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Incremental 4D-Var Convergence

Abstract

Since its operational implementation at ECMWF, incremental 4D-Var has run with two outer loop iterations.
It has been shown in the past that more outer loop iterations were leading to the divergence of the algorithm.
We re-evaluate here the convergence of 4D-Var at outer loop level with the current system.

Experimental results show that 4D-Var in its current implementation does diverge after four outer loop
iterations. Various configurations are tested and show that convergence can be obtained when inner and
outer loops are run at the same resolution, or at least with the same time-step. This is explained by the
presence of gravity waves which propagate at different speeds in the linear and nonlinear models. It is
shown that these gravity waves are related to the shape of the leading eigenvector of the Hessian of the
4D-Var cost function which is determined by surface pressure observation and which controls the behaviour
of the minimisation algorithm. The influence of the choice of the inner loop minimisation algorithm and
preconditioner is also presented. Finally, some directions for possible future configurations of incremental
4D-Var are given.

1 Introduction

Meteorological forecasts are based on observations of the atmosphere and on models of the evolution of the
atmospheric flow. In order to integrate a model and produce a forecast, an initial condition which describes
the atmosphere at the initial time of the forecast is required. Observations of the atmosphere do not constitute
a satisfactory initial condition because of their irregular distribution in time and space and because of mea-
surement errors. The data assimilation problem consists in constructing a suitable initial condition using the
observations and the model. ECMWF uses the four-dimensional variational data assimilation (4D-Var) method
as described byLe Dimet and Talagrand(1986). The principle of the method is to minimise a cost function
which measures the gap between observations and the solution of the model during the assimilation window.
The control variable of the problem is the initial condition of the model.

Because of the computational cost of 4D-Var, some approximations are made. In particular, the ECMWF imple-
mentation is based on the incremental formulation described byCourtier et al.(1994). A complete description
of ECMWF 4D-Var assimilation system was given byRabier et al.(2000), Mahfouf and Rabier(2000), Klinker
et al. (2000) and updated byAndersson et al.(2004). As incremental 4D-Var was developed,Rabier et al.
(2000) tested various configurations of the algorithm and found that it didn’t converge satisfactorily when more
than two trajectory updates were used. They promised at that time that “We shall re-examine the impact of the
number of outer-loops in 4D-Var later”. Since 4D-Var has been introduced in operations in November 1997,
the system has evolved considerably but no systematic attempt has been made to re-assess the possible use of
more outer loop iterations.

As the system has evolved to higher resolution and will continue to do so in the coming years, more small
scales are resolved and nonlinear phenomena in the model become more important. Nonlinear phenomena are
also increasingly important as assimilation of new types of observations related to clouds and rain are being
developed (Andersson et al.(2005)). The normal mode initialisation, shown to be the main reason for the lack
of convergence of 4D-Var at outer loop level byRabier et al.(2000) has been replaced in June 2000 by a weak
constraint digital filter initialisation as described byGauthier and Th́epaut(2001). In this paper, we re-evaluate
the convergence of incremental 4D-Var at the outer loop level in this new context.

The outline of the paper is as follows: in the next section, we described the incremental 4D-Var algorithm as
implemented at ECMWF. In the following section, we show some diagnostics of convergence of the current
system and highlight some of its deficiencies. Section 4 will detail some of the reasons for the behaviour
exhibited in the previous section and, in section 5, we propose possible improvement for the current operational
system.
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2 The incremental 4D-Var minimisation problem

The cost function which is minimised in 4D-Var includes three terms and can be written as:

J(x) = (x−xb)
TB−1(x−xb)+ [H (x)−y]TR−1[H (x)−y]+Jc

wherex is the control variable,xb is the background state,y is the vector of observations,B is the background
error covariance matrix,R is the observation error covariance matrix,H is the nonlinear observation operator
andJc is an initialisation term used to control gravity waves.H computes the observation equivalent at the
correct location and time and includes the forecast model.

In its incremental formulation, the minimisation problem is written as a function of the departure from the
background❞x = x− xb. At the minimum,❞x will be the analysis increment. A first order approximation of
the cost function is given by:

J(❞x) = ❞xTB−1❞x+(H❞x−d)TR−1(H❞x−d)+Jc

whereH = ➯H

➯x is the linearised observation operator andd = y−H (xb) is the departure from observations. In
this notation, the tangent linear model is embedded in the linearised observation operator. The gradient of the
cost function with respect to the initial condition is obtained using the adjoint model. A nonlinear integration
provides the trajectory around which the tangent linear and adjoint models and the observation operators are
linearised. It is called trajectory run. The departuresd are also computed in this trajectory run.

