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Development of a simplified Kalman Filter

Mike Fisher

Introduction

A practical methodology for extending the ECMWEF 4D-Var analysis system to a simplified Kalman Filter was suggested
by Courtier (1993). The first practical demonstration of the system was made by Rabier et al. (1997). This paper
documents the continuing development of a simplified Kalman Filter at ECMWE. It extends the preliminary results
presented by Rabier et al. (1997) to include more convincing evidence of a positive impact on forecast scores.

A companion paper (Ehrendorfer, 1998) presents an explicit low-resolution extended Kalman filter. Although only
recently developed, this is already providing insight into the behaviour of the simplified Kalman filter. In particular, ithas .
provided estimates of the fractions of the variances of analysis and forecast error which are represented by the low-
dimension subspace which is explicitly evolved by the simplified Kalman filter. The explicit low-resolution Kalman filter
is expected to become an invaluable tool for diagnosing and testing the simplified Kalman filter.

Four-dimensional variational data assimilétion (4D-Var) expresses the problem of optimally combining observational and
forecast data to produce an analysis of the state of the atmosphere, in terms of the minimization of a cost function

M
T,-1 T,-1
J(8x) = 8x B 8x+ » (Hx;-y) R, (Hx;-y) W
i=0

where the sum is over a set of “time windows” of length a few timesteps of the forecast model. For each time-window, x;
is calculated by a short integration of the model with initial conditions x;_y. Each time window groups together
observations, represented by the vector y;, which are treated as if contemporaneous. The matrices R; are covariance
matrices of errors in the observation departures (H;x; —¥;) , and the operators H; map model variables to observations.

The first term on the right hand side of equation 1 is the background term, conventionally denoted Jj. Here,
8x = (x9—x;) represents the departures of the model variables at the start of the analysis from the background x;,. In a
cycling analysis system, the background fields are the model fields produced at timestep M of the preceding analysis. B
is an approximation to the covariance matrix of background error.

It is known (see, for example, Daley 1991) that for a perfect, linear model and linear observation operators, both 4D-Var
and the Kalman filter (Kalman, 1960) give the same values for the model variables at the end of the 4D-Var assimilation
period (step M in equation 1). It is also known (see, for example, Jaszwinski 1970) that the Kalman filter is optimal in
the sense of producing the best linear unbiased estimate of the model state at step M. The fundamental difference
between the two analysis methods is that the Kalman filter explicitly propagates the covariance matrix for errors in the
model variables. 4D-Var does not. Thus, if we wish to produce a new analysis using the model variables at step M of the
current analysis as the background, we are forced, in 4D-Var, to use an approximation to the covariance matrix of errors
in the background. The approximation is typically based on climatological error statistics, and is subject to a number of
simplifications in order that the matrix may be represented in terms of a small number of parameters.

It is not practical, for an NWP model, to propagate explicitly the covariance matrix of errors in the model state. Indeed,
the matrix is too large even to be stored in current computer memories. We must therefore restrict our attention to a small
subset of the information contained by the matrix. The remainder must be represented more approximately (for example
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using the climatological background error covariance matrix of 4D-Var). Any analysis method which results from
restricting the explicit covariance evolution of the Kalman filter to the evolution of a subset of the information it contains,
will be referred to as a simplified Kalman filter.

This paper describes one approach to the construction a simplified Kalman filter. In the next section, the mathematical
formulation is outlined. Following this, the implications of the particular choices made in its formulation are discussed,
as are the restrictions and approximations imposed by the requirement that the analysis should run within available
computational resources.

The ensemble Kalman filter (Evensen 1994, Evensen and van Leeuwen 1996, and Houtekamer and Mitchell 1998)
represents an alternative approach to the approximation of the Kalman filter. The similarities and differences between
this approach and the simplified Kalman filter are discussed.

Some experimental results are discussed in the penultimate section, which is followed by some tentative conclusions.

Mathematical Formulation

In the preceding section, it was shown that the fundamental difference between 4D-Var and the Kalman filter lies in the
specification of the covariance matrix of background error, which in 4D-Var must be approximated, but which in the
Kalman filter is generated explicitly by the preceding analysis cycle. Construction of a simplified Kalman filter amounts
to improving the approximation of the covariance matrix of background error in 4D-Var, to include dynamical evolution
of a subset of covariance information.

The first task in formulating the simplified Kalman filter is to identify the subset which should be subject to explicit
" evolution. The most general way to do this is to identify a subspace of the phase space of the model. This may be done by
choosing a set of directions, {s;;k = 1...K'} which span the subspace.

