variability within the ensemble. One way of estimating a more
realistic upper bound on skill is to verify the ensemble against one of its members (chosen at
random). Equivalently, one can calculate a ‘perfect- model’ Brier skill score, Bye,, by taking the
9(p) as given by the ensemble, and putting o(p) = p (perfect reliability) in (3) and (4). In this
way, Bper is defined only from the first and second moments of p with respect to g(p). Tables 1-2
show By, using each of the four model ensembles. Note that the perfect-model estimates are
model dependent; this is not surprising given that the degree of internal model variability will
be model dependent. (For models with relatively small internal variability, the perfect-model
estimate of Brier skill score will be larger.) For the NH, the average perfect-model estimates are
Bper =:0.25 for both Ey and E._;. For Europe, the average Brier skill score is a little lower
Bper = 0.17 for both E.g and E._,, but is certainly above zero. hence there is potential seasonal
predictability over Europe. It can be noted that By, has deliberately not been estimated for the
multi-model ensemble. This is because there are clear differences between.quél climatologies
associated with systematic rather than random uncertainties between model formulation. In

this sense, the multi-model ensemble cannot be considered as a representative of a perfect-model
ensemble.

4 Relative Operating Characteristic

The relative operating characteristic (ROC; Stanski et al, 1989) is another test of the perfor-
mance of a probabilistic forecast. It is based on the notion that a prediction of E is assumed,
providing E is forecast by at least a fraction p = p; of ensemble members, where the threshold
D¢ is defined a priori. ROC is used routinely to evaluate the performance of the operational
ECMWF medium-range ensemble forecasts (Buizza et al, 1998).

Technical Memorandum No. 265 11
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| a) | ECMWF | EDF | Météo France [ UKMO | All Models |
All years 0.00 | 0.08 0.08 -0.01 0.12
ENSO years 0.07 | 0.19 0.12 0.10 0.20
Perfect Model | 0.29 | 0.22 0.23 0.24

[ b) | ECMWF | EDF | Météo France | UKMO | All Models
All years 0.03 [ 0.08 0.04 0.01 0.13
ENSO years 0.08 | 0.16 0.10 0.11 0.20
Perfect Model |  0.30 | 0.24 0.23 0.22

Table 1: Brier Skill Score. NH grid points. a) E<q b) E._;

| a) | ECMWF [ EDF | Météo France [ UKMO | All Models |
All years 2005 |-0.05 -0.05 20.01 0.05
ENSO years -0.25 -0.11 -0.07 -0.05 -0.3
Perfect Model 0.21 0.14 0.19 0.14

| b) | ECMWF | EDF | Météo France [ UKMO [ All Models |
All years -0.03 0.00 -0.12 0.02 0.05
ENSO years -0.07 -0.08 -0.15 -0.03 -0.01
Perfect Model 0.20 0.15 0.16 0.15

Table 2: Brier Skill Score. European grid points. a) E. b) E._;

12 Technical Memorandum No. 265
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Consider first a deterministic forecast of E (either that it will occur, or that it will not occur).
Over a sufficiently large sample of independent forecasts, we can form the forecast-model con-

tingency matrix giving the frequency that E occurred or not, and whether it was forecast or
not, ie

Occurs

No Yes

Forecasst No a g
Yes v 4

Based on these values, the so-called ‘hit rate’ (H) and ‘false-alarm rate’ (F) for E are given by

H = 6/(6+9) |
F = q/(a+7). (11)

Hit and false alarm rates for an ensemble forecast can be defined as follows. Suppose it is
assumed that E' will if the forecast probability p > p; (and will not occur if p < p;). By varying
P between 0 and 1 we can define H = H(p;), F = F(p;). In terms of the pdf g(p)

H(p:) = /p tl o(p)g(p)dp/o
F) = [ (- o)e(e)dp/(1 ~2) (12)

The ROC curve is a plot of H(p;) against F(p;). A measure of skill is given by the area under
the ROC curve (Agoc). A perfect deterministic forecast will have Agoc = 1, whilst a no-skill
forecast for which the hit and false alarm rates are equal, will have Agoc = 0.5.“As discussed
in the next section, the ROC curve values are of direct use in assessing the user- specific value
of a probability forecast, based on decision-model analysis.

Figs 4-5 are the same as Figs 2-3 but for ROC rather than reliability. (The values H(p,)
and F'(p;) have been estimated in terms of bins of width 0.1). The Agoc value is shown in
each figure. Results are broadly in agreement with those from the previous section. For both
the ECMWF-model ensemble, and the multi-model ensemble, E._; is predicted more skilfully
than E.y. In all cases, Aroc is greater than the no-skill value of 0.5. For both events, the
multi-model ensemble is more skilful than the ECMWF-model ensemble.

