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Abstract

Non-linear diffusion equations with numerical stability probléms are common in many brﬁnches of science. An exaniple is the k-diffusion
parametrization for vertical turbulent mixing in atmospheric models that creates a system of non-linear diffusion equations with stability
problems. In this paper a new algorithm to solve the one-dimensional diffusion equation is presented. The method, that is stable by design,
is quite general and can be used in other partial differential equzitions. Results with the new scheme compare well with analytical solutions
and a study with a system of two non-linear diffusion equations shows that the new method is more stable than more traditional schemes.

1. INTRODUCTION

In atmospheric models the vertical turbulent mixing is usually parametrized using a k-diffusion approach, where
k depends on the mean variables. This parametrization creates a system of non-linear diffusion equations with
numerical stability problems (Beljaars, 1991, Girard and Delage, 1990). This type of problem is one of the
reasons why the time step of climate models cannot be significantly increased (Williamson, 1996). Non-linear
diffusion equations are used to model a variety of different phenomena, from engineering flows (Oran and Boris,
1987) and magnetohydrodynamics (Potter, 1973) to insect dispersal (Murray, 1993). These models suffer from
similar types of numerical stability problems and a method that would “solve” these problems in a very general
way would have a wide range of applicability.

The equation for the atmospheric turbulent diffusion of a variable A can be solved with an implicit scheme and
a stability analysis shows that this scheme is unconditionally stable for the simple case of a constant k. However,
k is not constant (neither in space nor in time) and usually is a non-linear function of the mean variables. In this
case a fully implicit method cannot be used. In practice, the problem is often solved with an implicit formulation
for A and an explicit formulation for k, but such a scheme is not necessarily stable in all circumstances (Beljaars,
1991). Due to the stability problems a scheme usually referred to as “more-than-implicit” or “over-implicit”,
which corresponds to an implicitness factor larger than 1 (Beljaars, 1991), has been used in atmospheric models
(Girard and Delage, 1990; Jarraud et al., 1985).

The aim of this paper is to present a new type of algorithms to solve the one-dimensional diffusion equation. This
method is, in principle, stable by design for any value of the stability coefficient. In section 2 the new scheme is
described. A derivation of the diffusion equation is presented in section 3 in order to show an analogy with the
new scheme. A discussion of some properties of the scheme is presented in section 4. In section 5.1 the results
of simple tests are shown. Although this work is mainly concerned with the constant diffusion coefficient case,
in section 5.2 a situation that involves a variable & is studied in order to illustrate the potential advantages of the
new method in dealing with non-linear diffusion equations. Some conclusions are presented in section 6.
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2. THE SCHEME
2.1 The explicit method

The one-dimensional diffusion equation for a generic property A is:

'Qézi( a_A] S

Discretizing the one-dimensional diffusion equation in space and explicitly in time (assuming that the diffusion
coefficient k is constant) gives:

nt+ _ n At n n n | | |

j+Ax

where At is the time step, Ax is the grid length, n is the time discretization index and j the space discretization
index. The stability coefficient is: R

3

A simple stability analysis shows that if €<1/2 eq. (2) is stable and if >1/2 the equation is unstable.

2.2 The new scheme : B :
The discretized version of the one-dimensional diffusion equation for the new scheme proposed here can be
written as:

‘ ! I;* t‘__ n At ‘n " n‘ n ‘ R -
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To obtain eq. (4) the spatial partial derivative is approximated by a finite difference along the distance As, that
does not have to be equal to the grid length and can be determined by imposing a fixed stability number B < 1/2:

At " 1 kAr |
As® , N B

The values of A at the ras of eq. (4) can then be obtained by interpolation from the original grid. For a stability

coefficient of 1/2 it is:

RAL-L “  As=x/2kAt ©
As* 2
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and the following expression is then-obtained: .
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Other values can be imposed as long as they are less than the limit for stability that is 1/2. Examples used in this
paper are 1/4 or 1/6 that is the value that leads to the highest accuracy in the explicit scheme (Richtmyer and
Morton, 1967). If the imposed stability number is 1/6 the following solver is then obtained:

