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ABSTRACT

The impact of ensemble size on the performance of the European Centre for Medium- Range Weather Forecasts (ECMWF) Ensemble
Prediction System (EPS) is analyzed. The skill of ensembles generated using 2, 4, 8, 16 and 32 perturbed ensemble members are-
compared for a period of 45 days, from 1 October to 15 November 1996. For each ensemble configuration, the skill is compared with
the potential skill, measured by randomly choosing one of the 32 ensemble members as verification (idealized ensemble). Results are
based on the analyzes of the prediction of the 500 hPa geopotential height field. Various measures of performance are applied: skill of
the ensemble mean, spread-skill relationship, skill of most accurate ensemble member, Brier score, Ranked Probability Score, Relative
Operating Characteristic, and the Outlier Statistic. o

The relation between ensemble spread and control error is studied using L2, L%, and L™ norms to measure distances between ensemble
members and the control forecast or the verification. It is argued that the supremum norm is a more suitable measure of distance, given
the strategy for constructing ensemble perturbations from rapidly-growing singular vectors. Results indicate that, for the supremum
norm, any increase of ensemble size within the range considered in this paper is strongly beneficial. With the smaller ensemble sizes,
ensemble spread does not provide a reliable bound on control error in many cases. By contrast, with 32 members, spread provides a
bound on control error in nearly all cases. It could be anticipated that further improvement could be achieved with higher ensemble size
still. On the other hand, spread skill relationship was not consistently improved with higher ensemble size using the L2 norm.

The overall conclusion is that the extent to which an increase of ensemble size (particularly from 8 to 16, and 16 to 32 members)
improves EPS performance, is strongly dependent on the measure used to assess performance. In addition to the spread/skill
relationship, the measures which are most sensitive to ensemble size are shown to be the skill of the best ensemble member (particularly
when evaluated on a point-wise basis), and the Outlier Statistic.

1. INTRODUCTION

Since December 1992, both the U. S. National Meteorological Center (NMC, now National Center for Environmental
Prediction, NCEP) and ECMWF have supplemented their deterministic high-resolution forecast integration with a
medium-range ensemble prediction (Tractor and Kalnay, 1993; Palmer et al, 1993). The development follows the
theoretical and experimental work of Epstein (1969a), Gleeson (1970), Fleming (1971a-b) and Leith (1974).

Ensemble prediction provides an estimate of the forecast probability distribution of atmospheric states. The extent to
which this estimate is reliable will depend on ensemble size. Because of limited computer resources, ensemble size must
necessarily be very much smaller than the dimension of the phase space of the numerical weather prediction model used
to perform the integrations. The purpose of this paper is to try to assess the impact of ensemble size on ensemble
performance, for relatively small ensemble sizes. Specifically, five ensemble configurations based on 2, 4, 8, 16 and 32
perturbed members are compared over a 45-day period, from 1 October to 14 November 1996. A number of different
performance measures are applied: ensemble-mean skill, spread/skill relationship, Brier Score, Outlier Statistic, Ranked
Probability Score and Relative Operating Characteristic.
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c Impact of Ensemble Size on Ensemble Prediction

Individually, these measures do not necessarily prove that one configuration is superior to another (for example, the skill
of the ensemble mean cannot be used to assess ensemble dispersion). However, together these measures' provide a
reasonably complete assessment of ensemble performance.

One important part of the paper concerns the assessment of possible relationships between spread and skill. We consider
a hierarchy of distance norms for defining these quantities. At one end of the hierarchy lies the familiar root-mean-square
distance. At the other end lies the supremum norm. We argue that the latter is a more appropriate norm given the
ECMWEF strategy of perturbing with fast-growing singular vector perturbations (Buizza and Palmer 1995; Molteni et al,
1996).

Following Buizza (1997), we also assess the skill of a size-N ensemble in idealized mode, taking ‘as verification an
ensemble member randomly chosen among the 32 perturbed members.

The f)aper is organized as follows. The ensemble configurations are described in section 2. The methodology used to
assess ensemble skill is discussed in Section 3. The performance of the different ensemble configurations are compared
in Section 4. Conclusions are drawn in Section 5.

2. THE ENSEMBLE CONFIGURATIONS

Up until December 1996, the ECMWF EPS comprised 32 perturbed and one unperturbed (control) non-linear
integrations of a version of the ECMWEF model (Simmons et al, 1989; Courtier et al, 1991) with spectral triangular
truncation T63 and 19 vertical levels (T63L19). The reader is referred to Molteni et al (1996) for a more complete
description of the EPS. :

The initial conditions of the 32 perturbed members are created by adding and subtracting perturbations to the control
initial conditions. These perturbations are defined using the singular vectors (Buizza and Palmer, 1995) of the tangent
propagator of the ECMWF model. The singular vectors identify the most unstable directions of the phase space of the
system growing over a finite interval (the optimisation time interval), where the growth of any perturbation is computed
as the ratio between the perturbation total energy at optimisation and initial time (i.e. a total energy norm is used).

The singular vectors are computed at T42L19 resolution with an optimisation time interval of 48 hours (Buizza et al,
1997), following a time evolving trajectory computed applying the complete ECMWF physical package, but using only a
linear surface drag and vertical diffusion scheme (Buizza, 1994) when computing tangent forward and ad_|01nt
integrations.

Selection criteria are applied to select only 16 of the computed singular vectors. The selection criteria are such that the
first 4 singular vectors are always chosen, and each subsequent singular vector (from the 5th onwards) is selected only if
half of its total energy lies outside the reglons where the singular vectors already selected are localized.