Tables 3-4 are the same as Tables 1-2 but for Agpc rather than B. For both events and for the
NH and Europe, it can be seen that the multi-model Agoc is higher than that for any of the

Technical Memorandum No. 265 13
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[a) ECMWF | EDF | Météo France | UKMO | All Models |
All years 0.648 [0.680 |  0.683 0.626 | 0.693
ENSO years | 0.707 [0.756 |  0.715 0.712 | 0.753
Perfect Model | 0.807 | 0.768 0.773 0.777

D | ECMWF | EDF | Météo France | UKMO | All Models |
All years 0.706 | 0.715|  0.702 0656 | 0.736
ENSO years | 0.752 [0.780 |  0.750 0.741 |  0.800
Perfect Model | 0.852 |0.832|  0.827 0.828

Table 3: Area under ROC curve. NH grid points. a) E<y b) E._;

| a) | ECMWF | EDF | Météo France [ UKMO | All Models |
All years 0.593 [ 0.562 0.596 0.596 0.625
ENSO years 0.509 | 0.575 0.617 0.559 0.590
Perfect Model | 0.762 | 0.709 0.748 0.711
b) | ECMWF [ EDF | Météo France | UKMO | All Models |
All years 0.626 [0.626 0.520 0.617 0.628
ENSO years 0.621 | 0.576 0.555 0.632 0.614
Perfect Model | 0.792 |0.775 0.763 0.760

Table 4: Area under ROC curve. European grid points. a) E< b) E._;

individual model ensembles. For the NH, for both events, the single-model and the multi-model
Aroc is higher for the set of ENSO years than for the whole dataset. For Europe, there is no
consistent improvement or degradation by restricting to ENSO years; for example, for Ey both

Arpége models show an improvement in Agoc by restricting to ENSO years, whilss ECMWF
and UKMO (and the multi-model ensemble) show a degredation.

Perfect-model Arpc values are also shown in Tables 3-4. As for the Brier skill score, perfect-
model hit and false alarm rates were estimated from the ensemble pdf g(p), putting o(p) = p,
ie assuming perfect reliability. Hence, for example, for the perfect-model ensemble

Hper(p:) = /,, j pg(p)dp/ /0 1 pg(p)dp (13)

As with perfect-model Brier skill score, there is some variation in Agoc between the different
models. Hemispheric values are larger than European values, though the latter are substantially

higher than the no-skill value of 0.5, again demonstrating potential seasonal predictability over
Burope.
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Figure 4: As Fig 2 but for ROC curve.
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Figure 5: As Fig 4 but for multi-model ensemble.
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0

5 Decision-Model Analysis

Although B and Agoc provide objective measures of skill for ensemble forecasts, it is difficult
to say what constitutes a threshold of useful skill for seasonal forecasts. This is not surprising
since ‘usefulness’ is a user-specific concept. In an attempt to define ‘usefulness’ objectively, we
consider here a simple decision model (Murphy, 1977; Katz and Murphy, 1997) whose inputs
are the the hit and false-alarm rate estimates H(p;) and F(p;). This decision model has been

used by Richardson (1998) to define the economic value of ECMWF medium-range ensemble
forecasts.

Consider a potential forecast user who can take some specific precautionary action depending
on the likelyhood that E will occur. Taking precautionary action incurs a cost C irrespective
of whether or not E occurs. However, if E occurs and no action has been taken, then a
loss L is incurred. The expense associated with each combination of action/innaction and
occurrence/non-occurrence of E is given in the decision-model contingency matrix

Occurs

No Yes

Take Action No 0 L
Yes C C

The decision maker wishes to pursue the strategy which will minimise expenses over a large
number of cases.

If only climatological information on the frequency 6 of E is available, there are two basic
options: either always or never take precautionary action. Always taking action incurs a cost
C on each occasion, whilst never taking action inurs a loss L only on the proportion & of
occasions when F occurs, giving an expense 6L.