Once the subspace has been identified, we may partition the background departure, 6x, into a component 8xg which
represents the projection of 8x onto the directions s , and a component 8x§ which is orthogonal to {s;;k = 1...K}.

In a multivariate analysis system, the partitioning of §x must be done with care. It is clearly nonsensical to use the
Euclidean inner product to define projection and orthogonality for vectors whose components include, for .example,
vorticities and temperatures. At the least, the vectors must be non-dimensionalised. In 4D-Var, the matrix B! defines an
obvious inner product:

T,-1 ‘
(x,y)p=x B 'y @

The vectors 8xg and dx5 are defined as the projection onto the subspace and the orthogonal complement of the
background departures with respect to the inner product (.,.)g . That is,

K
5XS = 2 0L,
o ©)
ng = 0x — 5XS

where the coefficients o, are fully determined from the requirement that ( dx5,5)g = 0 for k = 1...K. (For the
special case that the vectors s; are mutually orthogonal with respect to the inner product (.,.)g, we have

oy = (sk,Sx)B/(sk,sk)B D

‘The background term of the 4D-Var cost function (that is, the first term on the right hand side of equation 1) may be split
into three contributions
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The first term involves only the components of 8x which lie in the subspace identified by the vectors {s,;k wk=1._.K}.
The last term in equation 4 involves only components which are orthogonal to the subspace. The remaining term involves
cross-covariances between the identified subspace and its orthogonal complement. It is simply twice the inner product of
dxg and dx3, and is identically zero, since these vectors are orthogonal with respect to the inner product (., DB -

In the simplified Kalman filter, the last term of equation 4 is evaluated in the same way as in 4D-Var. The first two terms
contain components in the identified directions. The simplified Kalman filter attempts to optimize the analysis in these
directions by replacing the approximate covariance matrix of background error B in the first two terms of equation 4 by
a matrix which is close to the true covariance matrix of background errors, P’,': .

The background term of the cost function in the simplified Kalman filter is -
o T, f L T, of "1 T,,-1
= 3x¢(P) Ox ¢ + 20c5x5, (Py) Ox¢+ SXS,B ng )

The factor o in the second term of equation 5 is required to ensure that the background cost function remains positive
definite. A typical value of a is 0.5. Note that in 4D-Var, the second term in equation 5 is identically zero. So, the
introduction of the factor o represents a reduction of the cross-correlation term towards the value it takes in 4D-Var.

To proceed further, let us introduce a change of variable matrix, L, with the property LLY = B. The background cost
function may then be written as

T -1 T, f.1 T
= XS(P£) XS+20‘X§(P£) Xs tX5X3 ©®

where XS =L xs, x5 = L xS and where Pf = L_le L7 is the true covariance matrix of background error
transformed according to the change of variable.

The change of variable is not uniquely defined by the requirement that LLY =B. In particular, we ma %replace the
matrix L by LX where X is any orthogonal matrix (that is, X is a non-singular matrix for which XX" = I.) The
simplified Kalman filter uses this non-uniqueness to define a change of variable which sets to zero all except the first K
elements of the vectors {L~ Is -k =1...K}. Since Xy is the (Euclidean) projection of the background departures onto
the space spanned by the vectors L~ ls ¢ » it follows that only the first K elements of ¥ ¢ are non—zero_Fonsequenﬂy, to
evaluate the background cost function (equation 6) it is sufficient to know the first X columns of (Px)

The details of the construction of the orthogonal matrix X were discussed by Rabier et al. (1997). Clearly, X cannot be
stored as a full matrix. Rather, it is constructed as a sequence of X Householder transformations, each of which is fully
specified by the elements of a single vector of the same dimension as the control vector.

Evaluation of the background cost function (equation 6) requires knowledge of the first K columns of (Pf ) . Suppose

now that, for each of the vectors s, , we have a vector z, which represents the action of the inverse of the true covariance
matrix of background error on s . That is,

-1
= (Py) s 0]
Replacing Pj: in equation 7 by LP{ZLT, multiplying by L7 and rearranging gives

-1
LTZk = (Pﬁ) (L"lsk) (8)
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Now, let Z be the rectangular matrix whose columns are the vectors L7z, and let S be the K x K matrix whose
columns are the first K elements of the vectors L‘lsk. (Remember that the change of variable matrix, L, has been
constructed so that only the first X elements of the vectors L~!s, are non-zero.) Also, let us partition (P{)_1 :

T
(Pﬁ)_l _| EF | o
F G

where E is a square matrix of dimension K x K .

With these definitions we may write equation 8 as

T.