Cnce the 16 singular vectors have been selected, an orthogonal rotation in phase-space and a final re-scaling -are
performed to construct the ensemble perturbations. The purpose of the phase-space rotation is to generate perturbations
which have the same globally-averaged energy as the singular vectors, but smaller local maxima and a more uniform
spatial distribution. Moreover, the rotation ensures that all perturbations grow linearly at a similar rate. The rotation is
defined to minimize the local ratio between the perturbation amplitude and the amplitude of the analysis error estimate
given by the ECMWF 3D-var assimilation procedure (note that the estimate was given by the ECMWF Optimum
Interpolation procedure up to 30 January 1996, time at which 3D-var became operational). At the time of this study, the
re-scaling allowed perturbations to have local maxima up to & = /2 larger than the local maxima of the analysis error
estimate.
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The 16 perturbations are added and subtracted to the control initial conditions (defined by the ECMWEF 3D-var data
assimilation procedure, Courtier et al, 1997) to define 32 perturbed initial conditions. Then, 32+1 (control) 10-day
T63L19 non-linear integrations are performed.

The different ensemble configurations in this paper have been generated by sampling pairs of perturbed members, so that
each ensemble contains perturbed members with initial conditions generated by adding and subtracting the same
perturbation. Moreover, the ensembles have. been generated so that, if N/>N2, configuration ens_N1 constitutes an
extension of ens_N2, in the sense that it includes all the perturbed members of ens_N2, plus another (N/-N2) members.

The skill of any configuration is computed using the operational ECMWF analysis as verification, while the potential
skill of any configuration is computed considering a randomly chosen ensemble member of ens_32 as the verification.
The type of ensemble arising when one member is chosen at random as the verification is often referred to as a “perfect-
model ensemble”. However, in addition to the removal of model error, this type of perfect-model ensemble has a
fundamentally different skill characteristic to the actual ensemble. The ECMWF ensemble perturbations have a specified
amplitude which can be taken to be approximately (but somewhat greater than) one standard deviation of the probability
distribution of analysis error in the (phase space) direction chosen. As such, irrespective of model error, there is a definite
non-zero probability that the verification lies outside the span of the ensemble (in the hypothesis of a Gaussian
distribution, it would be about 32% if the perturbations were at precisely one standard deviation in amplitude). By
contrast, in the perfect model ensemble the amplitude of the control forecast error is never larger than that of the forecast
perturbations. Because of this important difference, we used the term idealised ensemble rather than “perfect-model
ensemble”.

3. VERIFICATION METHODOLOGY

The verification of a probability forecasting system is more complex than the verification of a single deterministic
forecast (Stanski et al, 1989, Wilks, 1995). Thus,.as for example in Zhu et al (1996), a complete analysis of an ensemble
system should include probabilistic measures such as the Brier score (Brier, 1950), the ranked probability skill score
(Epstein, 1969b), and other measures defined by signal detection theory (Mason, 1982). A brief explanation of the
measures used in this paper is given below. Attention is focused on the 500 hPa geopotential height, and over two
regions, the Northern Hemisphere extra-tropics (NH, region with latitude ®230°N), and Europe (latitude
30°N<P<75°N, longitude 20°W<A<45°E).

3.1 Ensemble spread and forecast skill

Two of the most basic quantities used to verify an ensemble system are ensemble dispersion, or spread, and the skill of
the control or ensemble-mean forecast. Arguably, the primary purpose of ensemble prediction is to use the former
quantity as a predictor of the latter quantity. In some sense one expects situations when the ensemble dispersion is large
to correspond to relatively poor forecast skill, and cases where ensemble dispersion is small, to correspond to relatively
high forecast skill. It is commonplace to define skill in terms of root mean square error, which would correspond to
choosing an L? distance function between a forecast and its verifying analysis. If such a distance function is used to
define skill, then, for consistency, it should also be used in the definition of spread.

As noted by Barker (1991), there is no reason to expect a perfect correlation between spread and skill as determined, for
example, by an L? measure. In particular, whilst small spread should indicate small control error, large spread may not
necessarily imply large control error; it is possible for the spread to be relatively large, yet the control error to be
relatively small. In this sense, in a perfect ensemble system, it may be more profitable to think of the spread estimate as
providing some approximate bound on control error. The extent to which this is true should be dependent on ensemble
size.
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However, there is no theoretical reason why the L? measure is preferred over others. In particular it is possible to choose
a distance measure to emphasise this notion of spread providing a bound on error. Consider the distance between two
forecasts, or between a forecast and its verifying analysis, in terms of the supremum of the absolute value of the
difference field, taken over all grid points in a given region. This supremum norm is an upper bound on all norms of the
form L”, n element N. In the discussion below, we assess the impact of ensemble size on spread skill relations using both
the L? and supremum norms.

From a practical point of view, it is not particularly obvious which norm (Z2 or supremum) is the more useful. Certainly
over a large enough area, the supremum norm has limited practical appeal, since the value of the norm is determined by
the value of one forecast at one grid point. On the other hand, over sufficiently small areas, it is possible that the
supremum norm is of more practical value. '

Consider two fields f(1) = flxg 1) and h(r) = h(xg 1), defined for each grid point value xg inside a region X. Define
the L” norm

| | 1/n |
uf(t)ll,,,gs[ > wix) (x)/ Y, W(xg')} M
X, € b3 x, €%

where w(x,)=cos(9, ), ¢, ., being the latitude of x, - The distance between two fields fand h can be computed simply as
the L” norm of their differénce,

d,(f, ) =lf)-hol, , - @

Asn — oo, the L” norm tends to the supremum riorm, with associated distance

d(f, hit) =max, ;;lf(t)—h(t)l ) 3)

The case n=2 corresponds to the root-mean-square (rms) difference, while n — = gives the maximum absolute value of
the difference, inside the region Z.