The purpose of this section is to analyse whether the PROVOST forecast data, if it were used
by the hypothetical decision maker, would reduce expenses beyond what could be achieved
using climatological information alone. Consider first a deterministic forecast system with
characteristics described by the forecast-model contingency matrix in section 4. Then, using

the forecast and decision contingency values, the user’s expected mean expense M (per unit
loss) is

BLA+ (y+6)C
L
This can be written in terms of the hit-rate H and the false-alarm F using (11), so that

M= (14)

Technical Memorandum No. 265 17
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M=F%(1—5)—Ha(l—%)+a (15)

For a perfect deterministic forecast H = 1, F = 0, hence

Myer =0

~Q

(16)

To calculate the mean expense per unit loss knowing only climatology, suppose first the decision
maker always protects, then M = C/L (equivalent to using a forecast system where the event
is always predicted and for which H = 1 and F' = 1). Conversely, if the decision maker
never protects then M = & (equivalent to using a forecast system where the event is never
predicted and for which H = 0 and F' = 0). Hence if the decision maker knows only the
climatological frequency 6, M can be minimised by either always or never taking precautionary
action, depending on whether C/L < 5, or C/L > & respectively. Hence, the mean expense per
unit loss associated with a knowledge of climatology only, is

My = min(%, 5). (17)

We define the value V' of forecast information to be a measure of the reduction in M over M.,
normalised by the maximum possible reduction associated with a perfect deterministic forecast,
ie ,

My — M
Mcli - Mper

For a forecast system which is no better than climate, V = 0; for a perfect deterministic forecast
system V = 1.

V= (18)

As discussed in Section 4, an ensemble forecast gives hit and false-alarm rates H = H (pt),
F' = F(p), as a function of probability thresholds p; (see (12)). Hence V is defined for each p;,
ie V = V(p;). Using (15), (16) and (17)

min($,0) — F(p:) ¢ (1 — 0) + H(p)o(1 — ) — 5

\%4 = . 19
For given C/L and event E, the optimal value is
Vopt = max V (p;). (20)
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Figure 6: V(p;) for p; = 0.1,...,0.9, together with the optimal envelope value V,;, for Eq.
Extratropical NH grid points.
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Figure 7: Vo for Eq. Individual-model ensembles and multi-model ensembles. Extratropical
NH grid points.
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Figure 9: V,p; for E._;. Multi-model ensemble. Dashed: all years. Solid: ENSO years only.
Extratropical NH grid points.
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Figure 10: Vop; for E<.;. Solid: Perfect-model ensemble (based on ECMWF model). Dotted -
ECMWPF-model ensemble (verified against real world). Extratropical NH grid points.
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Figure 11: As Fig 9, but for European grid points only.
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In Fig 6, V(p;) and V,,; are shown for E, as a function of C /L, based on ECMWF ensemble
data only, and taken over all extratropical NH grid points. The thin lines show the individual
graphs V(p) for p; = 0.1,0.2,...,0.9. For small Pt, the graph indicates value above climatology
for users with C/L between about 0.2 and 0.5. For large p,, V(pt) is positive for users with
C/L between about 0.5 and 0.8. Consequently, the envelope function Vopt shows value for all
users with C/L between about 0.2 and 0.8.This illustrates the benefit of probabilistic forecasts
over deterministic forecasts. The value curve for a deterministic forecast would be no better

than that of a single V(p;) curve, since a deterministic forecast has only one hit and false-alarm
rate associated with it.

Fig 7 shows Vo for E for all the individual-model ensembles and for the multi-model ensem-
ble. For low C/L users, the value of the multi-model ensemble is about the same as the value
obtained by two of the individual models. However, for users with C /L > 0.5, the multi-model
ensemble provides the highest value.

For both Fig 6 and Fig 7, it can be noted that Vopt peaks for users with C/L ~ 0.5, which is
the climatological frequency of EFp. Climatological information is of no value to users whose
cost-loss ratio is close to the climatological frequency of F. In this sense it is not surprising
that the value of PROVOST data over climatology, is largest for users whose cost/loss ratio

C/L ~ 6. (For these users, the cost of always or never taking precautionary action is about
the same).

Fig 8 shows V,,: for E._; for all the individual-model ensembles and for the multi-model
ensemble. (Note that the scale of the ordinate axis is different in Figs 7 and 8.) For this event,
maximum value occurs for users with C/L ~ 0.2, the climatological frequency of E._;. The
value of the multi-model ensemble data, for this event, exceeds that of any of the individual
models for most cost/loss ratios between 0 and .6. The value of forecasts of the E._; event
is significantly higher than that of the E.y event for C/L ~ &, consistent with the fact (see
sections 3 and 4) that both B and Aroc were higher for E__,.

In earlier sections, we have noted that skill is improved if one restricts to ENSO years. Fig
9 shows Vi for E._; for the multi-model ensemble data restricted to ENSO years, for all
extratropical NH points. For user with C/L ~ & the value of the forecast information is close
to 1/2 of that obtainable from a hypothetical perfect deterministic forecast.