7 = E F S (10)
F g )\
Equivalently,
Z = E S 1
F

The matrix S is non-singular, provided that the change of variable is also non-singular and that the vectors
{sg:k = 1...K} are linearly independent. It is also of low dimension (X X K ). Hence, we may multiply equation 11 to
the right by S~ to get an equation for the elements of the matrices E and F , 1.e. for the first K columns of the inverse
of the true background error covariance matrix in control-space.

To summarise, the background error term of the simplified Kalman filter consists of the following steps. First, a subspace
is identified. Next, the background departures are split into a part which projects (in the sense of the (...)p inner
product) onto the subspace, and a remainder which is orthogonal to the subspace. This allows the background cost to be
split into three contributions: one due to covariances within the subspace; another due to covariances in the space
orthogonal to the subspace; and a third resulting from cross-covariance between the subspace and its' orthogonal
complement.

The approximate inverse covariance matrix of background error used in 4D-Var is retained for the contribution due to
covariances in the space orthogonal to the subspace, but is replaced by a matrix which is closer to the inverse of the true
covariance matrix of background errors, P,{ , for the other contributions to the background cost.

The background term is entirely specified by two sets of vectors, {sy;k =1...K} and {z3;k = 1...K}. The former
define the subspace whereas the latter define the action of the inverse of the true covariance matrix of background error
on the subspace. It is worth noting that this allows considerable flexibility both in the choice of subspace, and in the
degree of approximation used to specify P£ .

It remains to demonstrate how the vectors s, and z; may be generated at reasonable computational cost. The method
which has been adopted makes use of the Hessian singular vector calculation developed by Barkmeijer et al. (1998). This
calculation produces the leading eigenvectors of the following generalized eigenvector problem

T

-1
0 7WM, _ 75(0) = A(PY) 5(0) (12)

M

Here, M, _, 7 represents the resolvent of the tangent linear model integrated for the period 0 < ¢ < T'. The matrix W is
positive definite and defines a norm by which the size of perturbations at time T may be measured. PZis the covariance
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matrix of analysis error, and defines a norm by which the size of perturbations at time ¢t = 0 may be measured. If
analysis errors are assumed to have a Gaussian distribution, the normm at time ¢ = 0 is proportional to the likelihood (i.e.
the log of the probability) of the perturbation according to the analysis error distribution. In this case, the leading
eigenvectors of equation 12 are the vectors which, for a given initial likelihood, attain maximum size (as measured by the
W-norm) at time T.

In practice, the covariance matrix of analysis error is not available. However, as shown by Rabier and Courtier (1992) its
inverse is approximated by the Hessian matrix of the cost function (the approximation being consistent with
approximations made in specifying the observation operators and thc covariance matrices of background and observation
error). The Hessian singular vector calculation replaces (Px) in equation 12 by the Hessian matrix of a 3D-Var
analysis.

Hessian singular vectors would seem to be good candidates to define a subspace for the simplified Kalman filter, since
they represent directions in which errors are likely to grow rapidly during the initial stages of a forecast. They have the
additional advantage that the vectors {z,;k = 1...K}, which are needed to specify the background cost function of the
simplified Kalman filter, may be generated at no additional cost during the Hessian singular vector calculation. To
demonstrate this, let us split the resolvent of the tangent linear model in equation 12 into a product of resolvents:

MO—-:»T =M M (13)

t—=>T770—>t

where ¢ is some intermediate time with 0<t<T.

Equation 12 may then be written as

M M WM s(0) = },(P ) ( ) (14)

0>t t—>T t—)T 00—t

Assuming invertible tangent linear dynamics! and multiplying to the left by MaT_) ; gives, after a little rearrangement,

T -1
M, , 7WM, _, rs(1) = x(Mo—nP M0—> t) s() (15

where s(f) = My _, ;s(0) is the vector s(0), evolved using the tangent linear dynamics to time ¢.

Now, P§ is the covariance matrix of analysis error. Hence, if model errors are assumed to be negligible for the interval
[0,¢], then the matrix My _, ,P”MO _,; which appears on the right hand side of equation 15 is the covariance matrix of
forecast error at time ¢ for a forecast whose initial conditions are provided by the analysis at time 0.

If we define the vector z(t) to be 1/A times the left hand side of Equation 15, we may write
fi—1
z(1) = (Py) s(2) (16)

The vectors s(¢) and z(t) are in precisely the relationship required of the pairs of vectors {s;;k=1...K} and
{z;:k = 1...K} (equation 7). We may therefore identify {s;;k = 1...K} and {zg:k = 1...K} as the vectors s(#) and
z(t) corresponding to the K leading eigenvalues of equation 12. For each converged eigenvalue, the vectors s(z) and
Az(t) are generated during the course of the Hessian singular vector calculation. They are therefore available at no extra
cost.