Let us now consider an ensemble of N+1 forecasts fpi=0N, where j = 0 denotes the control forecast. The spread of
an ensemble of forecasts (relative to the control) is defined as

J: N l/n
1
sea(0=|5% Y, 4G fot)| ' RO
J=1
SPoo(t) =max; _; N[d.(f; f:t)] ’ (4b)

The skill of a forecast ]j is computed in terms of the L" norm of the distance between the forecast and the analysis (or the
ensemble member used as verification for the idealized ensemble). ‘

In (4) the control forecast can be feplaced by the ensemble mean
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J=N

y 1
P S

‘ J=0

Spread/skill relationships are characterized by 2 indices, where the smaller the index, the more skilful the ensemble. The
first index Ny;, gives the number of cases where the ensemble spread did not bound the control error. (The subscript Idia
stands for lower- diagonal points, referring to a spread/skill scatter diagram - such as in Fig. 3 or 4). The second index N,
is the number of cases with ensemble spread lower than average and control error larger than average. (The subscript s/
stands for small ensemble spread and larger control error, referring to the lower-right entry of the contingency table
associated with a spread/skill scatter diagram.)

3.2 Best ensemble member and percentage of outliers

One important quality of a skilful ensemble prediction system, is that the verifying analysis should lie within the span of
the ensemble. We verify this in three different ways.

The first two diagnostics measure the smallest distance between the verifying analysis and an ensemble member.

The first measure is based on the ensemble forecast with the smallest average L? distance from the analysis (i.e. rms
error), taken over a prescribed area, such as the NH or Europe. This forecast will be referred to as the best ensemble
member.

The second measure is based on finding the smallest error within the ensemble, independently at each point over a
prescribed area such as the NH or Europe, and then taking the rms of these smallest error values over the prescribed area.
In some sense, this latter measure may be more relevant to a forecaster who is only interested in the local point-wise skill
of the EPS. We refer to this skill as the point-wise rms error.

The third measure is called Outlier Statistic. Consider the grid point values predicted by the N+ ensemble members
filxg D), ranked so that —eo<f, <. <fy ;See . They define N+2 intervals. The probability of the analysis (or more
generally of the verifying analysis) lying outside the EPS forecast range is defined as the sum of the probabilities of the
analysis being in the two extreme categories, i.e. with fi<fy or f;>fy,, - This will be called the Outlier Statistic.

3.3 Relative Operating Characteristic

Following Stanski et al (1989), consider the occurrence or non-occurrence of one event such as:’500hPa geopotential
height anomaly larger than 50 m’, and, for each grid point, check whether the event occurred and if it was predicted or
not.

Considering all grid points x, inside aregion Z, we can construct a two category contingency table, Table 1, where X can
be referred to as the hits and the Z as the false alarms. Define the hit rate (i.e. the percentage of correct forecasts) as
X/(X+Y) and the false alarm rate (i.e. the percentage of forecasts of the event given that the event did not occur) as

Z/(Z+ W) . If these two rates are plotted against one each other on a graph, a single point results.

Signal detection theory (Mason, 1982) is a generalization of these ideas to probabilistic forecasts. Suppose that a forecast
distribution generated using an ensemble system is stratified according to observation into ten 10% wide categories, as
shown in Table 2, where j=1,.. 10, and with the last category j=10 including also P=100%. In other words, considering
for example the event 'S00 hPa geopotential height anomaly larger than 50 m', this table has been constructed by
computing, for each grid point, the predicted probability P for the event to occur, then by identifying the category j to
which P belongs, and finally by adding 1 to either b; or a;, depending on whether the event did or did not occur.
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For any given probability threshold P=j*10%, the entries of this table can be summed to produce the four entries of a two
by two contingency table:

w=Ygq (6a)
i=1
J
Y= )b (6b)
i=1
K
Z= Y g (6c)
i=j+1
K
X= Y b (6d)
i=j+1

Then, using the four entries X, ¥, Z, W, the hit and false alarm rates can be calculated, and a point plotted on a graph. If
this process is repeated for all probability thresholds from 0% to 100%, the result is a smooth curve called the relative
operating characteristic (ROC).

A convenient measure associated with a ROC curve is the area under the curve, which decreases from 1 toward 0 as more
false alarm rates occur. A value of 0.5 is considered as the lower bound for a useful forecast, since a system with such a
ROC-area cannot discriminate between occurrence and non-occurrence of the event.

A second important measure is given by the separation of the conditional distributions of forecast probabilities given the
occurrence and the non-occurrence of the event, which can be constructed using the a; and b; values. One measure of this
separation is the distance between the means of the two distributions, normalized by the standard deviation of the
distribution for non-occurrences, which we will name ROC-distance. Examples of ROC curves and conditional

distributions are shown in Figs. 9 and 10.

Throughout this paper, ROC-areas and ROC-distances have been calculated considering different geographical regions,
and 45-day average values have been computed simply by averaging ROC-areas and ROC-distances.

One of the main advantages of signal detection theory is that it can be used to compare deterministic and probabilistic
forecasts (Stanski et al, 1989). Thus, a qomparison can be made between the skill of an ensemble system and the skill of
the control, the ensemble mean forecast or the ECMWF high-resolution T213L.31 operational model.

3.4 Brier Score

One of the most common measures of accuracy for verifying two-category probability forecasts is the Brier score (Brier,
1950). Again, consider the event 500 hPa geopotential height anomaly larger than 50 m’, and concentrate on the forecast
probability distribution of Table 2, generated by an ensemble system considering all grid points X,€ X.

Following Hsu and Murphy (1986), the Brier score can be computed as the sum of three terms:
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N

_ _ N; — —_ -
BS = 5(1-0)+ ¥ H1p;~ )"~ (0;-)’] (7)

j=1

where Pj=0.05+(j-1)*0.1 is the (centre) forecast probability of the j-th probability class, o = b;/(a;j+b) is the relative
frequency of the event, N/N= a;/A where A=2Xb; is the relative population of forecasts m the j-th class,
o = bj/(a;+b;) where B = }: b; is the sample chmatology

A natural reference for the Brier score is the Brier score of the sample climatology

BS.; = o(1-0) ®
The Brier Skill Score can be defined as
BS ,.—BS
BSS = <" ©
B Scli

45-day average Brier scores have been computed averaging BS of different cases. To prevent undesired weighting due to
variations in the denominator, average Brier skill scores have been computed inserting average Brier scores in Eq. (9),
and not by averaging skill scores.