Again, as mentioned in earlier sections, the notion of a hypothetical perfect deterministic
forecast is not a realistic one for seasonal forecasts. Fig 10 shows the value for a perfect-
model ensemble made by using the hit and false alarm rates estimated under the perfect-
model assumption (see Section 4). This is done for the ECMWF ensemble (for E<_1). The
actual value of the ECMWF ensemble is also shown for reference. On the basis of this curve,
it could be said that seasonal forecasts of E«_1 are potentially valuable to the entire range of
users, though present levels of model error restrict usefulness to users whose C /L lies bewteen
about 0,1 and 0.5. On the other hand, for users with high C /L, the potential value of forecast
of E<_; is small compared with that from a hypothetical perfect deterministic forecast.
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Finally, Fig 11 shows V,py; for E._; from the multi-model ensemble over Europe. Comparing
with Fig 7, it can be seen that the value of the PROVOST forecasts over Europe is not as
great as that taken over all extratropical grid points (note different scaling of the ordinate axis
in Fig 8 and 11). However, neither is it zero. For users with C/L ~ o, the value is close to
20% of that obtainable with a hypothetical perfect deterministic forecast. It can be seen that
restricting to ENSO years, improves value for some users, decreases value for other users. The
fact that the impact of ENSO on value over Europe is user dependent, is consistent with the
mixed signal obtained earlier, for the impact of ENSO on B and Aroc over Europe.

6 Summary and Conclusions

Seasonal forecasting is inherently probabilistic (eg Palmer and Anderson, 1994). This has been
recognised in the past through calculations of ensemble means and ensemble standard deviations
- estimates of the first and second moments of the forecast probability distribution function.
However, the approach in this paper is motivated by the need to develop a general methodology
to evaluate the skill (and usefulness) of user-specific seasonal forecasts. Although in general
terms, a user will want to know whether it will be rainy/dry, warm/cold, windy/settled, for more
quantitative applications, forecasts should be tailored to specific user needs. For example, a user
might want to know whether the seasonal-mean rainfall will be at least a standard deviation
above average in a specific region of interest; another user may want to know whether there will
be a period of ten or more consecutive days within the coming season when nightime minimum
temperature will drop below freezing point. A third user might conceivably want to know
whether the two events above will both occur. More generally, the analysis in this paper is
based on the notion that the user wants to know whether some condition or ‘event’ F, defined in
terms of the meteorological variables from the coming season (or seasons), will or will not occur.
This analysis has been applied to the set of PROVOST uncoupled ensemble integrations. For
each of four different atmospheric global circulation models, 9-member ensembles were run over
the winter season for the period 1979-93 (coinciding with the period of the ECMWF 15-year
reanalysis). The integrations were run with prescribed observed sea surface temperatures.

Given an ensemble forecast, one can evaluate the fraction of occasions that E is predicted
within the ensemble. This is the ensemble probability forecast of F. In this paper we outline
two objective measures to evaluate the skill of the ensemble system, considered as a tool to
predict the probability of F.

The first measure is the Brier score and the associated Murphy decomposition (Murphy, 1973).
In some sense, the Brier score is a generalisation of familiar rms scores for deterministic forecasts.
The decomposition of the Brier score allows one to assess specific attributes of a probability
forecast: reliability and resolution. For example, if every member of an ensemble predicted F,
then the ensemble probabilty forecast of E would be 100%. In all such situations one would
expect E' to actually occur. On the other hand, taking all the situations where E was predicted
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by the ensemble with, say, 60% probability, then we should only expect E to actually occur on
60% of the occasions. An ensemble system where F verifies a fraction p of occasions, when F
is forecast with probability p, is said to be a reliable system. On the other hand, reliability is
not enough for the ensemble system to have skill. A forecast where the same probability for
FE is given every time, based on the climatological frequency of E, will be reliable. However,
such a system will be unable to distinguish between situations where E is relatively likey to
occur, and situations where F is relatively unlikely to occur. A system which can make such a
distinction is said to have resolution. The Brier score combines reliability and resolution into
one single measure.

The second measure is the relative operating characteristic (ROC). This gives the forecast hit
rate and false alarm rate for F, made by assuming that E will occur if it is forecast with a
probability that exceeds some threshold p; (and that F will not occur if it is forecast with a
probability that does not exceed p;). A plot of hit rate versus false-alarm rate for varying p; is
known as a ROC curve, and the area under the ROC curve, Agog, is a measure of the skill of
the probabilistic forecast system.