The approximate minimisation problem thus defined is solved using an iterative algorithm: this is the inner
loop of 4D-Var. Currently at ECMWF, a preconditioned Lanczos-conjugate gradient algorithm (CONGRAD) is
used to solve the inner loop minimisation problem as described byFisher(1998). After this minimisation, the
departures and trajectory can be recomputed using the nonlinear model and a new linearised problem is defined.
The process can be repeated: this is the outer loop of incremental 4D-Var. If the linearised problem is reasonably
close to the nonlinear problem, as tested inTrémolet(2004), its solution should be an approximation of the
solution of the nonlinear problem. At the next outer loop iteration, the starting point is closer to the solution,
the first order approximation is more accurate and provides a more accurate solution of the full problem. The
algorithm should converge to the solution of the nonlinear problem, although there is no general theoretical
proof of convergence.

In order to reduce the computational cost of the assimilation, the inner loop is run at lower resolution than the
forecast. Currently at ECMWF, two iterations of the outer loop are run, the first one at T95, the second one at
T159 while the outer loops and forecast run at T511. For further reduction of the computational cost, simplified
linear physics is used in the first inner-loop minimisation. Note that the incremental algorithm is independent
of these further approximations. The incremental 4D-Var algorithm is shown schematically on figure1.

Figures2 and3 show the evolution of the various components of the cost function and its gradient in a configu-
ration similar to today’s operational 4D-Var. The only two changes with respect to an operational IFS CY29R1
analysis were to run ten outer-loop iterations instead of two and to limit the number of inner loop iterations for
each of the second and following minimisations to 25.

On figure2 and all similar figures in this paper, solid lines represent theJo component of the cost function, as
seen in the inner loop, the bars represent the value ofJo as seen in the nonlinear trajectory runs. The figure
also shows the evolution of the other components of the cost function:Jb (dashed lines) andJc (dotted lines).
These are only computed at low resolution, in the inner loop. The values ofJo, Jb andJc in the inner loops are
obtained from the first and last evaluation of the cost function, at the start and at the end of the minimisation.
For the figures, they are joined by straight lines as intermediate information is not available. Also note thatJb
has been inflated by a factor of 10 andJc by a factor of 100 to make the figures more readable.
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Figure 1: Incremental 4D-Var algorithm. Departures d from observations y and trajectory are computed at high resolu-
tion. The cost function is minimised at low resolution using an iterative algorithm (inner loop). The resulting increment
❞xi is interpolated back to high resolution (S−1) and added to the current first guess. The process is repeated (outer loop,
subscript i) until the analysis xa is obtained.

The figure shows that the values ofJo at the end of a minimisation, in the following high resolution trajectory
and at the starting point of the ensuing minimisation do not coincide. The jump inJb between the end of the
first minimisation and the begin of the second minimisation is due to the change of resolution and the implied
change in theB matrix.

Figure3 shows the evolution of the gradient of the cost function for the same experiment. The plain curve
shows the gradient norm estimated byCONGRAD (the Lanczos-conjugate gradient minimisation algorithm used
in the IFS) during the minimisation, the dashed curve shows the actual gradient computed before and after the
minimisation, joined in a straight line. The increase of the gradient norm at the beginning of each minimisation
is discussed in appendixA.

The first figure shows that the minimum value forJo is obtained after four outer loops iterations. After that,Jo

starts increasing slowly and 4D-Var diverges. The gradient does continue to decrease for two more outer loop
iterations but then increases as well. In the remainder of this paper, we investigate this behaviour.
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Figure 2: Evolution of the components of 4D-Var cost function as a function of the total number of inner loop iterations.
The solid lines represent Jo as computed in the inner loop while the bars represent Jo as computed in the nonlinear
trajectory runs. Jb (dashed lines) has been inflated by a factor of 10 and Jc (dotted lines) by a factor of 100 for readability.
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Figure 3: Evolution of the norm of the gradient of the cost function in 4D-Var as a function of the total number of inner
loop iterations. The plain lines show the estimated gradient norm during the minimisation, the dashed lines show the
actual gradient norm at the beginning and at the end of the minimisation.
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Figure 4: Evolution of 4D-Var cost function without VarQC (blue), without VarQC, scatterometer data or wave model
coupling (red), the control experiment is shown in green.

