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Multiple Sets of Singular Vectors

Abstract

Initial uncertainties can be represented effectively in ensemble prediction systems by sampling errors in a
subspace spanned by the leading singular vectors of the forecast model’s tangent-linear propagator. The
initial time metric in the singular vector computation is the inverse of the assumed analysis error covariance
matrixA. The singular vectors evolve into the leading eigenvectors of the forecast error covariance estimate
obtained by linearly propagatingA to the singular vector optimisation time. In this sense, singular vectors
provide an optimal subspace for sampling initial uncertainties. However, the optimality is only guaranteed
for the particular optimisation criterion used in the singular vector computation. For instance, it could be
suboptimal for forecast ranges that differ from the singular vector optimisation time.

Here, two alternative approaches are discussed that account for several optimisation criteria. The first ap-
proach is a simple ortho-normalisation approach applied to multiple sets of singular vectors. Potentially,
the ortho-normalisation can yield suboptimal perturbations. In response to the expected deficiency of the
ortho-normalisation approach, the second approach has been developed. It yields orthogonal subspaces for
different optimisation criteria without compromising optimality. For a given subspaceL, consisting of a set
of leading singular vectors optimised for the first criterion (or criteria), singular vectors are computed in the
subspace orthogonal toL. The optimality properties of thesesubspace singular vectorsare described and
proved.

The leading subspaces obtained with the two approaches are compared in two examples. First, an idealised
example based on singular vectors computed for two optimisation times in the Eady model is considered.
Then, both techniques are applied to initial perturbations targeted on tropical cyclones in the Ensemble
Prediction System (EPS) of the European Centre for Medium-Range Weather Forecasts. The methodologies
allow a consistent representation of initial uncertainties during extra-tropical transitions.

1 Introduction

Ensemble techniques are being employed to quantify uncertainty in geophysical fluid flow predictions (Lewis
2005; Leutbecher and Palmer2007). Reliable ensembles require the representation of forecast model uncer-
tainties and initial condition uncertainties; the representation of the latter is the focus of this study. Many
geophysical fluid flows tend to exhibit a very selective growth of initial errors. A distribution of initial errors
will be strongly stretched in some directions of phase space and squashed in other directions as it evolves in
time. Lorenz (1965) showed how singular vectors of the forecast model’s tangent-linear propagator can be
used to estimate the error growth in the linear regime and to rank the directions in phase space according to the
error growth. This property of the singular vectors has been exploited successfully in constructing strategies to
selectively sample the distribution of initial errors in those directions that will dominate the forecast errors at
later ranges (Buizza and Palmer1995; Molteni et al.1996).

Singular vectors depend on a choice of norm.Ehrendorfer and Tribbia(1997), Palmer et al.(1998) and others
noted that the appropriate initial time norm (also referred to as metric) is the inverse of the analysis error
covariance matrix. Among the simple metrics, the total energy metric appears to be a reasonable approximation
of an analysis error covariance metric (Palmer et al.1998; Lawrence et al.2007). The choice of the initial metric
is not discussed any further as the methodology derived here holds for any analysis error covariance estimate
(provided it is a positive definite symmetric matrix).

The study focuses on strategies that represent initial condition errors only in a subspaceL of the model state
spaceL . It is envisaged that the dimension ofL is far smaller than the dimensionn of the model state space
L . Anderson(1997) discusses such strategies for situations in which the distribution of initial errors is known.
He suggests to focus on those strategies that are sampling the errors inL in a manner consistent with the actual
initial error distribution. However, in most applications the knowledge about the actual initial error distribution
is fairly limited. Therefore, we will demand here that the sampling of initial condition errors is consistent with
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theestimateA of the analysis error covariances. Higher order moments of the initial error distribution will not
be considered. A concise definition of the consistency will be given in Sec. 2.1. As will be shown later, a set of
A−1-ortho-normal vectors is required in order to construct an initial error representation that is consistent with
A.