Although the Brier skill score and Apoc are objective measure of skill, it is impossible on
the basis of these values alone, to say whether the forecast system has a useful level of skill.
Usefulness is a user-specific concept; for some users, the ability to forecast probabilities that are
only marginally different from climatology may be very valuable, for others, such probabilities
would be almost worthless. The hit and false-alarm rate are fundamental parameters in one
simple assessment of the user-specific value of the forecast system. The analysis is based on a
simple -and idealised decision model (Murphy, 1977; Katz and Murphy, 1997). We imagine a
user who has to decide whether or not to take some form of precautionary action, at cost C,
on the basis that if E occurs, a loss L will be incurred. For example, in the event of a mild
winter, over-wintering crops might be damaged by aphid growth. A farmer might consider
crop spraying as a precautionary action. Similarly, a farmer might consider selling some of his
livestock in advance of a forecast drought. This precautionary action would imply a cost to the
farmer in terms of reduced livestock price compared with that obtained if brought to market
after a normal season. Knowing only the climatological frequency of E, and the cost/loss ratio
(C/L), the user can decide to either always or never take precautionary action. The forecast
system can be said to have value if the user’s mean expense is less than this baseline expense.
The decision model analysis shows in a succinct and effective way, the enhanced value of a
probability forecast system over that of a deterministic forecast system.

In this paper, two simple events were defined Ey: seasonal-mean 850 hPa temperature anomaly
is less than zero, and E._;: seasonal-mean 850 hPa temperature anomaly is less than -1K. These
events were evaluated taking either all grid points in the extratropical northern hemisphere, or
all grid points over Europe. ‘

It was found that the probabilistic skill of the multi-model ensemble was higher than that
for any of the individual-model ensembles. Comparison of 9-member multi-model ensembles
with 9-member individual-member ensembles suggested that about 1/3 of the Brier skill score
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improvement of the full (36-member) multi-model ensemble arose from the use of different
models, indicating that the majority of improvement arose from the larger ensemble size of
the full 36-member multi-model ensemble. From a practical point of view, this suggests that
optimal seasonal forecast performance could be obtained by a probabilistic synthesis of available
operational forecasts, but that individual operational centres should strive to produce ensembles
as large as practicable.

Skill and value over Europe was found to be small compared with similar measures over the
whole extratropical Northern Hemisphere. For example, for F._;, the maximum value over
the whole hemisphere was close to 50% of that associated with a perfect deterministic forecast.
Over Europe, the maximum was close to 20%. However, this number is not negligible; if a
major European company could double its profits given a hypothetical perfect deterministic
seasonal forecast for Europe, then the results here suggest that it could increase them by up to
20% with a realistic ensemble forecast.

The PROVOST integrations were shown to suffer from considerable systematic error. In order
to assess a realistic level of skill achievable in the situation where systematic error could be
minimised, but where the intrinsic chaotic nature of the atmosphere is represented, the skill and
value of a perfect-model ensemble were estimated. Essentially, these values correspond to the
situation where one member of the ensemble is chosen, at random, to represent the verification.
This approach could be justified on the basis that, if medium-range forecast experience is
anything to go by, systematic error will be reduced significantly in the coming years. The level
of skill and value estimates from the perfect- model ensembles were considerably higher than
those obtained by comparing against the ECMWF reanalysis verification, both for the NH and
European grid points. '

Finally, it was found, that, over the extratropical NH, skill and value were enhanced by consid-
ering only those years where a moderate or strong ENSO event was in progress. Over Europe,
the results were mixed. Brier skill scores were poorer during El Nifio years, whilst Agoc was
higher for some models, lower for others. By considering the value diagnostic, some rationalisa-
tion of these mixed results could be made; by restricting to moderate or strong El Nino years,
value over Europe was increased for some users, and decreased for other users.

The analysis performed in this paper has been far from comprehensive. We have considered
only two rudimentary events, and have evaluated them over two rather extensive regions. As
mentioned above, specific users may require more complex events involving different, or indeed
multiple meteorological variables, and the user’s domain of interest may well be much smaller
than that considered. However, for all such events and domains the techniques outlined in this
paper can be applied. In other words, given a user-defined event E and domain D, a reliability
diagram with Brier skill score (and associated decomposition), together with a ROC diagram
and value graph can be produced over D. Of couse, if the user requirement is too specific, then
this will be reflected in a very noisy reliability diagram with low skill and value.

We conclude by suggesting that the tools developed in this paper be used routinely as part of an
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assessment of operational seasonal forecasts, and note that this assessment might be performed
most effectively through interaction between user and forecaster.
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