1 2.1
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where 4s is determiried as: < - -
Rl As=x/6kAr o
As* 6

Althouigh this work is mainly concerned with the case of a constant diffusion coefficient, some results with a
variable coefficient will be presented in section 5 in order to illustrate the potential advantages of the new scheme
in'dealing with non-linéar problems. For the more general case of a dlffusmn coefficient that: changes in space,
the new scheme can be written as: - : SRR T R

e At o1 n n
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where 4s, and 4s_ are, respectively, the distance that corresponds to larger and smaller values of the space

i

o)

discretization index.

To obtain equation (10) a spatial partial derivative at point j of a variable D is estimated as:

( aD) 1 Dj+A-\‘ —D DJ—D] As_

= : 11
ox ), 2 As, As_ - an

It is easy to see that for the constant diffusion case it is 4s,=4s_and equation (10) reduces to equation (4).
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By imposing a constant value to the stability number f# 4s, and 4s_can be determined from the following
expressions:

L 2 At 12)
’ p

=
B

(13)

These two relations and equation (10) can be used iteratively in order to find the optimal 4s, and As . In this case
k, and k_can, for example, be equal to k; at the first iteration and for the following iterations it is:

k_=k. A k. =kjaAs+ /2 (14)

j-As_1 2

For a diffusion coefficient that changes in time as well as in space, eq. (10) can also be used with the diffusion
coefficient being taken at time step n. It is not complicated to extend this type of schemes to diffusion equations
with more than one dimension using methods based on alternating directions. To include source and sink terms
on the rhs of the diffusion equation is also not problematic. It can be seen that this method is very general and
can probably be applied successfully to solve, in a stable manner, other partial differential equations.

3. A DERIVATION OF THE DIFFUSION EQUATION

Here a simple derivation of the diffusion equation based on the random walk approach is presented. Let N,"be
the number of particles at point j and time step n and assume that the probability of particles moving to the left
or to the right is the same, equal to p and smaller than 1/2. Then at time step n+1:

)

N'"%=pN" , +(1-2p)N"+pN" _, (15)

This relation can also be written in terms of a generic property A:

A.'HM:pA "

b jeAs

+(1;—2p)Aj"+pA "j_AJ : o - (16)

Expanding in Taylor series, after some simple algebra and neglecting the higher order terms the following
expression is obtained: - - .
9A _pAs® A
or At gx

17)
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Assuming that when 4, As --> 0; lim(pAs )/ (4t) =k and kis a constant; then eq. (17) represents the diffusion
equation, with a constant diffusion coefficient.

More formal derivations of the diffusion equation based on the random-walk approach can be found in, among
others, Murray (1993) or Sorbjan (1989). In any case, these more formal derivations are ultimately also based
on the assumption that when A4¢,4s --> 0, then lim (pAs®)/(At)=k . A discrete version of this assumption plays
an important role in the development of the scheme that is presented in this paper because with this method it is
assumed that pAs’ /At=k is true for any At and As and not only when 4, 4s --> 0.

4. DISCUSSION

There is also an analogy between the new diffusion scheme and the semi-Lagrangian method used to solve the
advection equation. Semi-Lagrangian methods have been widely used in atmospheric models in recent years and
detailed reviews can be found in Smolarkiewicz and Pudykiewicz (1992) and Staniforth and Cote (1991). The
idea of solving the diffusion equation based on concepts related to advection schemes is not new. In
Smolarkiewicz and Clark (1986) and Smolarkiewicz and Margolin (1998) it is shown how a positive definite
advection transport algorithm can be successfully used to solve the diffusion and the advection-diffusion equation.
Much of their underlying theory could possibly be adapted to devise a diffusion scheme similar in its stability
properties to the one presented in this paper.