3 Outer-loops convergence

3.1 Some discrepancies between inner and outer loops

Several differences exist between the high resolution outer loop trajectories and the inner loop minimisation
in addition to the change of resolution. Variational quality control and ambiguous SCAT wind removal are
applied at outer loop level, the coupled wave model is run only in the high resolution trajectories. All these
have been removed, the results are presented on figure4. It shows that 4D-Var diverges even more in that case,
when some discrepancies have been removed and one would expect better agreement between inner and outer
loops and thus better convergence. The mismatches inJo between the inner and outer loops are also larger. The
slightly lowerJo values are due to the removal of scatterometer data, the difference remains constant showing
that this does not affect the convergence of 4D-Var. Other experiments were run where only one or several
of these processes were deactivated. They indicate that removing the variational quality control (VarQC) is
deteriorating convergence the most. VarQC rejects observations from which the solution is moving away. In
doing that, it comforts the current estimate of the solution 4D-Var is producing. 4D-Var will not try to fit these
difficult observations in the next minimisation. The problem becomes easier and convergence is improved.
Overall, these slightly different settings between the inner and outer loops do not appear to be the cause of the
lack of convergence of the minimisation.

3.2 Inner Loop Resolution

The impact of the difference in resolution between the inner and outer loops has been tested. In all experiments
presented below, the outer loop was run at T255. This choice was made in order to be able to run the inner
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Figure 5: Evolution of T255/T159 (blue) and T255/T255 (red) 4D-Var cost functions.
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Figure 6: Evolution of T255/T42 (red), T255/T95 (blue) and T255/T255 (green) 4D-Var cost function.
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loop at the same resolution1. All the minimisations are run with linearised physics (see IFS documentation
2, chapter II, section 2.6). The number of iterations is fixed to 25 per minimisation and the resolution is the
same for all minimisations within each experiment. All other aspects are kept to the defaults3 of IFS CY29R1.
Figures5 and6 show the evolution of the cost function for inner loop resolutions of T255, T159, T95 and T42.
When inner and outer loop resolutions are the same, figure5 shows that 4D-Var does converge (this is also true
for a T159/T159 experiment, not shown). With T159 inner loops and T255 outer loops, 4D-Var still converges
but the finalJo is slightly higher than with T255 inner loops. As the inner loop resolution goes down to T95
and T42, 4D-Var diverges more and more. The discrepancies betweenJo component of the cost function at
the end of a minimisation, in the high resolution trajectory and at the beginning of the following minimisation
disappear with the T159 and T255 inner loops and increase with the mismatch in resolution. The mismatch
in resolution between inner and outer loops seems to be the most important factor for 4D-Var to converge or
diverge. Notice that this does not prove that the solution is the correct one, even in the T255/T255 case.

3.3 Increments

The RMS values of the increments produced by the previous experiments with a T95 and T255 inner loops
are shown as vertical profiles in figure7 for the first two and last two minimisations. The increments for the
first minimisations are the largest and similar in amplitude for both inner loop resolutions (the plain and dashed
lines are similar). The increments from the last minimisations obtained with the T255 inner loops are smaller
in amplitude (dashed green and magenta curves), indicating that the algorithm has properly converged and that
no additional increments are needed.

The maps of temperature increments at level 49 (approx. 850hPa) (figures8 and9) show that the increments
are also more localised with the higher resolution inner loop. The maps of surface pressure increments (figures
10and11) show a very large scale increment with a ring pattern centred over Europe with the T95 inner loops.
A similar pattern is visible on the temperature increment plot, although not as clearly marked.

1It is now possible to run with T319 inner loops
2Available athttp://www.ecmwf.int/research/ifsdocs/
3LVERIFY SCREEN had to be set to false in order to get the correctJo value in the last high resolution trajectory. This has no

impact on the minimisation.
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Figure 7: RMS of 4D-Var increments for minimisations 1, 2, 9 and 10 obtained with T95 (solid lines) and T225 (dashed
lines) inner loops, both with T255 outer loops.
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Figure 8: Temperature level 49 (approx 850hPa) increment at minimisation 7 for T255/T255 experiment.

-1.8
-1.6
-1.4
-1.2
-1
-0.8
-0.6
-0.4
-0.2
-0.05
0.05
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

Figure 9: Temperature level 49 (approx 850hPa) increment at minimisation 7 for T255/T95 experiment.

Technical Memorandum No. 469 9



Incremental 4D-Var Convergence

-0.24

-0.2

-0.16

-0.12

-0.08

-0.04

-0.01
0.01

0.04

0.08

0.12

0.16

0.2

0.24

Figure 10: Surface pressure increment at minimisation 7 for T255/T255 experiment.
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Figure 11: Surface pressure increment at minimisation 7 for T255/T95 experiment.
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3.4 Time-step