3.5 Ranked probability score

The ranked probability score (Epstein, 1969b, Stanski et al, 1989) is intended for verifying contiguous multi-category
probability forecasts. A perfect categorical forecast always receives a score of 1 and the worst possible categorical
forecast receives a score of 0. It is sensitive to the error, in the sense that more credit is given to a forecast which
concentrates its probability about the event that occurs.

Following Stanski et al (1989), for a given forecast time ¢ and for each grid point Xg inside an area X, consider K
mutually exclusive classes, and denote by P=(P}, .., Pg) the predicted ranked probability vector, and by d=(d},.., dg) the
observation vector such that d,=1 if class n occurs and zero otherwise. For example, consider 500 hPa geopotential
height, concentrate on ten classes, eight of them 50 m wide from -200 m to 200 m, plus the two outer classes, and focus
attention on the prediction of 500 hPa geopotential height anomalies with respect to climatology. Then, for each grid
point, P; is the predicted probability that the anomaly will be in the j-th class, and if the observed 500 hPa geopotential

height is in the k-th class, dj=1 and d=0forany j#k.

The ranked probability score RPS is defined as:

K 2

RPS= 1—— Z zP—Ed (10)

i=1\n=1 n=

For each grid point, given the ranked probability scores for an ensemble, RPS, and for a standard forecast, RPS,,;, the
Ranked Probability Skill Score can be defined as:
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Rpss=w an
="1_RPsS,,

The RPSS ranges from 1 for a perfect forecast, to -o=, and negative RPSS indicate that the ensemble forecast is less
accurate that the standard.

Throughout this paper, regional-average ranked probability scores have been computed averaging RPS values of all grid
points x,€X. Moreover, 45-day average ranked probability scores have been computed averaging the RPS for the 45
dlfferent cases. By contrast, to prevent undesired weighting due to variations in the denominator, average ranked
probability skill scores have been computed inserting average ranked probability scores in Eq. (11), and not by averaging
skill scores.

4. IMPACT OF ENSEMBLE SIZE ON ENSEMBLE SKILL

In this section we analyze the impact of ensemble size on the different measures defined in the previous section.
Attention is focused on the prediction of the 500 hPa geopotential height field, over the Northern Hemisphere (NH) and
Europe (defined as the area with longitude between 20°W and 45°E, and latitude between 30°N and 75°N). Skill and
potential skill for each ensemble configuration are compared.

4.1 Ensemble mean skill

Figure 1a shows the difference between the 45-day average rms error of the ensemble mean and the 45-day average skill
of the control forecast for the extra-tropical NH. Results show that an ensemble size increase improves the average skill
of the ensemble mean after forecast day 5, especially when increasing the ensemble size up to 8 perturbed members.
Similar conclusions can be drawn considering other geographical regions (not shown).

Figure 1b shows the impact of ensemble size on the potential skill of the ensemble mean. It confirms that the impact is
slightly stronger when going from 2 to 8 members, than when further enlarging the ensemble size. This effect was
predicted by Leith (1974).

It can be seen that the skill of the ensemble mean forecast, between day 2 and day 4, is positive in the idealized ensemble,
but slightly negative when verified against the actual analysis. This slightly negative impact has proven to be fairly
typical when the T63 model was used for the operational EPS. Since December 1996, the operational EPS is run with a
T;159L31 resolution model, starting from initial conditions constructed using smaller initial perturbations. Operational
results for the winter 1996/97 show that the improvement of the ensemble mean is more similar to the idealized ensemble
results in Fig. 1b and less like the actual skill in Fig. 1a. This seems to indicate that in the old system, based on a T63L19
model which is known to be too little active compared to the atmosphere, too large initial perturbations were used to be
able to get a reasonable amount of spread in the medium-range (i.e. after forecast day 3). Because of this choice, most of
the perturbed members were characterized by a forecast error larger that the error of the control forecast, and this caused
the error of the ensemble mean in the early forecast range to be, on average, larger than the error of the control forecast.

4.2 Relationship between spread and skill

Figure 2 shows spread/skill scatter diagrams for ens_2, ens_8, and ens_32 for day 5 over Europe using the L? norm
(scatter diagrams for ens_4 and ens_16 are not shown for reason of space). Figure 3 shows a similar set of scatter
diagrams using the L™ norm. Visually, the impact of ensemble size on the relationship between spread and skill, as
suggested by Fig. 2, is not dramatic. By contrast, the impact of ensemble size in Fig. 3 is immediately apparent - as
ensemble size is increased so the more the spread bounds the control error.
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Figure 4 shows spread/skill scatter diagrams for ens_32 for day 5 over the NH for L2 18 and L”. Again, this figure
shows that a more convincing relationship can be found using the latter distance measure, with spread bounding error.

These results are confirmed by Table 3, which lists the indices N4, and N of spread/skill relationship, both for the NH
region and for Europe. For both these regions, it can be seen that with the L™ norm, Ny, is a strongly decreasing
function of ensemble size, both for the actual ensemble, and for the idealised ensemble (results in parentheses). By
contrast, Nig;, does not depend strongly on ensemble size with the L norm. Somewhat intermediate results are obtained
using the L° norm, as might be expected.

It can be asked whether n=8 gives a satisfactory approximation to the supremum norm. Figure 5 shows the estimate of
day 5 spread over the NH and Europe as a function of n. In fact, the spread does not approximate to its asymptotic value
until n=0(10%).

Similar conclusions can be drawn considering other regions, and other forecast times.
4.3 Skill of the best ensemble member

The daily values of the rms error at forecast day 5 of the control and of the best member for each ensemble configuration
are shown in Figs. 6a-b for the NH and Europe, with a 5-day running average applied to the error values. Figures 7a-d are
similar to Figs. 6a-d but show the point-wise best member for each ensemble configuration averaged over the NH and
Europe.

