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Multiple Sets of Singular Vectors CECMWF

Abstract

Initial uncertainties can be represented effectively in ensemble prediction systems by sampling errors in a
subspace spanned by the leading singular vectors of the forecast model's tangent-linear propagator. The
initial time metric in the singular vector computation is the inverse of the assumed analysis error covariance
matrix A. The singular vectors evolve into the leading eigenvectors of the forecast error covariance estimate
obtained by linearly propagating to the singular vector optimisation time. In this sense, singular vectors
provide an optimal subspace for sampling initial uncertainties. However, the optimality is only guaranteed
for the particular optimisation criterion used in the singular vector computation. For instance, it could be
suboptimal for forecast ranges that differ from the singular vector optimisation time.

Here, two alternative approaches are discussed that account for several optimisation criteria. The first ap-
proach is a simple ortho-normalisation approach applied to multiple sets of singular vectors. Potentially,
the ortho-normalisation can yield suboptimal perturbations. In response to the expected deficiency of the
ortho-normalisation approach, the second approach has been developed. It yields orthogonal subspaces for
different optimisation criteria without compromising optimality. For a given subspacensisting of a set

of leading singular vectors optimised for the first criterion (or criteria), singular vectors are computed in the
subspace orthogonal ta The optimality properties of thestibspace singular vectoese described and

proved.

The leading subspaces obtained with the two approaches are compared in two examples. First, an idealised
example based on singular vectors computed for two optimisation times in the Eady model is considered.
Then, both techniques are applied to initial perturbations targeted on tropical cyclones in the Ensemble
Prediction System (EPS) of the European Centre for Medium-Range Weather Forecasts. The methodologies
allow a consistent representation of initial uncertainties during extra-tropical transitions.

1 Introduction

Ensemble techniques are being employed to quantify uncertainty in geophysical fluid flow predictioiss (

2005 Leutbecher and PalIm@007. Reliable ensembles require the representation of forecast model uncer-
tainties and initial condition uncertainties; the representation of the latter is the focus of this study. Many
geophysical fluid flows tend to exhibit a very selective growth of initial errors. A distribution of initial errors

will be strongly stretched in some directions of phase space and squashed in other directions as it evolves in
time. Lorenz (1965 showed how singular vectors of the forecast model's tangent-linear propagator can be
used to estimate the error growth in the linear regime and to rank the directions in phase space according to the
error growth. This property of the singular vectors has been exploited successfully in constructing strategies to
selectively sample the distribution of initial errors in those directions that will dominate the forecast errors at
later rangesBuizza and Palmet995 Molteni et al.1996.

Singular vectors depend on a choice of noihrendorfer and Tribbi§l997), Palmer et al(1998 and others

noted that the appropriate initial time norm (also referred to as metric) is the inverse of the analysis error
covariance matrix. Among the simple metrics, the total energy metric appears to be a reasonable approximation
of an analysis error covariance metialmer et al1998 Lawrence et al2007). The choice of the initial metric

is not discussed any further as the methodology derived here holds for any analysis error covariance estimate
(provided it is a positive definite symmetric matrix).

The study focuses on strategies that represent initial condition errors only in a subspfate model state
space’. ltis envisaged that the dimensionlofs far smaller than the dimensignof the model state space

£ . Anderson(1997) discusses such strategies for situations in which the distribution of initial errors is known.
He suggests to focus on those strategies that are sampling the elrarsanmanner consistent with the actual
initial error distribution. However, in most applications the knowledge about the actual initial error distribution
is fairly limited. Therefore, we will demand here that the sampling of initial condition errors is consistent with
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the estimateA of the analysis error covariances. Higher order moments of the initial error distribution will not
be considered. A concise definition of the consistency will be given in Sec. 2.1. As will be shown later, a set of
A~1-ortho-normal vectors is required in order to construct an initial error representation that is consistent with
A.

Singular vectors computed with an initial norm based onAhé inner product are ortho-normal with respect

to A~L. Now, consider multiple optimisation criteria (e.g. two different optimisation timeand z,). In
general, the leading singular vectors optimised for the different criteria will not be mutaliyorthogonal.

Thus, a consistent selective sampling strategy requires to construct afsét-oftho-normal vectors from the
different sets of singular vectors. However, the ortho-normalisation will, in general, not respect the optimality
of the perturbations. In this paper, an alternative approach is developed in which a given selective sampling
strategy is augmented in an optimal way by computing singular vectors in the sudspaoethogonal to the
already sampled subspace. Such singular vectors will be referredtggace singular vectors

The ortho-normalisationapproach and theubspacepproach are first applied to the Eady model. Since the
work of Farrell (1988, numerous studies have examined the structure and dynamics of optimal perturbations
of quasi-geostrophic baroclinic shear flow of the Eady type B&¢éries and Opsteeg005 and references
therein). Initial perturbations based on two sets of singular vectors are considered. The first set of singular
vectors maximises total energy at 24 h and the second set maximises total energy at 48 h.