An important point is that using the new scheme when As<4x it should be possible to obtain the explicit solver
algorithm of eq.(2). In fact, if As<Ax and the new scheme is used with a quadratic interpolation and with f=1/2
the following expression is obtained:

! 2 2
(18)
6(6-1 8(6+1), ,
3l —(2—‘" la )
where 6 = |4sl/Ax. After some simple algebra:
]u+AI 52A npr (1 62) +1 52A n (19)

which is, taking into account the definition of , the same as the explicit diffusion solver shown in eq.(2).

In principle the new scheme presented in this work is stable by design, since it imposes a fixed value for a
stability coefficient B, below the stability limit, and uses this information in order to determine a new grid. The
values of the variables at the new grid are then obtained by interpolation from the original grid. However, a more
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detailed study is presented here in order to analyse the stability of the new scheme and the behaviour of the
amplification factor compared with other schemes.

In order to simplify this study only a particular configuration of the scheme is analysed: the one that corresponds
to a linear interpolation and to a 4s between 4x and 24y, i.e.:

As=Ax+e with  O<e<Ax ' (20)
With linear interpolation:
1+A.\'_(1 n)A j+Ax nAjJrZAx‘ | (21)
A=A, mA | 22)
with
ﬂzi o ' 23
Ax (23)

In this case the algorithin for the new scheme can be written as follows:

A.“At'—:A,""‘k At (A n. A —ZA,"+A n._A )
T Asz“‘rx i i-8x
At (29
+kAs2n(I4 j+2Ax_A j+Ax_A j—Ax+A j—ZAx)
or after some simple algebra
Artear kB 2AreAn )
At 1
-1 “2A A"
Axl( (1 +T])2 )(14 j+Ax ]—Ax) (25)
At 7
n AT AT HAT
sz(1+n)2(A i-A i-A o 2A)

Expanding the variable discrete values in Taylor series and neglecting the higher order terms the following

equation is obtained:
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It is quite straightforward to see that for 77=0 (which corresponds to As=Ax) and for 77=1 (As=2A4x), y=1I and the
equation reduces to the normal diffusion equation. Since 7 is between 0 and I, ¥ is never larger than 1.725 and,
for example, for 7=0.5, y=1.11111.

To analyse the stability. of this particular. scheme the amplification factor for a Fourier mode in space is
determined. The amplification factor, for the new scheme in this particular configuration, is:

¢=1-4kﬂsin2[ Ki‘i)
As? 2

e | N1 (29
+2k—’§5;n[( Sms?(K%) —10)00;2(1(%] +2] | |

As

where X is the wave number.

If =0 eq.(29) becomes the amplification factor of the common explicit solver. First of all, the following
simplified extreme cases can be analysed. For cos’(KAx/2)=1, =1 and for sir(KAx/2)=1 the condition that the
amplification factor must be less than 1 leads to:

B(1-n)< - (30)

N | =

which is always true since by design of the scheme

p< A 0snsl (31)

1
2
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To investigate in more detail the properties of the scheme the amplification factor of this and other well known
schemes is plotted as a function of the wavelength divided by the grid length, for different values of p. It is always
assumed that As-Ax=0.54x.

In fig.1 the amplification factor is shown for the new, the explicit and the implicit schemes. These results were
obtained for f#=1/2 which corresponds to a value of the normal stability coefficient #=1.12 (assuming As-
Ax=0.54x). Also shown are the results for the analytic solution and an “over-implicit” scheme with an
implicitness factor of 4 (Beljaars 1991). It can be seen that, since the stability coefficient « is above 0.5, the
explicit solver gives an unstable solution for wavelengths smaller than about 4.3A4x. For this case the implicit
scheme provides the best results when compared with the analytical solution. However, the new scheme is
reasonably well behaved for wavelengths larger than about 64x. The results for the “over-implicit” are
represented in these figures to show that, although stable, this type of schemes can be highly inaccurate.