Singular vectors computed with an initial norm based on theA−1 inner product are ortho-normal with respect
to A−1. Now, consider multiple optimisation criteria (e.g. two different optimisation timest1 and t2). In
general, the leading singular vectors optimised for the different criteria will not be mutuallyA−1-orthogonal.
Thus, a consistent selective sampling strategy requires to construct a set ofA−1-ortho-normal vectors from the
different sets of singular vectors. However, the ortho-normalisation will, in general, not respect the optimality
of the perturbations. In this paper, an alternative approach is developed in which a given selective sampling
strategy is augmented in an optimal way by computing singular vectors in the subspaceA−1-orthogonal to the
already sampled subspace. Such singular vectors will be referred to assubspace singular vectors.

The ortho-normalisationapproach and thesubspaceapproach are first applied to the Eady model. Since the
work of Farrell (1988), numerous studies have examined the structure and dynamics of optimal perturbations
of quasi-geostrophic baroclinic shear flow of the Eady type (seeDeVries and Opsteegh2005, and references
therein). Initial perturbations based on two sets of singular vectors are considered. The first set of singular
vectors maximises total energy at 24 h and the second set maximises total energy at 48 h.

Secondly, the two approaches for multiple optimisation criteria are applied to the Ensemble Prediction System
(EPS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) in the context of an operational
implementation. This application aims at improving the representation of initial uncertainty in the vicinity of
tropical cyclones during extra-tropical transitions. In the EPS, perturbations are targeted on tropical cyclones
(Puri et al.2001). However, in the configuration operational until September 2004, these perturbations are based
on singular vector computations with optimisation regions that do not extend poleward of a latitude of 25◦. The
meridional limitation of the optimisation regions was imposed in order to avoid the duplication of perturbations
that are already represented in the extra-tropical singular vectors, which are optimised for latitudes from 30◦

to the pole. In a series of subsequent EPS runs during an extra-tropical transition, the spread of the tropical
cyclone tracks tends to exhibit a sudden decrease in this configuration. The drop in spread arises solely from
the meridional limitation of the perturbations. Here, a new perturbation methodology is presented that removes
this unrealistic decrease in spread by targeting perturbations on tropical cyclones up to latitudes of 40◦. In the
new methodology, the duplication of perturbations already present in a set of extra-tropical singular vectors is
avoided by ensuring that the tropical cyclone perturbations are orthogonal to the extra-tropical perturbations.
Perturbations obtained with the ortho-normalisation approach are compared with perturbations obtained with
the subspace approach.

The methodology for the two approaches for multiple optimisation criteria is introduced in Sec. 2. Section 3
presents the results for the application in the Eady model while Sec. 4 discusses the application in the ECMWF
EPS. Discussion and conclusions follow in Sections 5 and 6, respectively. A proof of the optimality property
of the subspace singular vectors is given in the Appendix.

2 Methodology

Section 2.1 introduces the concept of sampling initial uncertainty in a subspace consistent with a covariance
matrix and explains the need for sampling initial uncertainty in orthogonal subspaces if several optimisation
criteria are considered. A formulation of the maximum variance property of singular vectors suitable for the
subsequent derivations is given in Sec. 2.2. The representation of initial uncertainty with singular vectors
computed for two (or more) optimisation criteria using the ortho-normalisation approach follows in Sec. 2.3.
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The subspace approach for representing initial uncertainty with multiple sets of singular vectors is presented in
Sec. 2.4.

2.1 Consistent sampling of initial uncertainty and decomposition of covariances

Singular vector based initial perturbations represent initial uncertainty by a random vectorx̂ in a subspace
L spanned by the leading singular vectors.Leutbecher and Palmer(2007) define that a random vectorx̂ in
subspaceL is consistent with the analysis error covariance estimateA if its covariance is given by

Ap(L)≡ P(L)A (P(L))T . (1)

HereP(L) denotes theA−1-orthogonal projection ontoL. SuperscriptT is used for matrix transpose. This
definition of consistent sampling is motivated by the fact that a random vectorx with covarianceA can be
uniquely decomposed into uncorrelated components in subspaceL and itsA−1-orthogonal complement and that
the component inL has covarianceAp(L). Henceforth, the over-line will refer to the orthogonal complement
of a subspace with respect to the inner product defined byA−1

L ≡
{

v|vTA−1w = 0, ∀w ∈ L
}

. (2)

The decomposition
x = xL +x

L
, (3)

with xL = P(L)x ∈ L andx
L

= P(L)x ∈ L yields a decomposition ofx into uncorrelated components.