Secondly, the two approaches for multiple optimisation criteria are applied to the Ensemble Prediction System
(EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) in the context of an operational
implementation. This application aims at improving the representation of initial uncertainty in the vicinity of
tropical cyclones during extra-tropical transitions. In the EPS, perturbations are targeted on tropical cyclones
(Puri et al.2001). However, in the configuration operational until September 2004, these perturbations are based
on singular vector computations with optimisation regions that do not extend poleward of a latitude D@5
meridional limitation of the optimisation regions was imposed in order to avoid the duplication of perturbations
that are already represented in the extra-tropical singular vectors, which are optimised for latitudes°from 30
to the pole. In a series of subsequent EPS runs during an extra-tropical transition, the spread of the tropical
cyclone tracks tends to exhibit a sudden decrease in this configuration. The drop in spread arises solely from
the meridional limitation of the perturbations. Here, a new perturbation methodology is presented that removes
this unrealistic decrease in spread by targeting perturbations on tropical cyclones up to latitudedrof

new methodology, the duplication of perturbations already present in a set of extra-tropical singular vectors is
avoided by ensuring that the tropical cyclone perturbations are orthogonal to the extra-tropical perturbations.
Perturbations obtained with the ortho-normalisation approach are compared with perturbations obtained with
the subspace approach.

The methodology for the two approaches for multiple optimisation criteria is introduced in Sec. 2. Section 3
presents the results for the application in the Eady model while Sec. 4 discusses the application in the ECMWF
EPS. Discussion and conclusions follow in Sections 5 and 6, respectively. A proof of the optimality property
of the subspace singular vectors is given in the Appendix.

2 Methodology

Section 2.1 introduces the concept of sampling initial uncertainty in a subspace consistent with a covariance
matrix and explains the need for sampling initial uncertainty in orthogonal subspaces if several optimisation
criteria are considered. A formulation of the maximum variance property of singular vectors suitable for the
subsequent derivations is given in Sec. 2.2. The representation of initial uncertainty with singular vectors
computed for two (or more) optimisation criteria using the ortho-normalisation approach follows in Sec. 2.3.
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The subspace approach for representing initial uncertainty with multiple sets of singular vectors is presented in
Sec. 2.4.

2.1 Consistent sampling of initial uncertainty and decomposition of covariances

Singular vector based initial perturbations represent initial uncertainty by a random %eat@ subspace
L spanned by the leading singular vectotseutbecher and PalmgR007) define that a random vect@rin
subspacé is consistent with the analysis error covariance estirAatats covariance is given by

Ap(L) =P(LA(P(L) . (1)

Here P(L) denotes the\~1-orthogonal projection ontb. Superscript’ is used for matrix transpose. This
definition of consistent sampling is motivated by the fact that a random veaototh covarianceA can be
uniquely decomposed into uncorrelated components in subsgamkitsA ~1-orthogonal complement and that
the component i has covariancép(L). Henceforth, the over-line will refer to the orthogonal complement
of a subspace with respect to the inner product definedi tly

C={vv'Alw=0, YwelL}. (2
The decomposition
X= XL + X*7 (3)
with x, = P(L)x € L andx_= P(L)x € L yields a decomposition of into uncorrelated components.

In order to get a random vector that is consistent withone can use a Gaussian sampling technique based
on anA~1-ortho-normal basis df. Such a sampling technique is used in the operational EPS configuration at
ECMWF (Leutbecher and Palm@007). Note, that all singular vectors from a set computed with initial norm
based omA~1 for a particular optimisation criterion are already ortho-normal with respeétto But two
singular vectors from different sets are generallyAot-orthogonal.

For any pair ofA~1-orthogonal subspacé$andL”, the covariances are additive
Ap(L’+L”):Ap(L’)+Ap(L”) 4)

because the components AT -orthogonal subspaces are uncorrelated Rfid + L") = P(L') +-P(L"). In
particular, the full covariance matrix is decomposed as

The decompositiord) implies that the sum of a set of independent random veefoesl,, k= 1...r eachx,
consistent withA yields a random vectore L =L, +... +L; which is also consistent withA if the subspaces

L, are mutuallyA~*-orthogonal. The covariance &fis then given by the sum of the covariances associated
with the individual subspacds

AolD) = 3 ALy ©

For any linear operatdr, the covariance matrix of the transformed random ve€tohas covariance decom-
positions given by

TAT T =TAL(L)TT+TARDTT and 7)

TALDTT = i TAp(L)TT. (8)
k=1
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Figure 1: Schematic of two alternative methods to construct orthogonal subspaces for two different optimisation criteria:
(a) ortho-normalisation of independently computed sets of singular vectors, (b) singular vectors for the second criterion
are computed in the subspace ortho-normal faather than in the full state space.

2.2 Singular vectors and the maximum variance property

A linear estimate of the forecast error covariance matrix at tiisegiven byMAM T, whereM denotes the
tangent-linear propagator from initial time to timer his estimate neglects imperfections of the forecast model,
nonlinearities as well as other imperfections of the tangent-linear model and it assumes that the covariance of
initial uncertainty is given byA. It is assumed that forecast error variance is quantified using a symmetric
positive semi-definite matrik as metric. This metric could be, for instance, the total energy metric localised

to a certain geographical region. In general, the mdirisan be different for different optimisation criteria.