In fig.2 the same is shown, but in this case for a value of f=1/4, that corresponds to a=0.5625. Again, the explicit
scheme is above its stability limit and gives an amplification factor less than -1 for wavelengths smaller than about
2.55Ax. In this case the new scheme, when compared with the analytic solution, is clearly superior to the implicit
scheme (except for wavelengths close to 24x). ' :

In fig.3 the same is shown but for /=1/6 and @=0.375. In this case the explicit scheme is always stable. The new
scheme is again better than the implicit and the explicit schemes for most of the wavelengths shown in the figure.
The results of the new scheme are actually very similar to the analytic solution for wavelengths above 5.54x.

Figure 4 shows the amplification factor versus the wavelength divided by the grid length, for the analytic solution,
the new scheme, the implicit scheme and also for the Crank-Nicholson and the Dufort-Frankel schemes. These
results are obtained with f=1/6 and @=0.375. The Dufort-Frankel scheme provides the best results when
compared with the analytic solution. However, above wavelength 54x the new scheme gives results that are better
than the ones obtained with the Crank-Nicholson scheme and comparable with the ones obtained with the Dufort-
Frankel scheme. e

In fig.5 the same as in fig.4 is shown, but for f=1/4 and a=0.5625. The results obtained with the Crank-
Nicholson scheme are quite superior to any other scheme and compare very well with the analytic solution. The
new scheme, however, gives results that are quite reasonable above wavelength 44x and are much better than the
ones obtained with the Dufort-Frankel scheme. In this case the results of the Dufort-Frankel scheme have some
odd features, which are well known (Potter, 1973).

As a summary it can be said that in general the new scheme is reasonably accurate when compared with analytic
solutions and other numerical schemes. However, for wavelengths close to 24x, the new scheme does not seem
to provide very satisfactory results.
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The issue of conservation is one to which special attention should be paid. The new scheme for the case of a
constant diffusion coefficient does not have conservation problems: it is straightforward to show that the new
scheme with linear interpolation is conservative for a constant diffusion coefficient as long as the values of the
variables close to the boundaries are set in an appropriate manner. For the case of a variable diffusion coefficient
the problem is more complicated, but since this paper is mainly about the constant diffusion coefficient case, this
will not be explored any further.

A potential problem with the new scheme is how to impose boundary conditions. The new scheme will have a
problem every time the distance 4s is larger than the distance to the boundary. A simple solution is: every time
the distance 4s (and the chosen interpolation scheme) implies that the value of the variable at points outside the
boundaries has to be defined, the value of the variable at these points is set to be equal to the boundary value. This
assumption has been tested and has proved to be quite realistic for the surface boundary condition of the vertical
turbulent diffusion equation in atmospheric models.

5. SOME SIMPLE TESTS ‘

5.1. A Comparison with an Analytical Solution

For the simplified case of a constant diffusion coefficient and a delta-function at initial time 7=0 s, the diffusion
equation has an analytical solution. The analytical solution at time t=100 s is used as the initial condition of the
numerical integrations and the solutions of these simulations after 700 s and 500 s are then compared against the
analytical solutions at the corresponding times. '

Fig. 6 shows the initial state, the analytical solution at time =200 s, and two numerical solutions obtained with
the new method 100 s after the initial state: one using linear interpolation and the other cubic interpolation, both
with #=1/2. In this case the diffusion coefficient is 10 n’s”. The numerical integrations use a grid space of I m
and a time step of / 5. As can be seen both numerical integrations, with the linear or cubic interpolation, have
reasonable results when compared with the analytical solution. However, the simulation that uses the cubic
interpolation is clearly more accurate than the one with the linear interpolation and is almost indistinguishable
form the analytical solution.

In order to perform a more systematic study several “runs” for the same situation were performed with the new
scheme, with linear and cubic interpolations, and with the implicit scheme.