1. The assumption of invertible dynamics is not fundamental to the derivation of equation 16, but has been made to simplify
the notation. A derivation involving, for example, the Moore-Penrose generalized inverse of My _, ; is possible.
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Discussion

The simplified Kalman filter produces an approximation to the inverse of the covariance matrix of background error. That
is, it attempts to improve the weights given to background departures in the background cost function of 4D-Var. An
alternative approach is to improve the representation of the background covariance matrix itself, It is not clear which is
the better approach. Under the assumption of a Gaussian error distribution, the background cost is a measure of the
likelihood (i.e. the logarithm of the probability) of a given departure from the background. On the other hand, it is the
background covariance matrix, not its inverse, which defines the structures generated by the analysis. The covariance
matrix is arguably a more fundamental quantity than its inverse.

Ultimately, it is the Kalman gain matrix, K = p’ HT(R +HPS HT)_1 , which determines the analysis increments. The
ensemble Kalman filters described by Evensen (1994) and by Houtekamer and Mitchell (1998) produce estimates of the
matrices P/ and HP/ H’ based on the ensemble members. The matrix (R + ap/ HT) , is then explicitly inverted (or
factorized) to form the Kalman gain matrix. This is easily performed using standard techniques for the few hundred
observations used by both Evensen and by Houtekamer and Mitchell. It is not practical for the 10° or more observations
assimilated during a typical operational NWP analysis. ’

Equation 9 represented the inverse of the true covariance matrix of background error in the space of the analysis control
variable as a partitioned matrix. The simplified Kalman filter tries to retain the sub-matrices E and F , but replaces the
matrix G by the corresponding static approximation, which for the control vector is simply the identity matrix. The
inverse of the background error covariance matrix for the control vector of the simplified Kalman filter is

T

F I

The inverse of this matrix may be written as

-1 -1
(E-F'F) (E-FF) F’

(18)

-1 -1
FE-F'F) I1+FE-FF) '

None of the sub-matrices in equation 18 is identical with the corresponding sub-matrix of the true covariance matrix of
background error, except in the special case F=0. This occurs when the subspace defined by the vectors
{sg:k = 1...K} coincides with a subspace spanned by K eigenvectors of the true covariance matrix of background error
in the space of the control variable. This corresponds to the original outline of the simplified Kalman filter presented by
Courtier (1993). The current simplified Kalman filter includes this as a special case. It corresponds to the choice T = ¢
and W = B! in the Hessian singular vector calculation. At this stage, it is unclear whether the advantage of correctly
specifying both the background error covariance matrix and its inverse in the selected subspace outweighs the potential
advantage of optimising the analysis in a subspace in which errors will grow rapidly during the initial stages of the
subsequent forecast.

An important practical reason for constructing an approximation to the inverse covariance matrix rather than to the
covariance matrix itself is that it allows the approximation to be built from the pairs of vectors, z; and s; produced by
the Hessian singular vector calculation. A very similar formulation to that presented above would allow the construction
of an approximation to the covariance matrix from pairs of vectors ¥ and s satisfying y(¢) = Pxf s(1)

In addition to the explicit approximation which is the basis of the simplified Kalman filter, it is riecessary in practice to
make further simplifications. The main simplification is the use of a 3D-Var Hessian in the Hessian singular vector
calculation. The background error covariance matrix used in the singular vector calculation is the same as is used in the
simplified Kalman filter analysis. However, since the analysis is performed using 4D-Var, whereas the Hessian singular
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vector calculation uses the 3D-Var Hessian, the vectors z; calculated by the Hessian singular vector calculation must
necessarily be only approximations to the action of the true inverse forecast error covariance matrix on vectors s -

Several further approximations are necessary to reduce the computational cost of the Hessian singular vector calculation
to a reasonable level given current computing resources. The resolution is reduced to T42 (the main analysis is currently
performed at T63). Scatterometer and SSMI observations are excluded, as are observations of all types for latitudes south
of 20°S. TOVS observations are thinned to approxmately half the horizontal resolution at which they are used in the
operational analysis.

The formulation assumes invertibility of the change of variable matrix, L. In particular, calculation of the matrices
E and F requires that the vectors z; be transformed to control space using LT , whereas the vectors s; are transformed
to control space using L . However, the normalization of background departures in grid space by the standard
deviations of background error, which forms part of the change of variable, is not invertible. This is a consequence of the
larger number of degrees of freedom in grid space than in spectral space. A consequence of the non-invertibility of the
change of variable is that the matrix E becomes significantly asymmetric. Of course, this asymmetry is easily corrected
by replacing E by (E + g’ )72, but it is clear that the non-invertibility of the change of variable remains a major source
of numerical inaccuracy in the construction of the matrices Eand F .