Then, the trace tEY?MAM TEY/?) is an estimate of the total forecast error variance using metritf we

write T = E1/2M and make use of Equatiof)( the total forecast error variance can be decomposed as

tr (TATT) =tr (TAR(L)TT) +tr (TAR(D)TT). 9)

Note, that Equation9) is valid for any matrixT not only the tangent-linear propagator scaled by the square
root of a metric.

The singular vectors oFA Y2 are known to provide a particular decomposition@fwhich will be formulated
now. Let

TAY2 —usv', (10)
denote the singular value decomposition, wHerd/ are orthogonal matrices aiglis a diagonal matrix con-
taining the non-negative singular values in decreasing order. The singular vectors are the colurans f
The right singular vectors il are non-dimensional. Their scaled counterparts

vV =AYy (11)

are usually referred to asitial singular vectors wheii involves the tangent-linear propagator. The symbol
L*[T,k] will be used to refer to the subspace spanned by the leddinigal singular vectors, i.e. the firg
columns ofV. Furthermore, les; (T) denote thej-th singular value of operatdr. The singular vectors are
optimal perturbations in the sense that they optimise the following ratio of norms

| Tat/| /11, (12)
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where]||.|| denotes the Euclidean norm. Furthermore, the subsipd@ek] has the property of being the
dimensional subspace thatplainsmost variance
max  tr(TAp(L)TT) =tr (TAR(L*[T,K)TT). 13
LM (TAG(LTT) = tr (TAp(LT.K) T7) (13)
Ehrendorfer and Tribbiél997) discuss the maximum variance property of the singular vectors in detail for the

case wherd consists of the tangent-linear propagator scaled by a metric. In the following, the more general
formulation (L3) valid for any matrixT is required.

2.3 Multiple optimisation criteria: ortho-normalisation approach

We consider two optimisation criteria which are associated with maftfige@sdT,. They could be composed
of propagators for two different optimisation times. Alternativaly,andT, could also differ in terms of the
geographical localisation at final time.

The ortho-normalisation approach considers the singular value decompositrb[ﬁlé? andeAl/z, i.e. this
corresponds to independent singular vector computations. The subspace spanned by thé, |sauyudar
vectors ofT ;A%2 s denoted by.,. Then, subspade, is obtained by projecting the singular vectorsTgA'/2
onL, (Fig. 1a). Formally, we write

I-2 = P(Ll)l—* [Tzvgz}- (14)

The ortho-normalisation approach is expected to yield, in general, perturbatiopthiat are sub-optimal with
respect to the second optimisation criterion.

2.4 The subspace approach

The second approach achieves orthogonality without compromising optimality by restricting the singular vector
computation for the second criterion to subsphgéFig. 1b). Therefore, we will refer to it as the subspace
approach.

As previously, the subspace spanned by the leading singular vecfb{AHF is denoted by ;. Note, however,
that the following properties are valid for any subsplageThe goal of optimising foT , in the space orthogonal
to L, is then achieved by considering the singular value decomposition of

Ts=T,P(L)). (15)
The singular vectors are solutions of the generalised eigenproblem
TITx=0?A"x. (16)

The singular vectors 6f A2 are characterised by the following properties:

a. All singular vectors ofT s with positive singular value lie if; .

b. For dimensionk with positive singular valug, > ... > s (Ts) > 0, the subspack®[Ts,k| spanned by
the leadingk singular vectors of g satisfies the following maximum variance criterion

~max  tr(T,Ap(L)TS) =tr (T,Ap (L*[Ts,K]) T2) (17)
LcL,, dim(L)=k

In other words, subspade(Ts, k] is the kdimensional subspace orthogonaltpwhich explains most
forecast error variance af,AT].
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A formal proof of statements (a) and (b) is given in Appendix A. We will refer to the singular vectdrs of
with positive singular value asubspace singular vectorsAs a result of the additivity of the forecast error
covariances associated wilT 1-orthogonal subspaces, statement (b) implies that subdpace*[Ts K| is
the ¢, + k-dimensional subspace containihg that explains most of the forecast error varianceT gAT ;.
The subspace approach is sequential and non-commutative, i.e. thd_gpalce depends on the order of the
optimisation criteria as will be demonstrated in Sec. 3.

3 Quasi-geostrophic baroclinic shear flow

3.1 Definition of the linear problem

Now, the subspace approach and the ortho-normalisation approach will be illustrated in a low-dimensional, yet
non-trivial, example based on the Eady model. We consider a basic state with linear verticall shé&@r

and constant Brunt-&8sala frequencyN. The quasi-geostrophic (QG) dynamics is linearised about this basic
state on thef -plane, i.e. constant Coriolis parametgr Rigid boundaries are assumedzat 0 andz=H. In

the zonal direction, we consider a channel of lenigthwith periodic boundary conditions. All perturbation
variables are uniform in the meridional directiépdy = 0. FollowingFarrell and loanno(1996), the variables

are non-dimensionalised using the heigthtas vertical scale, the Rossby deformation radiys= NH/f,

as horizontal scale anN/(f,S) as time scale. The numerical examples hse- 10km, SH = 46.3ms %,
N=102s%, f,=10"*s ! andL = 10*km. For these values, a unit non-dimensional time corresponds to

6 h and a unit non-dimensional horizontal length corresponds to 1000 km. Equdt8n&0) below appear

in non-dimensional form (Note, that the same symbols will be used for the non-dimensional variables). The
equations describing the evolution of streamfunction perturbatjoare given by

0 d %’y %y
<at * 8)() <8x2 * az2> 0 (18)
in the interior, 0< z< 1, and
d d\dy Jdy
(at“ax>az_ax_° (19)

at the top and bottom boundaries+= 0 andz = 1. Equations18) and (L9) describe the conservation of QG
potential vorticity and the advection of temperature at the boundaries, respectively.