The results in Fig 6a-b show some interesting low-frequency variability. For example, over the whole NH, there are some
periods where a 32-member ensemble has a notably lower best-member rms error. However, there are other periods
when there is no obvious benefit of ens_32 over ens_16. For the European area, on the other hand, the periods are
generally more extensive where the best member of ens_32 is notably more skilful than that of ens_16.

The fact that the impact of 32 members over 16 members is greater over Europe than over the whole NH, is probably a
reflection of the relative geographical size of the two verification regions. This can be seen in the limit where the best
member is evaluated independently at each point within either the NH or Europe (Fig. 7). Here it can be seen that the
impact of increasing the ensemble size is more or less uniformly beneficial for any ensemble size, and for all cases
considered. For example, the value of the best member for ens_32 is close to 1/3 of the value for ens_2.

4.4 Outlier Statistic

Table 4 shows the impact of ensemble size on the Outlier Statistic, specifically on the 45-day average percentage of
outliers at different forecast times.

Results indicate that any increase of ensemble size has a noticeable effect in reducing the percentage of outliers. For
verification against the real analyses, the decrease in the percentage of outliers with increasing ensemble size, arises in
the early part of the forecast because the perturbations cover more of the hemisphere. As mentioned above, if the
amplitude of perturbations was 1 standard deviation of the analysis error, the probability of the analysis lying outside the
ensemble in the direction of a perturbation is about 32%. The fact that the day-3 outlier value of ens_2 is much greater
than 32% is an indication of the poor NH coverage associated with a single perturbation.

Conversely, in the limit of no predictability, when all ensemble members are equally likely, then the probability of the
analysis lying outside the ensemble is 200/(N+2)% (see Appendix). For N=32 this gives 6%. It can be seen that the actual
values for ens_32 lie between these extremes. The difference between the actual value at day 10 (16%) and the “no
predictability” reference value of 6% can be attributed partly to the fact that there is still some predictability at day 10,
and partly to model error.

Technical Memorandum No.246 9
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For the idealised ensemble, it is easy to show that the percentage of outliers should scale as [(32-N)/32]*[200/(N+2)]%
for all forecast ranges (the first term denotes the probability that one of the ensemble members is not precisely equal to
the verification - for the real ensemble, this probability is equal to unity). As shown in the table, these are the values that
are computed from the idealised ensembles, modulo small sampling error.

4.5 Relative Operating Characteristic

Consider three thresholds Thr=25, 50, 100 m. Relative operating characteristic curves have been computed for the
prediction of the event 500 hPa geopotential height anomaly larger than 7/r’ and for the event 500 hPa geopotential
height anomaly smaller than -7hr’, for the NH and Europe at different forecast times.

As an example, Fig. 8a shows the 45-day average relative operating characteristic for the event 500 hPa geopotential
height anomaly larger than 50 m’, for the NH at forecast day 5, for ens_32. Apart from the relative operating
characteristic curve, three markers are plotted to show the false/hit rates for the control (square), the ensemble mean
(cross) and the ECMWF high resolution T2131.31 model (diamond). In this case, the ensemble system has a false/hit rate
similar to the control and the T213L31 forecasts, while the ensemble mean has a slightly better rate. The ROC-area for
Fig. 8a is 0.87. By contrast, the ensemble system has a false/hit rate similar to the T213L31 but better than the control
and the ensemble mean at forecast day 7 (Fig. 8b). Note that, at forecast day 7, the ROC-area decreases from the value of
forecast day 5 to 0.79, indicating a forecast deterioration. Similar considerations can be drawn considering the event 500
hPa geopotential height anomaly smaller than -50 m’ (not shown).

Figure 8c shows the conditional distributions of forecast probabilities given the occurrence or non-occurrence of the
event 500 hPa geopotential height anomaly larger than 50 m’, i.e. associated with the ROC curve shown in Fig. 8a. The
distance between the means of the two distributions, normalized by the standard deviation of the distribution of non-
occurrence, is 1.31. Similarly, Fig. 8d shows the conditional distribution at forecast day 7. At this forecast day, the
normalized distance is 0.80. The comparison of Figs. 8c and 8d confirms that the normalized distance (ROC-distance) is
a useful indication of the separation of the two distributions.

Let us now compare the different ensemble configurations. Figures 9a shows the 45- day average ROC-area for the
events 500 hPa geopotential height anomaly larger than 50 m’. Results indicate that the impact of an ensemble size
increase up to 8 members is detectable during the whole forecast range, but that any further increase has a minor,
although still positive, impact. Similar conclusions could be drawn by considering the event 500 hPa geopotential height
anomaly smaller than -50 m’ (not shown). By contrast, ROC-distances are insensitive to ensemble size (not shown).
Considering the idealized ensembles, Fig. 9b confirms that the impact of ensemble size is less evident when at least 8
members are included in the ensemble. Results relative to other geographical reglons or any other thresholds are similar
(not shown).

4.6 Brier score

Figures 10a-b show the Brier scores and skill scores relative to Europe for the event 'S00 hPa geopotential height
anomaly larger than 50 m’. Both the Brier score and the Brier skill scores improve when enlarging the ensemble size up
to 8 members, while a smaller although still positive impact can be detected when further increasing the ensemble size.
Figures 10a-b show that, for Europe, more than 1 day of predictability is gained by going from 2 to 8 members, and that
a further increase of up to about half a day can be gained by enlarging the ensemble size to 32 members. Similar results
are obtained for other thresholds and areas (not shown).

Figures 10c-d are analogous to Figs. 10a-b, but computed using the idealised ensembles. They confirm that the 1mpact of
ensemble size is less detectable once at least 8 members have been included in the ensemble.
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4.7 Ranked probability score

Ranked probability scores and skill scores for the prediction of 500 hPa geopotential height anomaly with respect to
‘climatology have been computed using 10 classes, with the 8 inner classes 50 m wide, and with 50 classes, with the 48
inner classes 20 m wide. Only ranked probability skill scores will be discussed. Moreover, the discussion will focus on
scores relative to 10 classes, since the results are insensitive to the number of classes.