The change of resolution between inner and outer loops implies a change of time-step. T255 and T159 inner
loops experiments presented here were run with a time step of half an hour while T95 and T42 integrations were
run with a one hour time-step. In order to separate the effect of spatial resolution from temporal resolution,
figure 12 shows the 4D-Var cost function for a T255/T95 experiment using half an hour time-step in both
inner and outer loops. We see that, with the shorter time step, most of the increase inJo after iteration 100
has been eliminated. The magnitude of increments has reduced (not shown) in the later outer loop iterations.
Figures13 and14 show that the spurious pattern in increments at minimisation 7 have disappeared as well.
More than spatial resolution, it seems that temporal resolution is a key element in the convergence of 4D-Var.
This is probably the key factor explaining the convergence of the T255/T159 experiment where inner and outer
loops were run with the same time-step (figure5), more than the smallest spatial resolution difference. The
discrepancy between high and low resolutionJo values is also reduced when the same time-step is used.
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Figure 12: Evolution of 4D-Var cost function components for T255/T95 experiment with an inner loop time step of 1800
seconds (in red) and 3600 seconds (in blue).
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Figure 13: Temperature level 49 (approx 850hPa) increment at minimisation 7 for T255/T95 experiment with a time step
of 1800 seconds in inner and outer loops, to be compared with figure9
.
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Figure 14: Surface pressure increment at minimisation 7 for T255/T95 experiment with a time step of 1800 seconds in
inner and outer loops, to be compared with figure11
.
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3.5 Perfect solution case study

It is possible to create aperfect solution4D-Var case (also called identical twin experiment) by replacing
the observed values for all the observations used in a 4D-Var cycle by their model equivalent (run from the
background). This can easily be done when the departures from observations are computed in the first trajectory
run. In that case, the initial value ofJo is exactly zero and the background is the exact solution of the problem.
4D-Var should not produce any increment. One advantage of generating simulated observation with this method
is that the distribution of observations in time, space and observation types matches exactly a real life situation.
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Figure 15: Evolution of T159/T159 (in red) and T159/T95 (in blue) 4D-Var cost function components in the perfect
solution case where the correct solution should remain zero.

In the first identical twin experiment, inner and outer loops are run at T159, figure15 shows that 4D-Var does
produce a small increment. The value ofJo tends to stabilise at around 2000 (Jo/n= 0.0008, wheren is the total
number of observations, to be compared with values of the order of 1.0 for a real case) after a few iterations.
When the inner loop is run at T95, 4D-Var produces an increment and, in this case, the values ofJo andJb keep
increasing (in blue on the figure). Again, the mismatch in resolution and time-step seems to be important for
4D-Var convergence or divergence.

In the first nonlinear trajectory,Jo is exactly zero. In principle, the first minimisation should start with an initial
increment also exactly equal to zero. That would imply that the initial gradient is zero and no increment would
be generated. In the following nonlinear trajectory, because of the supersaturation check,Jo would be non-zero.
From there on, a small increment would be generated and 4D-Var should reach an equilibrium between the
super-saturation removal and the background. This is probably what we see in the T159/T159 experiment after
the first minimisation. The first minimisation generates a non-zero increment because the background and the
trajectory at initial time are not generated in the same way (interpolation and GRIB packing) which meansJb is
non-zero in the initial evaluation of the cost function and generates a non-zero gradient. The behaviour shown
by the red curve on figure15 is thus deemed acceptable. The blue curve behaviour is pathological and will be
investigated below.
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Figure16shows the surface pressure increment generated in the last minimisation of the T159/T95 experiment.
The pattern is the same as seen previously, although it appears later in the iterations and with a smaller ampli-
tude. This shows that this pattern does not correspond to an actual increment since we know the correct solution
is ❞x = 0 in this case. It is an artifact of the minimisation process.

-0.2
-0.18
-0.16
-0.14
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
-0.01
0.01
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2

Figure 16: Surface pressure increment at minimisation 9 for T159/T95 perfect solution experiment.

4 Study of poor convergence

4.1 Positive feedback

We have shown in section3.2that a 4D-Var assimilation experiment run using T255 outer loops with 30 minutes
time steps and T95 inner loops with 1 hour time steps starts diverging after 4 outer loop iterations. The largest
increments in the latest minimisations are in the surface pressure component of the control variable. Figure17
shows the surface pressure increment from minimisation 7 and its evolution, in the inner loop with the tangent
linear model in the left column and, in the outer loop with the nonlinear model in the right column. The rows
show the increment at initial time and after 1, 2, 3 and 6 hours. The general pattern of the surface pressure
increment is circular centred over northern Europe. The linear and nonlinear evolutions slowly diverge from
each other. This is a gravity wave which propagates with different phase speeds in the linear and nonlinear
integrations. After 6 hours, they are close to opposite phases, the increment at the centre of the pattern is
positive in one case, negative in the other.

This can explain the divergence of 4D-Var. The inner loop minimisation fits the data in the area at the centre
of the pattern. The increment is added to the first guess and evolves in the nonlinear integration. Because of
the discrepancy between inner and outer loops, this new trajectory moves away from the data, in the opposite
direction than intended by the inner loop. In the ensuing minimisation, an increment will be generated which
will try again to fit the data, by adding another increment, with the same pattern as the previous one and even
larger amplitude to compensate for the new high resolution departure. There is a positive feedback between the
inner and outer loops, the increment keeps growing and 4D-Var eventually diverges.