Equations {8) and (L9) are discretised in the vertical using 21 equidistant levels. A Fourier representation with
16 wavenumbers is used for the horizontal direction. Thereby, waves with wavelength bef\éeandL can
be described in the channel. The total energy inner product is defined as

Y 81// Yy Iy
v 2/ / < ox ax 9z 9z) (20)
In the examples given below, the total energy metric will be used at initial time and final time. Furthermore, the
non-dimensional optimisation times are setfe- 4 andrt, = 8; these values correspond to dimensional times
of 24 h and 48 h. This choice is motivated by an optimisation time of 48 h used in the operational ECMWF

EPS and recent experimentation with 24-hour optimisation time singular vectors using a diabatic tangent-linear
model Coutinho et al2004 Hoskins and Coutinh@005 Walser et al2006.
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Figure 2: The leading three singular vectors (SVs) for the discretised Eady problem using the total energy metric at initial
and final time (top: SV 1, middle: SV 2, bottom: SV 3). The non-dimensional optimisatior; & corresponds to a
dimensional time of 24 h. Plotted is the streamfunction (Dashed contours: negative values; zero-contour omitted). The
discretisation is described in Sec. 3.1; the singular values are given in Table

3.2 Results

The leading 3 singular vectors for the non-dimensional optimisation times4 andz, = 8 are plotted in
Figures2 and 3, respectively. We will refer to these singular vectorstasingular vectors and,-singular

vectors in short. The streamfunction perturbations exhibit the familiar tilt against the vertical shear and resemble
the leading singular vectors presented\bykougawa and lkedél994 and byMorgan and Chei(2002. In

their studies, the horizontal wavelength is set as external parameter. Here, it is determined by the singular
vector computation itself. The dimensional wavelengths of the leading 3 singular vectors@rg 2.00L

and 333L for 7; and 333L,, 2.50L, and 500L for 7,. In particular, ther,-singular vectors 1 and 3 have the
same wavelength as thg-singular vectors 2 and 1. The leadingsingular vectors are more confined around
mid-height ¢ = 0.5H) and are more tilted than thig-singular vectors with the same horizontal wavelength.

Now, we apply the ortho-normalisation approach. For this example, subkspasehosen to be the subspace
spanned by the leading threg-singular vectors, (7,),k = 1,2,3. Subspacé, is obtained by projecting the
subspace spanned by the leading thrgsingular vectors, (1,),k = 1,2,3 into L,. The matrix of projection
coefficients is given by

0 0 093+003i
V(%A (r)], = [ 077-006i 0 0 7
o o o0

where i denotes the imaginary unit. The analysis is based on complex valued singular vectidnsmigawa

and lkedal994 for mathematical details). Multiplication of the complex singular vector by a complex number
of modulus 1 corresponds to a shift of the wave phase. Therfisingular vector has a large projection on the
third 7;-singular vector and the secomgtsingular vector has a large projection on the fissingular vector
whereas the third,-singular vector is orthogonal 1g;.
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Figure 3: as Fig. 2 but for a non-dimensional optimisation time.pf 8; this corresponds to 48 h.

The projected and ortho-normalisegsingular vectors are a basislof. They are plotted in Figuré. As one
would expect, the structure of the first twg-singular vectors has been significantly altered whereas the third
T,-singular vector remains unchanged.

Next, the subspace approach is applied withstill given by the subspace spanned by the leading thyee
singular vectors. The optimisation for tinmg is then restricted th, usingTs =
tion (16). Here,M (7,) andE denote the propagator from time Otpand the total energy metric, respectively.

The singular values for the,-subspace singular vectors are always smaller than the singular valuesrgf the
singular vectors (Tabl&). This is a general property of the subspace approach because perturbations restricted
to a subspace cannot be more optimal than perturbations computed in the full space.

EY2M(z,)P(L;) in Equa-

The central question of this work can be addressed now: Arerffseibspace singular vectors spanning a
different space than the projectegtsingular vectors? The answer yssbecause the secorg-subspace
singular vector has a wavelength 00@L ; and is therefore orthogonal to the leading three projecfesingular
vectors, which have different wavelength (see Figand5). However, the first,-subspace singular vector is
identical to the third (projected),-singular vector and the third,-subspace singular vector is similar to the
second projected and (ortho-)normalisgesingular vector.

The singular vectors optimised In, always maximise the explained variance, see Equati@hif Sec. 2.