In order to get a random vector that is consistent withA, one can use a Gaussian sampling technique based
on anA−1-ortho-normal basis ofL. Such a sampling technique is used in the operational EPS configuration at
ECMWF (Leutbecher and Palmer2007). Note, that all singular vectors from a set computed with initial norm
based onA−1 for a particular optimisation criterion are already ortho-normal with respect toA−1. But two
singular vectors from different sets are generally notA−1-orthogonal.

For any pair ofA−1-orthogonal subspacesL′ andL′′, the covariances are additive

Ap(L′+L′′) = Ap(L′)+Ap(L′′) (4)

because the components inA−1-orthogonal subspaces are uncorrelated andP(L′ + L′′) = P(L′) + P(L′′). In
particular, the full covariance matrix is decomposed as

A = Ap(L)+Ap(L). (5)

The decomposition (4) implies that the sum of a set of independent random vectorsxk ∈ Lk, k = 1. . . r eachxk
consistent withA yields a random vector̂x ∈ L̂ = L1 + . . .+Lr which is also consistent withA if the subspaces
Lk are mutuallyA−1-orthogonal. The covariance ofx̂ is then given by the sum of the covariances associated
with the individual subspacesLk

Ap(L̂) =
r

∑
k=1

Ap(Lk). (6)

For any linear operatorT, the covariance matrix of the transformed random vectorTx̂ has covariance decom-
positions given by

TAT T = TA p(L)TT +TA p(L)TT and (7)

TA p(L̂)TT =
r

∑
k=1

TA p(Lk)T
T. (8)
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Figure 1: Schematic of two alternative methods to construct orthogonal subspaces for two different optimisation criteria:
(a) ortho-normalisation of independently computed sets of singular vectors, (b) singular vectors for the second criterion
are computed in the subspace ortho-normal to L1 rather than in the full state space.

2.2 Singular vectors and the maximum variance property

A linear estimate of the forecast error covariance matrix at timet is given byMAM T, whereM denotes the
tangent-linear propagator from initial time to timet. This estimate neglects imperfections of the forecast model,
nonlinearities as well as other imperfections of the tangent-linear model and it assumes that the covariance of
initial uncertainty is given byA. It is assumed that forecast error variance is quantified using a symmetric
positive semi-definite matrixE as metric. This metric could be, for instance, the total energy metric localised
to a certain geographical region. In general, the matrixE can be different for different optimisation criteria.
Then, the trace tr(E1/2MAM TE1/2) is an estimate of the total forecast error variance using metricE. If we
write T = E1/2M and make use of Equation (7), the total forecast error variance can be decomposed as

tr
(
TAT T)

= tr
(
TA p(L)TT)

+ tr
(
TA p(L)TT)

. (9)

Note, that Equation (9) is valid for any matrixT not only the tangent-linear propagator scaled by the square
root of a metric.

The singular vectors ofTA1/2 are known to provide a particular decomposition of (9) which will be formulated
now. Let

TA1/2 = USṼ
T
, (10)

denote the singular value decomposition, whereU, Ṽ are orthogonal matrices andS is a diagonal matrix con-
taining the non-negative singular values in decreasing order. The singular vectors are the columns ofU andṼ.
The right singular vectors iñV are non-dimensional. Their scaled counterparts

V = A1/2Ṽ (11)

are usually referred to asinitial singular vectors whenT involves the tangent-linear propagator. The symbol
L∗[T,k] will be used to refer to the subspace spanned by the leadingk initial singular vectors, i.e. the firstk
columns ofV. Furthermore, letsj(T) denote thej-th singular value of operatorT. The singular vectors are
optimal perturbations in the sense that they optimise the following ratio of norms∥∥∥TA1/2x

∥∥∥/‖x‖ , (12)
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where‖ .‖ denotes the Euclidean norm. Furthermore, the subspaceL∗[T,k] has the property of being thek-
dimensional subspace thatexplainsmost variance

max
L⊂L , dim(L)=k

tr
(
TA p(L)TT)

= tr
(
TA p(L∗[T,k])TT)

. (13)

Ehrendorfer and Tribbia(1997) discuss the maximum variance property of the singular vectors in detail for the
case whereT consists of the tangent-linear propagator scaled by a metric. In the following, the more general
formulation (13) valid for any matrixT is required.