Figure 11a shows the ranked probability skill scores for the NH computed with persistence as standard [see Eq. (11)].
Results indicate that an increase in ensemble size improves the skill, especially when the size is increased from 2 to 4
members.

As a further comparison, the ranked probability skill scores of ens_4, ens_8, ens_16 and ens_32 have been computed
using ens_2 as standard (Fig. 11b). Results confirm that the impact is always positive, but that the improvement is less
evident once the ensemble has at least 8 members (dot curve in Fig. 11b). This is further highlighted by Fig. 11c, which
shows, for each ensemble configuration ens_N, the ranked probability skill score computed with respect to ens_N/2 {e.g.
the solid line in Fig. 11c shows RPSS(ens_32)=[RPS(ens_32)- RPS(ens_16)]/[1-RPS(ens_16)1}.

Figures 11d-f are analogous to Figs. 11a-c, but computed using the idealized ensembles. The comparison between Figs.
11a and 11d indicates that the potential RPSS values are about 0.2 higher that the real values, if persistence is used as
standard, but only about 0.05 if RPSS are computed using ens_2 as standard. Considering the impact of ensemble size,
Figs. 11f confirms the result of Fig. 1lc, that the improvement in skill is smaller once at least 8 members have been
included in the ensemble.

Similar conclusions can be drawn by considering other geographical regions (not shown).

5. DISCUSSION AND CONCLUSIONS

This work has focused on the impact of ensemble size on the performance of the ECMWF Ensemble Prediction System
as it was before December 1996 (at the time of this study). This system used T42L19 singular vectors optimized over 48
hours to generate the perturbed initial conditions. These perturbations were integrated using a T63L19 non-linear model.

As well as studying the ensemble mean, spread-skill relationships, and the skill of the best ensemble member, measures
specifically designed to verify probabilistic forecasts (e.g. ranked probability skill score, relative operating characteristic
curves, Brier skill scores) have been used.

Attention has been focused on a 45-day period, from 1 October to 15 November 1996, on the 500 hPa geopotential height
field, and on two areas, the extra-tropical Northern Hemisphere (NH) and Europe. Ensembles characterized by 2, 4, 8, 16
and 32 perturbed members have been compared. The skill of each ensemble configuration, measured using the
operational analysis as verification, has been compared to its potential skill, measured using an ensemble member,
randomly chosen among the 32 perturbed ensemble members, as verification.

The relation between ensemble spread and control error has been studied using scatter diagrams of ensemble spread
versus control error, with distances measured using I?, 18 and L™ norms (Figs. 2-5). Two skill indices, the number of
cases for which ensemble spread did not constitute a bound on the control error (Ny4;,), and the number of cases with
below average spread and above average control error (N, have been used to investigate the spread/skill relation.
Considering the analysis as verification, results indicate that, for the supremum L™ norm, any increase in ensemble size
is strongly beneficial, since it decreases both indices Ny, and Ny; (Table 3). Results obtained for the idealized ensembles
show an even larger positive impact of ensemble size. This larger positive impact is not realized when verifying against
an analysis due to the existence of (unaccounted for) model errors. It is worth to mention that work is in progress at
ECMWEF to modify the EPS so that model errors are taken into account.
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Table 5 gives a schematic summary of the results reported in Section 4. A plus, or a minus, under each item is an
indication of a positive, or negative, impact of ensemble size. The overall outcome is that although the impact is positive
on all measures, the extent to which an increase in ensemble size improves the EPS performance depend strongly on the
measure itself

Beside the two spread/skill indices, the most positive sensitive measures to ensemble size have proved to be the skill of
the best ensemble member (particularly when evaluated on a point-wise independent basis), the Outlier Statistic (i.e. the
percentage of analysis values lying outside the ensemble forecast range), and the ranked probability skill score.
Considering spread/skill relation, results suggest that ensemble spread bounds the error of the control forecast if the
supremum norm L™ is used to measure distances.

Considering the skill of the best ensemble member, any doubling of the ensemble size reduces the average rms error of
the best ensemble member at forecast day 5, e.g. on average by about 8% over Europe (Fig. 6). However, the impact of
ensemble size has been proven to be even more dramatic on the rms error of the point-wise best ensemble member. In
fact, e.g. at forecast day 5 over Europe, any doubling of ensemble size reduces, on average, the rms error by about 20%

(Fig. 7).

Another measure which showed a positive impact of increasing the ensemble size is the Outlier Statistic. For example, at
forecast day 5 for the NH, the percentage of outlier decreases from 66% to 41% when increasing the ensemble size from
2 to 4, and it further reduces to 26% when enlarging the ensemble size up to 32 perturbed members (Table 4).

Sensitivity to ensemble size was also detected using the Ranked Probability Skill Score. Considering, for example, the
forecast time when the ranked probability skill score relative to the prediction of 500 hPa geopotential height anomalies
with respect to climatology crosses the 0.5 line as a limit of useful prediction, results indicate that predictability increases
by about 1 day when going from 2 to 8 members, and by about 12 hours when further going to 32 members (Fig. 11).

Positive, though smaller, impact was also detected using signal detection theory, and Brier score and skill scores.
Considering, for example, the ROC curves relative to the probability prediction of the event 500 hPa geopotential height
anomaly larger (smaller) then 50 (-50) m’ for the NH, results indicate that the are under the ROC curve increases when
enlarging the ensemble size from 2 to § members, while it shows only a small although still positive increase when
further adding more members (Fig. 9).

Similar conclusions can be drawn by considering Brier skill scores. Considering, for example, the event 500 hPa
geopotential height anomaly larger (smaller) then 50 (-50) m’, the forecast time when the Brier skill score reaches the
limit of skilful prediction (i.e. when it reaches zero) increases by more than 1 day when going from 2 to 8 members, but
it does not change by further increasing the ensemble size (Fig. 10).