The ensemble Kalman filter (Evensen, 1994) was briefly discussed above. There are clearly some similarities between
the ensemble Kalman filter and the simplified Kalman filter presented in this paper. Both approximate the covariance
evolution for a small subspace. The main difference between the two systems is the way in which this approximation is
generated.

In the ensemble Kalman filter, the forecasts which define the subspace are assumed to form a sample drawn at random
from a population of forecasts with representative forecast error. Consequently, the covariances between members of the
sample approximate the true covariances of forecast error. As the sample size increases, the approximation converges
towards the true covariance matrix of forecast error at a rate proportional to the square-root of the number of forecasts
which form the sample.

The sample size is inevitably several orders of magnitude smaller than the size of the covariance matrix. This has two
important consequences. First, there are directions in phase space which are orthogonal to all the vectors which define
the covariance matrix. This is referred to as the “rank problem” by Houtekamer and Mitchell (1998). Their solution is to
impose a cut-off radius for the distance between observations and analysis points. If the cut-off radius is sufficiently
small, then the number of observations contributing to the analysis at a given analysis point is smaller than the number of
forecasts in the sample. Houtekamer and Mitchell (op. cit.) show that in this case, the representer matrix apa’? (i.e. the
forecast error covariance matrix expressed in the space of observations) is of full rank, and the analysis problem is
mathematically well formulated.

While the use of a cut-off radius provides a technical solution to the rank problem, its use compromises one of the main
advantages of the variational approach to data assimilation; namely the global nature of the analysis. The inter-
relationship between the cut-off radius, the number of observations and the number of members in the ensemble is
particularly undesirable. It is likely that, as the number of independent pieces of information to be assimilated increases,
the approach will eventually require either unfeasibly large ensembles, or too-small cut-off radii.

Evensen and van Leeuwen (1996) chose a different method of attacking the rank problem. They employed an eigenvalue
decomposition of the sum of the representer mairix and the observation error covariance matrix. They showed that
numerical problems caused by ill-conditioning and the rank problem could be avoided by setting small eigenvalues to
zero. An undesirable consequence of their approach is that analysis increments are restricted to the subspace spanned by
the ensemble members.

The second consequence of estimating a large covariance matrix using a small sample is that sampling noise produces
spurious correlations at large distances. Both the cut-off approach of Houtekamer and Mitchell (1998) and the massaging
of eigenvalues employed by Evensen and van Leeuwen (1996) are effective in removing this noise.

The computational cost of the analysis is an important consideration for both the simplified Kalman filter and the
ensemble Kalman filter. For the simplified Kalman filter, the additional cost in the analysis due to the increased
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complexity of the background cost function is negligible. The cost of calculating the vectors {sk=1...K} and
{24k =1...K}, on the other hand, is large. The Hessian singular vector calculation has a nested loop structure. An
outer loop contains one tangent linear and one adjoint integration of the model for the period [0, T]. The number of
iterations of the outer loop determines the number of singular vectors which are calculated. In a typical configuration,
around 60 iterations are required to determine 15 singular vectors. (Note, however, that the discrepancy between the
number of iterations and the number of singular vectors reduces if more iterations are performed.)

For each iteration of the outer loop there is an inner loop of, typically, 30 iterations. Each iteration of the inner loop
requires the calculation of one gradient of the 3D-Var cost function. The number of iterations performed in the inner loop
is roughly half the number performed during a 3D-Var analysis. Thus, the computational cost of the inner loop is roughly
half the cost of the minimization component of a 3D-Var analysis at T42 resolution. The cost of the inner iterations
constitutes around 60% of the total cost of the Hessian singular vector calculation.

The computational cost of the ensemble Kalman filter depends critically on the method chosen to generate the initial
perturbations for the ensemble. It is vital to the success of the method that the perturbations are chosen in such a way that
the differences between the forecasts evolve into a representative sample of forecast error. The approach of Houtekamer
and Mitchell (1998) is to perform an ensemble of independent analyses. That is, a separate analysis is performed for each
forecast. The analyses differ in having perturbed first guess fields and observations. If these analyses were performed
using 3D-Var at T42 resolution, it is likely that the computational cost of the ensemble Kalman filter would be roughiy
similar to that of the Hessian singular vector calculation.