In table I the results for the new scheme with linear interpolation are shown. The results correspond to different
values of #(1/2, 1/4 and 1/6), different values of the diffusion coefficient (I and 10 nfs') and different run-times
(100 s and 500 s). For each one of these different experiments, the Root Mean Square (RMS) error, when
compared with the analytical solution, was computed. In table II the same is shown but for the new scheme with
cubic interpolation.

It can be seen that the scheme with the cubic interpolation is in general more accurate than with the linear
interpolation. Another aspect, that is particularly obvious with the cubic interpolation, is that the more accurate
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results are obtained when f=1/6. This is in agreement with the fact that with the explicit scheme the most accurate
results are obtained when the stability coefficient is 1/6 (Richtmyer and Morton, 1967).

Comparing the previous tables with table Il where similar results are shown for the implicit scheme it can be seen
that the implicit scheme is always less accurate than the new scheme with cubic interpolation. In particular, the
new scheme with cubic interpolation and f=1/6 is often 1 or 2 orders of magnitude more accurate than the
implicit scheme.

Although all the results shown are from runs that were performed with a domain size of 10000 points, the same
simulations were also performed with domains of 1000 and 100000 points. However, the results of these runs
are not shown because no major sensitivity to the domain size was detected.

The conservation issue was also examined in this study. The results are not shown because, although no special
care was taken with the values close to the boundaries, the difference between the total initial concentration and
the final one was usually less than 0.001% for all the runs with the new scheme. :

5.2. A System of Two Non-Linear Diffusion Equations
To illustrate the potential advantages of the new scheme, the following system of equations is considered (Girard
and Delage, 1990):

ou_3,0u
ot 0z 0Oz
% _ 0,08 R
ot 0z Oz
where u is the wind speed and &1is the potential temperature. The diffusion coefficient is:
Y ) au AV
k=1"—|(1+bRil) , : : (33)
0z
where [ is a mixing length and Ri is the Richardson number defined by:
2
.0z ' ’
Ri ———-——a - (34)
0,(=)
0 az

where g is the acceleration of gravity and ) is a constant. The values that are used for the constants b and n are
(Girard and Delage 1990): n=-2 and b=5 for Ri>0 and n=1/2 and b=20 for Ri<0. This type of equations is often
encountered in problems related to the parametrization of turbulence in models of geophysical flows. This
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particular set of equations has been used to parametrize vertical turbulent mixing in global atmospheric models
(Girard and Delage 1990).

A simplified situation is considered: A one-dimensional domain with 10° points separated by a grid space of 1
m. The initial values for u and @are 10 ms™ and 310 K respectively, in every point of the domain except in the
middle point where u is 0 ms™” and 8is 250 K.

The system is solved by two different methods: 1) a method that will be referred to as “implicit” where on the
rhs the mean variables are taken implicitly and the diffusion coefficient explicitly in time and 2) the method
presented in this paper, with /=1/2 and a linear interpolation scheme. Since in this situation the diffusion
coefficient varies in space and time, eqgs. (10), (12) and (13) will be used, as shown in section 2, with 3 iterations.

As can be seen in fig.7, where the time evolution of #in the middle point of the domain is shown for the first
500000 s, the solution obtained with the “implicit” method is noisy for time steps of 100 and 1000 s. The
amplitude of the initial oscillation increases with the time step. The results with the new scheme are better. A
constant solution is obtained, as is more clear from fig. 8. '

In fig. 8 the potential temperature evolution from 950000 s to 1000000 s is shown. It can be seen that the
solutions obtained with the “implicit” method are always noisy. Again the amplitude of the oscillations increases
with the time step. With the new scheme a solution with a constant value of 310 K is obtained.

With the new method the simulations were performed with a time step of 1000 s, but the results for the new
scheme are independent of the time step used (at least in the range between I to 70000 s). This test shows that
the new method has less numerical stability problems than the “implicit” method. ‘

6. CONCLUSIONS

In this paper anew method to solve the one-dimensional diffusion equation has been presented. This newié.’cheme
is stable by design, since it imposes a fixed value for a stability coefficient below the stability limit and uses this
information in order to determine a new grid. The values of the variables at the new grid are then obtained by
interpolation from the original grid. The new method is quite general and can be used to solve other partial
differential equations.