As the leading three,-subspace singular vectors span a different space than the leading three projected
singular vectors, one would expect the former to explain more forecast error variance. Total forecast error
variances explained by the spaces spanned by the leading five projected singular vectors and by the leading
five subspace singular vectors are given in Tabl&he numbers confirm that the subspace singular vectors
explain indeed more forecast error variance than the projeststhgular vectors. The results show that the
difference between the two approaches is largest for small dimensiofi, 2 of the space.,. In the limit

of increasing dimension, the covariance matriRp(L,) converges towards the covariance maixL,) for

both methods and the explained forecast error variances have to become identical. Note, that the leading three
T,-singular vectors explain 22.6% of the total forecast error variante=at,. This value is exceeded by

the variance explained Hy; + L, for dim(

L,) = 3 with the ortho-normalisation approach while the subspace
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Figure 4: as Figure 3 but for the three vectors that are obtained fromthsingular vectors (cf. Fig. 3) by projecting
them onto the orthogonal complement of thesingular vectors (cf. Fig. 2) and subsequent ortho-normalisation.

o

—
o

Figure 5: as Figure 3 but for the leading three subspace singular vectors of the Eady model computed for optimisation

time 7, in the subspace orthogonal to the leading thrgesingular vectors (top: SV 1, middle: SV 2, bottom: SV 3). The

singular values are given in Tal.
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Table 1: Singular values of the leading 5 singular vectors for the discretised Eady problem and optimisation tumyes
singular vectotj 1 2 3 4 5
7,=4 639 618 6.08 583 575
T,=8 2436 2225 17.86 16.38 14.27
subspace, =8 17.86 16.02 14.91 14.27 13.56

Table 2: Percentage of total forecast error variance at t, explained by subspaces and L, +L, for dim(L,) = 3and
dim(L,) =1,...,5.

dim(L,)
method subspace 1 2 3 4 5
ortho-norm. L, 16 51 102 143 176
subspace L, 51 93 128 161 191

ortho-norm. L,+L, 16.0 195 247 28.7 32.0
subspace L;+L, 195 237 273 305 335

approach already exceeds 22.6% for dig) = 2.

So far, an example with dith,) = 3 was considered anid;, was optimised forr;, = 4 andL, for 7, = 8.

Now, the dimensions df, andL, are varied between 1 and 5 with dil) = dim(L,). Moreover, the order

of the optimisation times is examined, i.e. singular vectors are computet fer4, 7, = 8 as well as for

7, = 8, 7, = 4. The forecast error variances explainedly+ L, att = 4 andt = 8 are given in Table.

As predicted by the theory in Sec. 2, more forecast error variance is explained by the subspace approach
than the ortho-normalisation approach for all dimensions and both lead times. However, the forecast error
variance explained by the ortho-normalisation approach is large; the ratio of variance explained by the ortho-
normalisation approach to the variance explained by the subspace approach eX@aedl €ases.

The subspacé, 4 L, obtained with the ortho-normalisation approach does not depend on the order of the
optimisation criteria but it does so for the subspace approach. Attia the subspace approach with= 4
explains more forecast error variance than witk= 8 except for dinfL, +L,) = 4. Attimet = 8, the subspace
approach withr, = 8 explains slightly more variance than with= 4.

Table 3: Percentage of total forecast error variance explained by subspa¢d L at time t fordim(L,) = dim(L,) =
1...,5

dim(L; +L,)

method 7, 1, t 2 4 6 8 10

ortho-norm. 4/8 8/4 4 55 89 116 149 17.8
subspace 4 8 4 55 103 119 153 18.7
subspace 8 4 4 55 99 143 175 20.7
8
8
8

ortho-norm. 4/8 8/4 146 19.2 247 29.6 33.2
subspace 4 8 146 208 27.3 311 3438
subspace 8 4 146 194 255 305 349
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4  Application in the ECMWF EPS

This section describes how the methods developed in the previous section can be exploited to revise the initial
perturbations targeted on tropical cyclones in the operational ECMWF Ensemble Prediction System (EPS). In
the configuration operational up to September 2004, optimisation regions targeted on tropical cyclones were
restricted to latitudes between®and 25N. This ensured that the associated singular vectors were almost
orthogonal to the extra-tropical singular vectors, which are optimised for the regions frolatid@de to the

pole. As a consequence of this latitudinal limitation of the tropical cyclone perturbations, the EPS had the
undesirable feature that the spread of tropical cyclone tracks exhibited a sudden decrease during extra-tropical
transitions. Users may have falsely interpreted the reduction in the spread of tropical cyclone positions as an
increase in predictability.

With the methods developed in this paper, it is possible to extend the perturbations targeted on tropical cyclones
further pole-ward without duplicating structures that are already represented in the set of used extra-tropical
singular vectors. Here, we compare the perturbation structures obtained with the ortho-normalisation approach
and the subspace approach. In the notation of Sec. 2, sublspaefers to the space spanned by the leading

50 extra-tropical singular vectors. Subsp#ges the space spanned by the leading 5 singular vectors for a
particular tropical cyclone.