Houtekamer and Mitchell (1998) describe the ensemble Kalman filter algorithm as “embarrassingly parallel”. This
makes it well suited to modern computers. The simplified Kalman filter is less obviously parailel. The main component
of the algorithm is a version of the Lanczos algorithm, and is an essentially serial calculation. However, the main
computational burden of the algorithm is divided between integrations. of the tangent linear and adjoint models, and
calculations of analysis gradients. These calculations are already well parallelized for moderate numbers of parallel
processors. There are opportunities to increase this parallelism through the use of targeted final-time inner products,
which would allow the parallel execution of several singular vector calculations, each targeted to a different region; and
through the use of a block version of the Lanczos algorithm, which would allow more than one gradient calculation or -
model integration to be performed simultaneously. Modifications to the way in which the observation cost function is
evaluated may also allow effective use of larger numbers of processors.

Experimental Results

Five experiments are discussed in this section. They are summarized in the following table. The column marked “Topt”
indicates the optimization time for the Hessian singular vector calculation. ‘The column marked “Inner Product”
describes the inner product at the final time of the singular vector calculation (i.e. the matrix W in equation 12).

Expt. | Dates Topt Inner Product

A 16-30 April 1998 6 hours ()8

16-22 April 1998 6 hours (e)B

28 Nov-15 Dec 1997 | 48 hours | Energy (targeted)

28 Nov-15 Dec 1997 | 48 hours | Energy (not targeted)

HIO|AQ| W

16-22 October 1997 | 48 hours | Energy (not targeted)

For all experiments, the initial-time inner product of the singular vector calculation was assumed to approximate the
inverse of the covariance matrix of analysis error at the beginning of the 4d-Var assimilation window, which was 6 hours
long. Consequently, the vectors {s;;k=1...K} which define the subspace for the simplified Kalman filter were
produced by evolving the singular vectors for 6 hours.

The optimization time for experiments A and B was 6 hours. The vectors {s;;k = 1...K} were therefore the singular
vectors at the optimization time. To the extent that the initial-time inner product accurately represents the inverse of the
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analysis error covariance matrix, and that model error may be neglected, the singular vectors at the optimization time are
the eigenvectors of the forecast error covariance matrix with respect to the final-time inner product. For experiments A
and B, the final-time inner product cormresponds approximately to the inner product defined in equation 2. As a
consequence, the subspace defined by the vectors {s;;k = 1...K'} coincides approximately with the subspace spanned
by the leading eigenvectors of the covariance matrix of background error in the space of the control variable, as
suggested by Courtier (1993). However, the vectors are not exactly eigenvectors. This is because the final-time inner
product uses a local projection operator (Buizza and Palmer, 1995) to disregard contributions to the inner product from
perturbations south of 30°N. Without this restriction operator, many of the leading singular vectors would lie in the
southern hemisphere, due to the relative sparsity of observations.

As discussed in the preceding section, one consequence of choosing a subspace spanned by eigenvectors of the
covariance matrix of background error in the space of the control variable is that the elements of the cross-covariance
matrix F are zero. The subspace for experiments A and B does not coincide exactly with that spanned by eigenvectors of
the background error, so that some small cross-covariance should be present. However, it is suspected that the cross-
covariance matrix may be rather inaccurately reconstructed in the simplified Kalman filter. So, to avoid possible
numerical problems, the cross covariances were explicitly zeroed in experiments A and B by setting the coefficient o in
equation 5 to zero.

Experiment B differed from A only in the inner product used at the initial time of the Hessian singular vector calculation.
In experiment A, the initial inner product was the 3D-Var Hessian, whereas in B the Hessian was approximated by the
inverse of a covariance matrix constructed by combining the background error correlation matrix with an estimate of the
variances of analysis error. (The latter is produced routinely during the analysis as part of the background error variance
calculation. For details, see Fisher and Courtier, 1995.) The approximation to the Hessian used for experiment B has the
practical advantage of greatly reducing the computational cost of the singular vector calculation. It allows the calculation
to be expressed as an ordinary eigenvalue problem, which may be solved using a standard Lanczos algorithm. In
particular, the inner iterations, which normally constitute 60% of the computational cost of the calculation, are
unnecessary. An additional benefit is that no observation processing is required.

The combination of an initial-time inner product defined by an approximation to the analysis error covariance matrix,
and a final time inner product defined by an approximation to the covariance matrix of background error favours singular
vectors which originate in areas of large amalysis error variance and propagate to areas of small background error
variance. Most of the singular vectors for experiments A and B originated on the west coasts of Europe and North
America. Both experiments performed 60 outer iterations with 30 inner iterations for the singular vector calculations,
resulting in typically 15 converged singular vectors.