Gravity wave phase speed being highly dependent on time step, this explains why we do not observe that
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Figure 17: Surface pressure increment for minimisation 7 propagated by the T95 tangent linear model (left) and the T255
nonlinear model (right).
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phenomena when both models use the same time step, regardless of spatial resolution. This has been tested this
with several time step values and shows that the tangent linear model is able to reproduce the nonlinear model
behaviour with respect to phase speed accurately for a range of time-step values. This is not a linearisation
issue in that, given the same time step, the linear and nonlinear models behave similarly.

4.2 Hessian and increments

The previous paragraph shows how the increments generated after the fourth minimisation amplifies, resulting
in divergence of 4D-Var. Figure18 shows the partial surface pressure increments for the 10 minimisations of
the T255/T95 experiment. Several experiments, run for various times of day, various times of the year and
with several tangent linear model configurations, with or without physics, have shown similar increments in
later outer loop iterations, as did theperfect solutionexperiment in section3.5. The pattern of the increment
is related to the shape of the leading eigenvector of the Hessian of the 4D-Var cost function.Andersson et al.
(2000) have shown that this eigenvector is driven by the density and accuracy of observations. They have
shown that, in a simplified example withn observations in the same location, an approximation of the condition
number of the minimisation problem is given by:

❦ ≈ 2n
s2

b

s2
0

+1

wheresb andso are the background and observation errors. In the current system, surface pressure observations
over Europe dominate as indicated by the leading eigenvector of the Hessian of the cost function (figure19, top
panel).

Two additional experiments were run where observation error for surface pressure observations was increased
by 50% and 100% (doubling of error). Figure19 shows that the leading eigenvectors of the Hessian for these
three experiments are almost identical. However, the eigenvalues associated with those eigenvectors are re-
spectively 5474, 2519 and 1502, in rough agreement with the simplified expression above. Figures20 and21
show the 10 partial increments when surface pressure observations error is increased by 50% and 100%. The
amplitude of the spurious pattern is reduced in the first case, and disappears totally in the second case. Figure
22shows that 4D-Var convergence is improved.

These experiments show that the eigen-structure of the Hessian of the cost function is a useful means to monitor
the behaviour of incremental 4D-Var, in particular the largest eigenvalue. The leading eigenvectors indicate the
directions where observations are going to be fitted the closest, regardless of the background. This means
that an increment in those directions will inevitably be introduced by the minimisation. This effect is more
pronounced as the associated eigenvalue becomes large. It seems particularly unfortunate that the pattern of the
eigenvector associated to a large eigenvalue (determined by the data) is so sensitive and subject to a positive
feedback effect (determined by the model). It is the combination of observations, through their distribution and
error characteristics, and of the model, through the speed of gravity waves, that currently determines the rate of
convergence of 4D-Var.

4.3 Inner Loops Accuracy

Laroche and Gauthier(1998) have shown that the accuracy with which the inner loop minimisation is resolved
has an impact on the overall convergence of incremental 4D-Var. More precisely, their results show that the
best results are obtained when inner loop iterations are stopped early enough to avoid over-fitting observational
noise, as this would introduce spurious gradients in the following trajectory integration. A set of experiments
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Figure 18: Partial surface pressure increments generated by the successive minimisations of the T255/T95 experiment,
running from top left to bottom right. Note the the contour interval is different for the first two increments which have
larger amplitude.
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Figure 19: Surface pressure component of the leading eigenvector of the Hessian of the cost function for the T255/T95
reference experiment (top), with surface pressure observation error increased by 50% (middle) and by 100% (bottom).
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Figure 20: Partial surface pressure increments for T255/T95 experiment with surface pressure observation error inflated
by 50%.
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Figure 21: Partial surface pressure increments for T255/T95 experiment with doubled surface pressure observation error.
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Figure 22: Evolution of 4D-Var cost function with when surface pressure observation error is increased by 50% (in red)
and doubled (in blue) with respect to the control experiment (in green).

was performed where inner loop iterations were stopped when a given accuracy was reached. The stopping
criterion used in these experiment is the reduction in the norm of the gradient of the cost function. The evolution
of Jo in the outer loops is shown on figure23 for stopping criterion values of 0.1, 0.25 and 0.4. It shows that
solving the inner loop problems more accurately leads to the divergence of the algorithm at outer loop level.
As explained above, this is not unexpected. The other values of the stopping criterion lead to similarJo values,
with a smallerJb for the less accurate inner loop solution (figure24). The horizontal axis shows the cumulated
number of iterations in the inner loop but does not take into account the cost of the nonlinear trajectories. In
practice, a stopping criteria value of 0.25 would give slightly faster convergence with few outer loops.