An analysis of the amplification factor of some particular configurations of this scheme shows that the new
method is not only stable but is often more accurate than other, commonly used, numerical methods. It is also
shown that the explicit scheme can be obtained as a particular configuration of the new method presented in this

paper.

The results of the new scheme compare well with analytical solutions, for the simplified case of a constant
diffusion coefficient. Some configurations of the new scheme can actually provide results that are always more
accurate than with the implicit method.
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A study with a system of two non-linear diffusion equations for wind and potential temperature shows that the
new method is more stable than a more traditional “implicit” scheme, where on the rhs the mean variables are
taken implicitly and the diffusion coefficient explicitly in time.
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B k (m%s™) time (s) RMS error
v | 1 " 100 9.65522E-2
112 1 500 1.18139E-1
14 . 1 100 1.00434E-3
1/4 1 500 4.23027E-4
/6 1 100 3.26799E-2
1/6 1 500 4.13800E-2 -
12 10 100 6.64590E-3
12 - 10 500 7.5674263 .
1/4 10 ~ 100 12.97326E-3
1/4 10 500 - 3.35876E-3
1/6 10 100 142019E3
w6 | 10 500 . . 1.80493E-3.
Table 1 -Results with the new scheme with linear interpolation, for the case of a constant diffusion
coefficient (see text for details).
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B "k (m?s™) | 5 iltime (s) 'RMS error
i |1 100  2.14781E-3
2 | 1 | 500 9.06875E-4
ya | 1 100 1.00434E-3
ya |1 500 | 42302764
e | 1 100 ' 3.98937E-5
1/6 AT 500 ' 3.21637E5
12 | 10 100 1.13189E-3
2 | 1w 500 | 477634
| 100 100  5.63754E-4
ya | 10 500 | 2.34189E-4
6 | 10 100  5.66400E-6
1/6 100 | 7 s00 1.56124E-5

Table li - As in table | but for the new scheme with cubic interpolation. .

k(m?s™) time (s) RMS error
1 100 3.50450E-3
1 500 1.52026E-3
10 100 1.69009€-3
10 500 7.01931E-4

Table Ill - As in table I but for the implicit scheme.
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Figure 1: The amplification factor versus the wavelength divided by the grid-iength, for the new,
the explicit and the implicit schemes. Results obtained with =1/2 which corresponds (assuming
As-Ax=0.54x) to a=1.12. Also shown is the analytic-solution and an “over-implicit” scheme with
an implicitness factor of 4.
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Figure 2: As in fig.1 but for f=1/4 and a=0.5625.
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Figure 3: As in fig.1 but for A=1/6 and a=0.375.
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Figure 4: The amplification factor versus the wavelength divided by the grid-length, for the analytic
solution, the new scheme, the implicit scheme and also for the Crank-Nicholson and the Dufort-Frankel
schemes. Results obtained with /=1/6 and a=0.375. C
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A stable scheme for the one-dimensional diffusion equation
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Figure 5: As in fig.4 but for f=1/4 and a=0.5625.
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A stable scheme for the one-dimensional diffusion equation
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Figure 6: The initial state, the analytical solution at time t=200 s, and two numerical solutions obtained with
the new method 700 s after the initial state: one using linear interpolation and the other cubic interpolation.
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A stable scheme for the one-dimensional diffusion equation
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Figure 7: Time evolution of &in the middle point of the domain for the first 500000s, obtained with the
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"implicit” method (time steps of 700 and 7000 s) and with the new scheme,
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A stable scheme for the one-dimensional diffusion equation
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Figure 8: As in fig. 7, but for the last 50000 s of a run of 1000000 s. -
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