Initial perturbations for both approaches have been computed daily during the period 11-24 September 2006.
In this period, the tropical cyclones Gordon, Shanshan, Helene and Yagi underwent extra-tropical transitions.
The ortho-normalisation approach and the subspace approach will be referred to as experiments O and S, re-
spectively. Apart from the ortho-normalisation approach, both experiments adopt the currently operational
configuration for the EPS initial perturbationse(itbecher and Palm@007): All sets of singular vectors are
computed with 48-hour optimisation time. The spectral model is triangularly truncated at wavenumber 42 and
uses 62 levels. The extra-tropical singular vectors are computed with an adiabatic version of the tangent-linear
model whereas the singular vectors targeted on tropical cyclones are computed with a diabatic tangent-linear
model, which is computationally more expensive than the adiabatic veRionet al.(2001) showed that the
representation of diabatic processes in the tangent-linear model is required in order to obtain initial perturba-
tions relevant for tropical cyclone motion. The initial perturbations for each of the extra-tropical regié8s-(90

30°S and 30N-9C°N) are constructed from the leading 50 singular vectors whereas the initial perturbations
for each region targeted on a tropical cyclone is based on the leading 5 singular vectors. In both experiments,
initial perturbations are computed for tropical cyclones betweéB 40d 40N. The algorithm determining the
optimisation region for a tropical cyclone takes into account the position of the tropical cyclone as predicted by
the operational EPS run initialised 12 hours prior to the singular vector initial trareder Grijn et al2004).

Now, the similarity of the different initial perturbations obtained by experiments O and S is discussed for the
tropical cyclones undergoing extra-tropical transitions. Three different subspaces are considered: subspace F
spanned by singular vectors computed in the full space (from Exp. O); subspace FP obtained by projecting the
subspace F into the orthogonal complement of the extra-tropical Northern Hemisphere singular vectors (from
Exp. O); subspace S spanned by the singular vectors computed in the orthogonal complement of the extra-
tropical SVs (from Exp. S). Consistent with the operational EPS, results for the spaces spanned by the leading
five singular vectors are discussed. Structural differences between the three spaces are quantified using the
similarity index introduced byBuizza(1994). It measures the degree of parallelism of subspaces. The index
varies between 0 (orthogonal subspaces) and 1 (identical subspaces). It is computed as the average square norm
of the projection of the ortho-normal basis vectors of one subspace on the other subspace. Here, the index is
computed using the total energy inner product.

In the period 11-24 September, there are 26 sets of singular vectors targeted on tropical cyclones where the
optimisation regions significantly overlaps with the extra-tropical optimisation region. For these cases, the
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Table 4: Similarity indices between singular vector (SV) subspaces F, FP, and S: (F) SVs computed in full space, (FP)
space spanned by full space SVs projected into the orthogonal complement of the extra-tropical SVs, (S) SVs computed in
subspace. The latitude of the tropical cyclone position at optimisation time is given in colufn Lat

tropical cyclone  Date L&(°N) FP-S F-S FP-F

Gordon 11 Sep 25 0.80 0.75 0.85
Gordon 12 Sep 29 0.98 0.89 0.91
Gordon 13 Sep 31 1.00 094 0.94
Gordon 14 Sep 31 0.81 0.69 0.82
Gordon 15 Sep 33 0.94 0.76 0.80
Gordon 16 Sep 37 0.74 0.39 045
Gordon 17 Sep 38 0.75 0.31 0.39
Gordon 18 Sep 38 0.87 0.46 0.52
Gordon 19 Sep - 0.80 0.50 0.58
Gordon 20 Sep - 0.85 0.65 0.72
Shanshan 14 Sep 27 0.99 0.86 0.87
Shanshan 15 Sep 33 0.97 0.74 0.76
Shanshan 16 Sep 39 0.92 050 0.54
Shanshan 17 Sep 43 0.80 0.33 0.42
Shanshan 18 Sep - 0.96 0.37 0.38
Helene 19 Sep 29 0.99 0.95 0.95
Helene 20 Sep 33 0.95 0.60 0.62
Helene 21 Sep 37 0.80 0.42 0.47
Helene 22 Sep 40 0.84 0.53 0.61
Helene 23 Sep - 094 045 048
Helene 24 Sep - 0.93 0.46 0.49
Yagi 20 Sep 26 096 0.88 0.91
Yagi 21 Sep 31 0.98 0.78 0.79
Yagi 22 Sep 36 0.74 042 0.55
Yagi 23 Sep - 0.93 044 0.46
Yagi 24 Sep - 0.77 0.32 0.39

similarity indices between the three spaces F, FP and S are listed indlable® of 26 cases, the similarity

index between space FP and space F is lower than 0.5. This implies that the singular vectors computed in the full
space have a significant projection on the extra-tropical singular vectors. In consequence, the subspace singular
vectors differ significantly from the singular vectors computed in the full space for these 9 cases. The similarity
index between spaces F and S drops below 0.5 in 11 cases. These cases include all cases with similarity index
FP-F lower than 0.5. The projection of space F into the orthogonal complement of the extra-tropical singular
vectors increases the similarity to the subspace singular vectors considerably. The similarity index between
spaces FP and S is less than 0.8 in only 4 cases and it is larger than 0.7 in all 26 cases. In conclusion, the
ortho-normalisation approach and the subspace approach appear to yield very similar spaces in most cases.