4.4 Quasi-Newton minimisation

In addition to the conjugate gradient-Lanczos algorithm (CONGRAD), the quasi-Newton minimisation algorithm
(m1qn3) developed at INRIA byGilbert and Lemaŕechal(1989) is still available in the IFS. Figure25 shows
that which minimisation algorithm is used in the inner loop seems to have an impact on the overall convergence.
The value ofJo in the outer loop converges withm1qn3 which was not the case with the conjugate gradient.
The numerical values shows thatJo in the outer loops is in fact strictly decreasing, although it does not decrease
as fast in the first iterations. Also notice that the value ofJb remains lower throughout withm1qn3 as is the
case with the value ofJc after the third minimisation. The figure also shows results from another experiment
where the first 6 minimisations were run usingCONGRAD followed by 4 minimisations usingm1qn3 (in green).
Again,m1qn3 shows an improvement overCONGRAD for these 4 minimisations.

The two algorithms should give the same solution for the minimisation problem at inner loop level. However,
the problem is not solved to convergence and since the two algorithms take a different path towards the solution,
the partial increments differ. The partial increments obtained fromm1qn3 are less sensitive to the eigen-
structure of the cost function and not as aligned with the leading eigenvector even though they still have a
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Figure 23: Evolution of Jo in outer loops for various stopping criteria in inner loop iterations.
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Figure 24: Evolution of 4D-Var cost function with stopping criteria of 0.1 (in blue), 0.25 (in red) and 0.4 (in green) for
inner loop iterations.
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Figure 25: Evolution of 4D-Var cost function withm1qn3 (blue),CONGRAD (red) and 6 minimisations withCONGRAD
followed by 4 minimisations withm1qn3 (green).

component along that direction as shown on figure26.

The evolution of the gradient also shows a different behaviour (figure27). The gradient jump between the end
of a minimisation and the beginning of the next one has reduced withm1qn3 with respect toCONGRAD. The
sequence of gradient norms at the beginning of the successive minimisations is decreasing which is a good sign
that each outer loop is improving the solution. If the increment produced by a given minimisation improves the
solution of the overall nonlinear problem, the gradient at the new starting point should be better than the one at
the previous starting point was, which is the case with the quasi-Newton algorithm.

In this comparison between conjugate gradient and quasi-Newton algorithms, the number of iterations for each
inner loop has been kept fixed to 25 for both algorithms. Since we know that the preconditioned conjugate
gradient converges faster, it is legitimate to ask whether it is the accuracy of the solution in each inner loop that
has an impact on the overall incremental 4D-Var convergence.

Another comparison between quasi-Newton and conjugate gradient algorithms was performed where inner loop
iterations are stopped when the norm of the gradient has been reduced by a factor of 0.25 for both algorithms.
Figure28 shows that, of both experiments, the lowest value ofJo at high resolution is obtained withm1qn3 in
the last nonlinear trajectory. It is worth noting that it is also obtained with a lower value ofJb (Jb = 55620) than
the value ofJb whenCONGRAD reaches its minimum (Jb = 57055), at iteration 6 in that case. Thus, in addition
to the fact it does not diverge,m1qn3 seems to provide a better fit to observations with a smaller increment.
This would mean that it is a better solution. The results presented here do not allow us to conclude on the
quality of the ensuing forecast as running more cases would be necessary. However, because of the number of
iterations required, this is not computationally affordable.

Preconditioningm1qn3 should give the best of both worlds with fast convergence and better solution. It
is possible to run the first minimisation withCONGRAD to compute the preconditioner and apply it in the
remaining minimisations to preconditionm1qn3. Figure29 shows that in this case, the first minimisations
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Figure 26: Partial surface pressure increments for T255/T95 experiment withm1qn3.
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Figure 27: Evolution of the gradient norm withm1qn3 (blue) andCONGRAD (red).
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Figure 28: Evolution of 4D-Var cost function withm1qn3 (blue) andCONGRAD (red), both with stopping criterion set to
0.25.
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Figure 29: Evolution of Jo in outer loops form1qn3 andCONGRAD, with and without preconditioning.

converge faster but the last ones are slower to converge. It also changes the solution at it gives lower values
of Jo but higher values ofJb. The same figure also shows the preconditioned and un-preconditioned conjugate
gradient. As seen previously, the preconditioned conjugate gradient seems to diverge after a few iterations, this
is not the case for the un-preconditioned algorithm. The accuracy with which the linearised problem is solved
is not the only factor since all algorithms were stopped at the same accuracy. The preconditioner could lead to
outer loop divergence.