At last, considering the ensemble mean, results have shown that its skill is sensitive to ensemble size only when up to 8
members are included in the ensemble. This confirms the conclusions of Leith (1974), that once 8 members have been
included enough ‘intelligent filtering’ has been applied, and any further ensemble size increase gives only a refinement, in
the ensemble mean field.

We conclude with an important caveat. The results shown in this paper cannot be generalised to conclude that the impact
of ensemble size is necessarily small for increases in ensemble size above 32. The dynamical system underlying the
truncated equations of motion is not believed to be low-dimensional, and hence a complete estimate of the forecast
probability-distribution-function is very unlikely to be well sampled by 32 members. Hence we should view the
conclusions of this paper to be specific to the types of diagnostic and types of event studied. To take a specific example;
suppose we asked for the Brier Score or the Relative Operating Characteristic for a bounded event over a specific domain
and for a limited period (for example the probability that the surface temperature lies within 2 degree of freezing point
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over the United Kingdom in December). This contrasts with the types of semi-infinite events (anomaly greater ti:
given threshold) defined over a large region (e.g. Europe) over a whole season.

Similarly one might ask about events defined, not in terms of a single grid point, but over several. For example, an e\.
could be defined by the geopotential height being higher than some threshold at one grid-point, and, simultaneously
lower than some threshold at a different grid-point. The Brier score would be based on joint probability statistics for the
two grid-points. This type of score would be relevant in assessing the Brier-score skill of, for example, blocking, using
the Tibaldi-Molteni blocking index (Tibaldi and Molteni, 1990).

For either of these types of events, it is quite possible that reliable probabilities are unobtainable with only 32 members,
and that much larger ensemble sizes are needed. We shall be assessing the impact of ensemble size on these more specific
types of events in a future study.
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APPENDIX

Consider an idealized 2-dimensional probability-distribution-function at forecast day d+2 for an ensemble compounded of
one unperturbed (control) and four perturbed forecasts (x; j=0.4, and some hypothetical point ¢ where truth lies. Suppose
that the EPS perturbations have tfo amplitude, that they are orthogonal and symmetric, and suppose that the coordinate
axes are centred at the control.

Let ¢ be distant r from the control forecast. The distance from ¢ to one of the perturbed forecasts (say x;) is

2 2

= J(fo)? + I~ 2r(fr)cos(8) A
which is less than r if rcos(0)>fo/2, where 0 is the angle between ¢ and x;.
Repeating for all points x; j=1,4 this inequality defines (in the 2-dimensional plane) a set of lines (at %fo/2 ) parallel to
the axes, bounding the reglons containing the truth where n=0, 1, 2 perturbed EPS forecasts are more skilful than the
control.
The expected number N, of perturbed forecasts that are more skilful than the control can be calculated by muitiplying, for
each region, n (i.e. the number of perturbed forecasts more skilful than the control) by the appropnate probability values

for a 2-dimensional normal distribution.

For example, for /=1, from normal distribution tables the probability that truth lies outside the +6/2 boundary is about 0.6.
Hence, the expected number N, is

[(0.4)%* 0.0 + [2# 0.4¥0.6*1] + [(0.6)**2] = 1.2 A2)
The fraction of forecasts better than the control is therefore about 1.2/4=0.3, or 30%.

More generally, for an n dimensional space and an ensemble with 2n members, let p denote the probability that truth lies
outside the +f6/2 boundary. Then the expected number N, is given by the binomial distribution expansion

n

N, =Y mpr(l—mn—rr (A3)
r=0

For large n (16 for the EPS) we can use the normal distribution approximation to the binomial distribution, so that

N,=np (A4)

and the fraction of forecasts better than the control is p/2.

With f=1, p=0.6 as above, then again about 30% of forecasts should do better than the control.
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Tables

fc=YES fc=NO tot obs
obs=YES X Y X+Y
obs=NO Z w Z+W
tot fc X+Z Y+W
Table 1: An example of contingency table
Probability range obs=NO obs=YES

(-1)¥10% < P < j*10%

Table 2: Probability forecast distribution
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c ' Tables

NH - Z500 - day 5

ens_2 ens_4 ens_8 ens_16 ens_32
Nigia-L? norm 39 (25) 36 (21) 36 (18) 35 (20) 37 (20)
Nigig-L® norm 39 (22) 28 (20) o (16) 22(11) 19 (10)
Nigig-L™ norm 21 (17) 17(8) 9(4) 5(1) 1(0)
Ng-L2 norm 10 (4) 8 (4) 8(6) 8(4) 7(4)
Ng-L® norm 7(5) 4(5) 4(6) 4(5) 4(5)
Ng-L” norm 4(7) 4(3) 7(6) 5(6) 6(4)

Table 3a: pread/skill Nig;; index (number of cases where the ensemble spread did not bound the control error, i.e. number
of points below the diagonal) and Nsl index (number of cases with ensemble spread lower than average and control error
larger than average, i.e. number of points in the lower-right quadrant) for the NH. Bold values identify the most skilful

resulis.
Europe - Z500 - day 5

ens_2 ens_4 ens_8 ens_16 ens_32
Nygia-L? norm - 31(19) 26 (20) 27 (19) 26 (15) 28 (13)
Ngia-L® norm 28 (20) 23 (16) 20 (13) 15 (11) 12(7)
Nigia-L™ norm 23(12) 17(6) 8(4) 403 2(0)
Ng-L? norm 9.(10) 9(8) 10(7) 10 (6) 8(6)
Ng-L? norm 8(9) 6(7) 7(5) 6(6) 7(6)
Ny-L” norm 9(7) 9(6) 5(5) 6(7) 6(6)