Scores for experiments A and B are shown in Figure 1. Experiment A shows a clear positive impact during the later
stages of the forecast. The. experiment was continued for a further 8 days, during which time the positive impact
demonstrated during the first 7 days of the experiment was maintained. (The magnitude of the impact on forecast scores
averaged over all 15 days of the experiment was similar to that shown in figure 1.)

Experiment B did not improve forecast scores. The lack of a positive impact suggests that the approximations made in
specifying the initial-time inner product of the singular vector calculation have a significant effect on the performance of
the simplified Kalman filter. In particular, it appears necessary to account for the effect of observations on the
correlations as well as the variances of analysis error.

Experiments C, D and E all used a final-time inner product which measured perturbation energy (see Buizza and Palmer,
1995, for details). A local projection operator was used to restrict the inner product to measure energy north of 30°N. In
the case of experiment C, this area was further restricted to 20°W-20°E and 30°N-70°N. The initial-time inner product
was defined by a 3D-Var Hessian using the reduced observation set described in an earlier section. Horizontal variation
of the standard deviations of background error was suppressed for these experiments in the singular vector calculation
and in the construction of the matrices E and F of the background cost function. This was done to ensure that the change
of variable was strictly invertible.

Figure 2 shows anomaly correlation and RMS error scores for 500hPa geopotential over the northern hemisphere for
experiment E. The simplified Kalman filter has a clear positive impact in this case. The singular vector calculation was
run for 60 outer iterations and 20 inner iterations, producing approximately 10 singular vectors per analysis cycle.
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‘A second experiment (D) with the same choice of optimization time and inner product as experiment E, but for a
different period, had a neutral impact. (The configurations of the simplified Kalman filter were unfortunately not
identical for experiments D and E as the number of inner iterations of the singular vector calculation was increased to 35
for the former experiment, resulting in typically 14 rather than 10 converged singular vectors.) The reason for the
variation in the impact on forecast scores between these experiments is not currently understood. However, when the
inner product at final time was restricted to the area 20°W-20"E and 30°N-70°N (experiment C), a small positive impact
was again observed. Figure 3 shows scores for experiments C and D. One beneficial effect of targeting is that the number
of singular vectors which are converged after 60 outer iterations increased to about 20 in experiment C.

Figure 4 summarizes the impact of the three successful simplified Kalman filter experiments, E, C and A. The plots show
the differences in scores between individual forecasts and their control forecasts as crosses. Differences in anomaly
correlation and RMS error for geopotential at 1000hPa, 500hPa and 200hPa for the northern hemisphere are plotted. The
differences have been normalized by the standard deviation of the sample to allow score-differences for forecast ranges
between one and ten days to be shown on the same plot. The solid curve on each plot shows the mean difference in score.
This curve has also been normalised by an estimate of the standard deviation of mean score. In estimating this standard
deviation, an attempt has been made to account for temporal correlation of score differences by fitting the score
differences to a first order auto-correlation model:

d; = 0d;_,+¢; (19)

where d; is the ih score difference, and where €; is an independent random variable. It is easily shown that, if N is the
total number of score differences and 62 is the variance of the individual score differences, the variance of the mean
score for this model is given by

] N N | I

i-jl) 2
) E E (0] o 0
Ni—1j=1

In practice, it was found that the autocorrelation coefficient ¢ was little different from zero for the experiments presented
here. Consequently, the standard deviations used to normalize the mean score differences shown in figure 4 were in most
cases close to 6/ /N .

The mean score differences typically show a negative impact during the first few days of the forecasts. However, the
difference is in most cases only one standard deviation away from zero, and is not statistically significant. The positive
impact at day 6 and 7, on the other hand is between 2 and 3 standard deviations away from zero, and is therefore
significant with a null-hypothesis probability of between 5% and 1%. The individual score differences, shown by the
crosses in figure 4 show. that the positive impact results from a modest general improvement in the scores for several
forecasts, rather than from a few well-forecast outliers.

Conclusions

The simplified Kalman filter presented in this paper represents one approach to reducing the computational expense of
the Kalman filter to a level which makes it feasible for use in operational numerical weather prediction.

An important part of the design of the simplified Kalman filter is that it does not attempt to replace the current analysis
system. Rather, it tries to extend the already successful ECMWEF 4D-Var analysis. This has the practical advantage that
the simplified Kalman filter automatically takes advantage of any improvements to the 4D-Var system. In the vast
majority of directions in the phase space of the model in which the Hessian singular vectors provide no information about
background error covariances, the simplified Kalman filter generates analysis increments which (except for the effects of
non-linearity) are identical to those of 4D-Var. This is in marked contrast to current implementations of the ensemble
Kalman filter, which are only able to correct the background in directions spanned by the ensemble members.