Both the conjugate gradient and the conjugate gradient preconditioning are sensitive to the eigen-structure of
the Hessian of the cost function. Using one, or both, tend to generate an increment that has a component in that
direction. It then amplifies through the gravity wave positive feedback effect described in section4.1.

5 Operational setup

5.1 Multi-resolution incremental 4D-Var

In order to reduce the computational cost of incremental 4D-Var, the resolution of the first minimisation is
reduced in operations. It is possible to apply this idea with more than two outer loops and increase progres-
sively the resolution in successive minimisations as experimented byVeerśe and Th́epaut(1998). Experiments
have shown that Hessian eigenvectors are mostly large scale and can be computed at low resolution to form an
effective preconditioner for higher resolution inner loops minimisations that follow (M. Fisher, personal com-
munication) which makes this setup very attractive. Figure30 shows the evolution of the cost function when
the first three minimisations are run at T42, T95 and T159 respectively, the remaining minimisations being run
at T255. The horizontal axis is the number of equivalent T255 iterations based on the computational cost of an
iteration at each resolution as shown in the table below.
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Resolution Time per iteration (sec)
T42 11
T95 16
T159 57
T255 135

The figure shows that this setup does give the same final values ofJo andJb as 4D-Var with T255 minimisations
throughout. The increments produced in the last four minimisation in both setups are surprisingly similar (not
shown). The multi-resolution incremental setup does allow to reach that solution significantly faster, thus saving
computer time.
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Figure 30: Evolution of T42/T95/T159/T255 multi-resolution incremental 4D-Var cost function (in blue) and T255 incre-
mental 4D-Var (in red).

5.2 Operational setup

Because of the significant computational cost of the high resolution nonlinear trajectories, only a few outer loop
iterations are affordable for operational data assimilation. Currently at ECMWF, 4D-Var is run with two outer
loop iterations. The first minimisation is run at T95 for 70 iterations, the second one at T159 for, on average,
35 iterations. The number of iterations in the first minimisation is fixed and determined by the forecast error
computation (Fisher and Courtier(1995)). From the results presented in this paper, it seems that running with
reduced accuracy in the first minimisations and more nonlinear updates should be beneficial.

Figure31 show the evolution of the components of the cost function for the current operational setup with
two outer loop iterations, the first minimisation is run at T95 with a fixed number of iterations, the second
minimisation at T159 and is stopped when the gradient norm has reduced by a factor of 0.05. It also shows
another experiment with three outer loops where the first minimisation is unchanged and the following two
minimisations are run at T159, with a stopping criterion of 0.2. It shows that, with the same total number of
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Figure 31: Evolution of 4D-Var cost function with the current operational setup (in blue) and with three outer loop
iterations (in red).

iterations, slightly lower values of bothJo andJb are obtained4.

In terms of computational cost, the first minimisation at T95 is equivalent to 20 iterations at T159. The cost of
each nonlinear trajectory is equivalent to approximately 8 T159 inner loop iterations. The total cost of 4D-Var
is thus approximately 80 T159-equivalent iterations. Reducing the number of iterations in the first minimisation
could compensate for the cost of another nonlinear trajectory. The additional minimisation would have to be a
split of the current second one as tested above. Forecast error computation would then have to be done in the
second or third minimisation, accumulating the eigenvectors computed in all the minimisations. That leaves
very little room to manœuvre, at least at constant cost.

6 Conclusions

The convergence of incremental 4D-Var, as implemented at the moment in the IFS, with more outer loops is
limited by a combination of two factors: as more iterations are run, the partial increments have a component
along the direction of the leading eigenvector of the Hessian of the cost function. Currently, the shape of the
cost function is such that this increment creates a gravity wave that propagates with a different phase speed
in the inner and outer loops, leading to a positive feedback effect. Ultimately, the combination of these two
factors leads to the divergence of the algorithm. It is the combination of observations, through their distribution
and error characteristics, and of the model through the speed of gravity waves, that currently determines the
convergence of 4D-Var.

The preconditioned Lanczos-conjugate gradient algorithm is very efficient and allows for fast convergence of
the inner loop minimisations. However, it might over-emphasise the direction of the leading eigenvectors of the
Hessian of the cost function. Unfortunately, in the current 4D-Var, this direction is unstable. The quasi-Newton

4An experiment is starting to evaluate the impact on the forecast
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minimisation algorithm seems less sensitive to the leading eigenvectors, and thus to the feedback effect, but
convergence of the inner loop minimisation is slower.

We have also shown that incremental 4D-Var converges better when inner loop minimisation are solved with
relatively low accuracy. This affects the rate of convergence as well as the final solution as we were able to find
a solution with lower values of bothJo andJb. That indicates that the solution has a better fit to observations
and background at the same time. Over-solving the inner loop minimisation can trap the incremental algorithm
in a local minimum in the presence of significant nonlinearities.