Table 3b: pread/skill Ny, index (number of cases where the ensemble spread did not bound the control error, i.e. number
of points below the diagonal) and N, index (number of cases with ensemble spread lower than average and control error
larger than average, i.e. number of points in the lower-right quadrant) for Europe at forecast day 5. Bold values identify
the most skilful results.
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Tables €
fc-day 3 fc-day 10 fc-day 10 Reference %
ens_2 65 (47) 66 (46) 59 47) 50 (47)
ens_4 52 (29) 53 (28) 45 (28) 3329
ens_8 41 (14) 41 (13) 32 (14) 20 (15)
ens_16 34(5) 33(5) 23 (5) 11(5)
ens_32 28(0) 26 (0) 16 (0) 6(0)
Table 4: Outlier Statistic for the NH at forecast day 3, 5 and 10, verified against the analysis, and
using a randomly chosen ensemble member as verification (values in brackets). A reference
percentage of outliers is also reported (last column, see text). Bold values identify the most skilful
results.
Diagnostic 2 — 8 members 8 — 32 members
rms error of ens mean (Fig. 1) decreases ( +) neutral
spread/skill relation (Figs. 2-4, Table 3) improves ( +) improves( +)
. rms error of best member (Fig. 6) decreases (++) decreases (++)
C) rms error of point-wise best member (Fig. 7) decreases (++) decreases (++)

Outlier Statistic (Table 4)

decreases (++)

decreases (++)

ROC (Figs. 9)

increases ( +)

neutral

BS and BSS (Fig. 10)

increases ( +)

increases ( +)

RPSS (Fig. 11)

increases (++)

increases ( +)

Table 5: Summary of the impact of ensemble size on the ensemble skill as measured using the
different diagnostics. A +/- indicates an improvement/deterioration, a ++/-- a large improvement/

deterioration
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Fig. 1 (a) Difference between the 45-day average rms error of the ensemble mean and the control, for the 500 hPa

geopotential height over the NH, for ens_2 (thin solid), ens_4 (chain dash), ens_8 (dot), ens_16 (dash) and
ens_32 (solid). (b): as (a) but for the idealized ensembles.
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Fig. 2 Scatter diagram of ensemble spread around the control [ordinate, M_SP C(d)] versus control error [abscissa,
C(d)], computed using the L2 norm, over Europe at forecast day 5, for (a) ens_2, (b) ens_8, and (c) ens_32.
Crosses identify October cases, diamonds November cases, and constant lines show the average ensemble

f' spread and the average rms error.
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Fig. 4 Scatter diagram of ensemble spread around the control [ordinate, M_SP C(d)] versus control error [abscissa,

C(d)), for the NH at forecast day 5, computed using the (a) L2, (b) L8, and (c) L™ norm.
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Fig. 5 Ensemble spread at forecast day 5 over the NH (solid) and Europe (dash), as a function of the power n of the
norm LM used to computed distances, for a single (randomly chosen) case study. The solid constant line
represents the value of the supremum L% norm for Europe and the NH, which for this particular case happened to
coincide. '
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Fig. 6 5-day running mean of the rms error of the control (thin dash), and of the best member of ens_32 (heavy solid),
ens_16 (dash), ens_8 (dot), ens_4 (chain dash), and ens_2 (thin solid), at forecast day 5 for (a) the NH and (b)
Europe. The best member is the member which has the smallest rms error at forecast day 5. Initial dates (INI

DATE) are reported on the abscissa axis.
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Fig. 7 5-day running mean of the average rms value of point-wise best ensemble member for ens_32 (heavy solid),
ens_16 (dash), ens_8 (dot), ens_4 (chain dash), and ens_2 (thin solid), at forecast day 5 for (a) the NH and (b)
Europe. Initial dates (INI DATE) are reported on the abscissa axis.
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Fig. 8 (a) 45-day average relative operating characteristic for the prediction by configuration ens_32 of the event '500
hPa geopotential height anomaly larger than 50m’, at forecast day 5 for the NH. Markers also show the 45-day
average false/hit rates of the control (square), the ensemble mean (cross) and the ECMWF high-resolution
T213L31 model (diamond). (b) as (a) but at forecast day 7. (c): 45-day average conditional distribution of
forecast probabilities given the non-occurrence (solid) and the occurrence (dash) of the event '500 hPa
geopotential height anomaly larger than 50m’, at forecast day 5 for the NH, relative to the relative operating
characteristic curve of panel (a). (d): as {(c) but relative to the relative operating characteristic curves of panel (b).
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Fig 9. 45-day average (a) ROC-area computed from the relative operating characteristic curves for the prediction of the
event '500 hPa geopotential height anomaly larger than 50m', at forecast day 5 for the NH, for ens_2 (thin solid),
ens_4 (chain dash), ens_8 (dot), ens_16 (dash) and ens_32 (heavy solid). (b): as (a) but for the idealized
ensembles.
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Fig. 10(a) 45-day average Brier score for the event '500 hPa geopotential height anomaly larger than 50m'’ over Europe,
for ens_2 (thin solid), ens_4 (chain dash), ens_8 (dot), ens_16 (dash) and ens_32 (heavy solid). (b): as (a) but
for the Brier skill score. (c-d): as (a-b) but for the idealized ensembles.
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Fig. 11(a) ranked probability skill score for the prediction of the 500 hPa geopotential height anomaly (with respect to

climatology) over the NH, computed for 10 classes, with the 8 inner classes 50 m wide, with persistence as
standard [see Eq. (10)], for ens_2 (thin solid), ens_4 (chain dash), ens_8 (dot), ens_16 (dash) and ens_32
(heavy solid). (b): as (a) but with ens_2 as standard. (c): as (a) but for the relative improvement {i.e., when
ens_N is considered, for RPSS(ens_N)=[RPS({ens_N)-RPS(ens_N/2)}/[1-RPS(ens_N/2)], see text for more
details}. (d-e-f): as (a-b-c), respectively, but for the idealized ensembles.
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