5 Discussion

The focus has been on two optimisation criteria but both approaches can be applied to more than two optimi-
sation criteria. In the ortho-normalisation approach, khih subspace is obtained by projecting the singular
vectors of thek-th optimisation criterion oh, +...+L, ;. In the subspace approach, th singular vector
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computation is restricted o, + ... +L, ;.

Whether there is a need to enforce orthogonality, will depend on the particular choice of the optimisation criteria
and also on the dimension of the subspaces. An interesting limiting case occurs if one considers two identical
optimisation criteria. Let, be the subspace spanned by the leadingingular vectors. Then, the firéf

vectors projected oh, will be identical to zero and explain no forecast error variance at all. In contrast, the
j-th subspace eigenpair (singular value, singular vector) computedsridentical to the(¢, + j)-th eigenpair
computed in the full state space (This statement assumes that the singular values are all different. If they are not,
only the spaces for a given singular value are unique.). This property has been exploited to check the correctness
of the implementation of subspace singular vectors in the ECMWF Integrated Forecast System (IFS) and in the
Eady model example. It could also be employed to restart a singular vector computation, i.e. to append singular
vectors to an existing set. Another interesting limiting case occurs if one considers final time metrics involving
projections on disjoint parts of the state space, e.g. local projection operators on geographically separated
regions. Then, the leading singular vectors computed for different criteria are expected to be almost mutually
orthogonal and there is no need to enforce orthogonality. However, orthogonality becomes an issue if one
considers overlapping optimisation regions.

The ortho-normalisation approach and the subspace approach have both been applied to the computation of ini-
tial perturbations of the ECMWF EPS. The two methods have been exploited in order to extend pole-wards the
perturbations targeted on tropical cyclones. Results of daily computations in the period 11-24 September 2006,
which covers the extra-tropical transition of tropical cyclones Gordon, Shanshan, Helene and Yagi, indicate that
both approaches tend to yield quite similar subspaces. Note, that the pole-ward extension of perturbations tar-
geted on tropical cyclones has been implemented in the operational EPS in September 2004 using the subspace
approach. The decision was based on the fact that both approaches incur about the same computational cost
but the subspace approach is, in principle, superior to the ortho-normalisation approach. The results presented
here suggest that this superiority may be small in practice, though, and the sample size required to demonstrate
the superiority of the subspace approach is likely to be computationally prohibitive. The pole-ward extension

of the perturbations targeted on tropical cyclones has resulted in a more consistent spread of tropical cyclone
tracks during the extra-tropical transitions.

For regional applications, ensemble prediction systems using singular vectors targeted on the region of interest,
e.g. part of Europe, have been considerddrébach et al200Q Frogner and Iverse2001). At forecast

ranges beyond the singular vector optimisation time, such targeted ensemble prediction systems might be spread
deficient because the perturbations have propagated through the region of interest and initial conditions further
upstream were not perturbed. Using one of the approaches discussed here, the initial perturbations could be
augmented by perturbations based on a second set of singular vectors that are optimised for a much larger
region, say the Northern Hemisphere extra-tropics, which contains the region of interest. It is anticipated that
this could extend the forecast range at which such targeted ensemble prediction systems would be useful.

Current operational ensemble prediction systems in which initial uncertainties are represented by singular vec-
tors are using one optimisation time only. This raises the question which value of the optimisation time yields
the best ensemble forecasts. Short optimisation times will guarantee that tangent-linear dynamics constitutes a
more accurate approximation of finite-amplitude perturbation dynamics. The appropriate scale for the ampli-
tude of the initial perturbations is set by the amplitude of typical analysis errors. Estimates of the time scale up
to which the tangent-linear approximation is useful for synoptic-scale atmospheric dynamics range from about
24 h to about 72 hGilmour et al.2001; Reynolds and Rosmor2D03. However, short optimisation times

may vield perturbations that are suboptimal for the longer forecast ranges. Thus, a trade-off may be required
between the relevance of the perturbations for the longer forecast ranges and the accuracy of the tangent-linear
approximation. Furthermore, one would expect that there is no optimisation time that is optimal for all forecast
ranges. Therefore, an ensemble using perturbations based on multiple sets of singular vectors, each computed
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for a different optimisation time, may be superior to an ensemble based on perturbations computed for a single
optimisation time. The example of singular vectors computed for two different optimisation times in the Eady
model illustrated that some of the singular vectors for optimisation time 1 have a large projection on singular
vectors for optimisation time 2. Therefore, it is expected that approaches which accommodate multiple opti-
misation times will require a method to enforce the orthogonality of the different sets of singular vectors. The
example has also demonstrated that the subspace singular vector approach explains more forecast error vari-
ance than the approach of orthogonalising independently computed singular vectors. However, the difference
of the explained variances is rather small. In all examples with the Eady model, the variance explained by the
ortho-normalisation approach exceeds 80% of the variance explained by the subspace approach.