In the near future, it should be possible to run incremental 4D-Var with at least one more outer loop iteration.
This could potentially lead to an improved analysis. In the longer term, more nonlinear trajectory updates
might become even more critical as observations that depend on more nonlinear phenomena and more nonlinear
observation operators are assimilated. With that prospect in view, it is important to understand the properties of
convergence of the incremental algorithm.

Experiments have shown that increasing the weight given to the weak constraint digital filter in theJc term of
the cost function, in particular for the surface pressure component of the control variable, would reduce the
gravity wave noise. More experimentation would be required to determine the appropriate weights.

The leading eigenvector of the Hessian of the 4D-Var cost function is driven by accurate and dense surface
pressure observations in Europe. At the current resolution of the data assimilation system, many of these
observations are in the same model grid-box. Representativeness error and observation error correlations should
reflect that fact. However, at the moment, these are ignored in the IFS. A better specification of the statistical
data assimilation problem would likely reduce or eliminate the incremental 4D-Var convergence problems by
reducing the global weight given to these observations. Further research work is required in that direction.
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A Preconditioning

The conjugate gradient preconditioning is explained in details in section 6.6 of the IFS documentation where
equation (6.1) defines the preconditioner as:

M = I +
k

∑
i=1

(♠i −1)wiw
T
i

where{♠i ,wi} are estimates of the leadingk eigenvalues and eigenvectors of the Hessian of the cost function
produced by the conjugate gradient-Lanczos algorithm. In theory, the leading eigenvalues of the preconditioned
Hessian become❧i/♠i where the❧i are the eigenvalues of the full Hessian. If❧i/♠i < ❧k+1, the condition num-
ber becomes❧k+1. If ♠i = ❧i , the leading eigen-pairs are effectively removed from the problem. In practice, this
is not exact and for numerical reasons (conditioning of the preconditioner itself), large values of♠i are reduced
to a fixed valueR MAX CNUM PC, currently set to 10. In the current setup, the first 25 eigenvectors are used in
the preconditioner and because the first 25 eigenvalues are larger than 10,♠i = 10 for all of them. However, the
spectrum of the Hessian in 4D-Var is such that the leading eigenvalue divided by 10 is still larger than the 26th

eigenvalue. This means that the leading eigenvector of the full Hessian is still the leading eigenvector of the
preconditioned problem, only with a reduced associated eigenvalue. SettingR MAX CNUM PC=100 eliminates
this problem. Figure32 shows that the increase of the gradient norm at the beginning of each minimisation
has been eliminated. The convergence of 4D-Var is very slightly improved but the overall impact is extremely
limited. This modification could improve the conditioning of the second minimisation in the current operational
4D-Var and save one or two iterations.
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Figure 32: Evolution of the gradient of the cost function forR MAX CNUM PC=10 (in blue) andR MAX CNUM PC=100
(in red).
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B Gravity wave speed in semi-implicit scheme

As pointed out by A. Hollingsworth,Hoskins and Simmons(1975) have shown that the speed of gravity waves
in the semi-implicit scheme can be controlled by adjusting∆t in equation (17) of their paper. This has been
tested in a 4D-Var experiment. Using the inner loop time step value for∆t is not possible, the forecast explodes
in the first high resolution trajectory (before adding any increment). The value used here was the outer loop time
step value (1/2 hour). Figure34shows that some gravity wave pattern is still present in the increments, although
it is not as dominant. However, figure33shows that the convergence of the minimisation has worsened.
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Figure 33: Evolution of 4D-Var cost function with∆t = 1800in the semi-implicit scheme (in blue), the reference experi-
ment is shown in red.

Modifying ∆t in the semi-implicit scheme has some effect on the speed of gravity waves, it also changes the
solution of the equation and might affect the overall consistency of the forecast. The nature of the discrepancy
between inner and outer loops is different but it is still large enough to prevent convergence.
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Figure 34: Partial surface pressure increments for T255/T95 experiment with∆t = 1800seconds in the semi-implicit
scheme.
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C Digital filter initialisation

The weak constraint digital filter initialisation can be used to control the gravity waves generated by incremental
4D-Var. The weight❛ given to theJc term in the cost function can be increased. In the current setup, the digital
filter is only applied to the divergence part of the control variable, it is also possible to apply it to the surface
pressure component of the control variable. Figure35 shows that both methods can improve the convergence
of incremental 4D-Var. More tests would be needed to determine the most appropriate settings for operational
use with more outer loop iterations.
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Figure 35: Evolution of 4D-Var cost function when Jc is applied to the surface pressure component of the control variable
(in red) and for Jc applied to surface pressure and with increased weight (in blue). The control experiment is shown in
green.
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