The results presented in this paper show an encouraging positive impact. This impact is statistically significant. However,
it is rather small given the large computational cost of the calculations. The small impact, and its variability when
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essentially the same configuration is evaluated for different periods, has made it difficult to demonstrate a clear advantage
for any particular choice of final time inner product and optimization time in the singular vector calculation.

In the companion paper (Ehrendorfer, 1998), it is estimated that 100 singular vectors may account for about 50% of the
variance of 2-day forecast error and 17% of the variance of analysis error. The proportion of the variance of background
error accounted for by 100 singular vectors probably lies between these extremes. The experiments presented in this
paper used between 10 and 20 singular vectors. It is likely that a much larger number of vectors should be used to
demonstrate a large impact on forecast scores. This would require a more expensive singular vector calculation. Changes
to the analysis system and the forecast model (for example, the addition of more model levels) are also likely to increase
the computational cost of the simplified Kalman filter.

The effect on the performance of the simplified Kalman filter of using a restricted observation set during the singular
vector calculation has yet to be evaluated. It is also not known at present whether the use of a 3D-Var Hessian in the
singular vector calculation has a detrimental effect on the accuracy with which the inverse forecast error covariance
matrix is calculated. For the experiments presented in this paper, it has been assumed that the 3D-Var Hessian represents
an approximation to the 4D-Var Hessian at the beginning of the assimilation window. It may be argued that the mid-point
of the assimilation window should have been chosen, in which case the covariance information provided by the 3D-Var
Hessian should have been evolved for 3 hours rather than 6 hours. The growth rate for forecast error variance in the
directions spanned by the leading singular vectors is large. Consequently, the period over which covariance information
is evolved has a large impact on the diagnosed variance of background error for the evolved subspace. The ambiguity in
the evolution period can best be resolved by using a 4D-Var Hessian in the singular vector calculation. It is planned to
test this option. The singular vector calculation will be roughly a factor of 2 more expensive in this configuration.

The large number of approximations involved in the current implementation of the simplified Kalman filter makes it
difficult to properly evaluate the system. In order to test the effects of these approximations, it is highly desirable that a
“benchmark”™ experiment should be run, for which as many approximations as possible are removed. This would allow a
proper evaluation of the individual effects of the various approximations, and would provide an indication of the full
potential of the system for improving forecast scores. The benchmark experiment should calculate a significantly larger
number of singular vectors than the experiments presented here. It should use the 4D-Var Hessian with a full set of
observations and, if possible, at the same resolution as the analysis. This would require a singular vector calculation
which is at least a factor of 10 more computationally expensive than those used in the experiments presented in this
paper. To put this into perspective, each singular vector calculation would require roughly the same computer resources
as a 12 day integration of the T639/1.31 configuration of the forecast model.

Currently,. the Hessian singular vector calculation executes for about 2 hours on 8 processors of the Fujitsu VPP700
computer. A significant increase in the computational cost would clearly require that the calculation run efficiently on a
much larger number of processors. This is not the case at present for two reasons. First, the low resolution of the
calculation results in vectors which are too short to make effective use of the vector arithmetic units of the VPP700.
Second, there is a load imbalance in the calculation of the observation term of the analysis cost function. Both problems
are being addressed.

There are several practical and theoretical questions to be answered before the optimal configuration of the simplified
Kalman filter can be decided. Many of these questions are best answered in the context of the explicit low resolution
extended Kalman filter developed by Ehrendorfer (1998). It is expected that the explicit Kalman filter will prove
invaluable in the further development of a simplified Kalman filter at ECMWE.
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Figure 1: Anomaly correlation and RMS error for 500hPa geopotential for forecasts initialized from
experiments A and B, and for a 4D-Var control
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Figure 2: Anomaly correlation and RMS error for 500hPa geopotential for forecasts initialised from two

analyses experiments. The dashed curves show scores for
filter (experiment E). The solid curves are for 4D-Var.

forecasts initialised using the simplified Kalman
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Figure 3: Anomaly correlation and RMS error for 500hPa geopotential for forecasts initialised from
experiments € and D, and for a 4D-Var control.
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Figure 4: Individual and mean differences in anomaly cormelation and RMS height score between forecasts
from simpified Kalman filter and 4D-Var analyses. The scores have been normalized by an estimate of the
standard deviation of individual or mean score. in the case of mean scores, the estimated standard deviation
includes a correction to account for the effect of autocorrelation.
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