The overall computational cost of the two approaches to construct mutually orthogonal subspaces for different
optimisation criteria is approximately equal because the main cost is incurred by the tangent-linear and ad-
joint integrations in the singular vector computations and not by the projections. There may be a difference
though for time-critical applications like numerical weather prediction if the tangent-linear and adjoint code is
not scaling well on parallel computing architectures. The computation of subspace singular vectors implies a
sequential approach: The computation of subspace singular vectors for the second optimisation criterion re-
quires the singular vectors of the first optimisation to define the projection operator. To speed up the sequential
singular vector computations, the number of processors used for each computation can be increased. In the
limit of code that scales perfectly on a parallel architecture, the independent computation and the sequential
computation can be run within the same wall-clock time using the same overall resources. It is worth noting
here that the operational constraints on the resources available for singular vector computations in ensemble
prediction systems can be relaxed significantly by using a trajectory started from a short-range forecast for
the tangent-linear and adjoint integrations rather than a trajectory started from an anaysieeche(2005

showed for the ECMWF EPS that this change yields almost identical singular vectors and does not appear to
affect the skill of the probabilistic forecasts.

When multiple optimisation criteria are considered, there is no unique way how to define an optimal subspace
for all of them. Here, a sequential approach has been developed. For each criterion a separate optimisation is
performed in order to obtain a subspace of a given dimension. The optimisation is restricted to the orthogonal
complement of the sum of the already obtained subspaces. The resulting sum of subspaces depends on the
order of the optimisation criteria. For one particular criterion one order may explain more forecast error vari-
ance than the other orders. However, for another optimisation criterion, another order may be best. This was
illustrated by the Eady model example. The non-commutativity of the optimisation criteria is avoided by an
alternative method of accounting for multiple optimisation criteria. It optimises a weighted sum of the forecast
error variances associated with the individual criteria (Mark Buehner, personal communication). However, the
resulting subspace will depend on the choice of weights. Without carefully choosing the weights, the resulting
subspace may be dominated by structures that optimise only one of the criteria.

6 Conclusions

Here, the representation of initial uncertainty using multiple sets of singular vectors optimised for different
criteria is discussed. Methods which represent initial uncertainties consistent with an analysis error covariance
estimateA require that subspaces associated with different sets of singular vectors are orthogonal with respect
to the inner product based @ .

This paper introduces the concept of singular vectors optimised in a subspace which is orthogonal to a sub-
space of an independent set of singular vectors. It is proven that this subspace method is optimal in the sense
of augmenting an arbitrary given subspace in order to maximise the explained forecast error variance in the
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augmented space.

The subspace approach has been compared with a simple ortho-normalisation approach which can also be
employed in order to generate initial perturbations from multiple sets of singular vectors that are not already
mutually orthogonal.

The subspace approach and the ortho-normalisation approach have been applied to an idealised example based
on the Eady model and to the ECMWF EPS. In both applications, the simple ortho-normalisation approach
provides perturbations which are quite similar to the perturbations obtained with the subspace approach.
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A Appendix: Proof of the subspace singular vector properties

In order to shorten the notatiof,, is replaced byT in the following. First, statement (a) in Sec. 2.4 is
proved. Letw be a singular vector of s with singular values > 0. Thereforew solves the eigenproblem
TITsw = o?A~lw. Now, letz € L,. This implies

A W=06"2"TITiw=02(P(})2) TTTw =0, (21)
becausé(L,)z = 0. Equation 21) impliesw € L, which proves (a).

Now we prove statement (b) in Sec. 2.4. The proof relies on the maximum variance property of opgrator
order to apply this property we first need to prove the following two equivalei@3s(d @4).

For all subspacels C L;, P(L) = P(L;)P(L). This implies

TAP(L)TT:TSAp(L)T-Sr, VLCTJ_. (22)

Therefore
max tr(TAp(L)TT) = max tr(TsAp(L)TL). 23
LcL,, dim(L)=k (Tp(LT) LcLy, dim(L)=k (TsAp(LITs) (23)

Next, it is shown that the maximum in Equatid8] remains unaltered if it is computed over laltlimensional
subspaces in the statespatei.e.

max tr(T LTT: max tr (T<A LTT o
Lc.2, dim(L)=k (TeAp(L)Ts) LTy, dim(L)=k (TsAp(L)Ts) (24)

It is obvious that L.H.S> R.H.S. in EquationZ4) asf1 Cc Z. To show L.H.S.< R.H.S., we consider a
subspacd. which is not inL;. We can writel = L' +L"” with L’ c [; andL” c L, and din{L’) < k. As

P(L,)P(L") =0,

tr(TARDTE) =tr (TARL)TI) < max  tr(TsAp(L)Tq) (25)
LcL,,dim(L)=k
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which proves L.H.S< R.H.S. in EquationZ4).

Now, we make use of the maximum variance property of the singular vectors of op€gatequation {3).
This yields,

T _ * T
chm%):ktr (TAp(L)Tg) =tr (TsAp (L*[Ts,K)) Ts) . (26)

But asL*[Ts,k|] C L,, operatorTs can be replaced by on the right hand side of Equatio@f). Combining
Equations 23), (24) and @6) proves Equationi(7).
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