2.3 Multiple optimisation criteria: ortho-normalisation approach

We consider two optimisation criteria which are associated with matricesT1 andT2. They could be composed
of propagators for two different optimisation times. Alternatively,T1 andT2 could also differ in terms of the
geographical localisation at final time.

The ortho-normalisation approach considers the singular value decompositions ofT1A1/2 andT2A1/2, i.e. this
corresponds to independent singular vector computations. The subspace spanned by the leading`1 singular
vectors ofT1A1/2 is denoted byL1. Then, subspaceL2 is obtained by projecting the singular vectors ofT2A1/2

onL1 (Fig. 1a). Formally, we write
L2 = P(L1)L

∗[T2, `2]. (14)

The ortho-normalisation approach is expected to yield, in general, perturbations inL1 that are sub-optimal with
respect to the second optimisation criterion.

2.4 The subspace approach

The second approach achieves orthogonality without compromising optimality by restricting the singular vector
computation for the second criterion to subspaceL1 (Fig. 1b). Therefore, we will refer to it as the subspace
approach.

As previously, the subspace spanned by the leading singular vectors ofT1A1/2 is denoted byL1. Note, however,
that the following properties are valid for any subspaceL1. The goal of optimising forT2 in the space orthogonal
to L1 is then achieved by considering the singular value decomposition of

Ts = T2P(L1). (15)

The singular vectors are solutions of the generalised eigenproblem

TT
s Tsx = s2A−1x. (16)

The singular vectors ofTsA1/2 are characterised by the following properties:

a. All singular vectors ofTs with positive singular value lie inL1.

b. For dimensionsk with positive singular values1 > .. . > sk(Ts) > 0, the subspaceL∗[Ts,k] spanned by
the leadingk singular vectors ofTs satisfies the following maximum variance criterion

max
L⊂L1, dim(L)=k

tr
(
T2Ap(L)TT

2

)
= tr

(
T2Ap(L∗[Ts,k])TT

2

)
(17)

In other words, subspaceL∗[Ts,k] is the k-dimensional subspace orthogonal toL1 which explains most
forecast error variance ofT2ATT

2 .
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A formal proof of statements (a) and (b) is given in Appendix A. We will refer to the singular vectors ofTs

with positive singular value assubspace singular vectors. As a result of the additivity of the forecast error
covariances associated withA−1-orthogonal subspaces, statement (b) implies that subspaceL1 + L∗[Ts,k] is
the `1 + k-dimensional subspace containingL1 that explains most of the forecast error variance ofT2ATT

2 .
The subspace approach is sequential and non-commutative, i.e. the spaceL1 +L2 depends on the order of the
optimisation criteria as will be demonstrated in Sec. 3.

3 Quasi-geostrophic baroclinic shear flow

3.1 Definition of the linear problem

Now, the subspace approach and the ortho-normalisation approach will be illustrated in a low-dimensional, yet
non-trivial, example based on the Eady model. We consider a basic state with linear vertical shearU = Sz
and constant Brunt-V̈ais̈alä frequencyN. The quasi-geostrophic (QG) dynamics is linearised about this basic
state on thef -plane, i.e. constant Coriolis parameterf0. Rigid boundaries are assumed atz= 0 andz= H. In
the zonal direction, we consider a channel of lengthLch with periodic boundary conditions. All perturbation
variables are uniform in the meridional direction¶/¶y= 0. FollowingFarrell and Ioannou(1996), the variables
are non-dimensionalised using the heightH as vertical scale, the Rossby deformation radiusLd = NH/ f0
as horizontal scale andN/( f0S) as time scale. The numerical examples useH = 10km, SH = 46.3ms−1,
N = 10−2s−1, f0 = 10−4s−1 andLch = 104km. For these values, a unit non-dimensional time corresponds to
6 h and a unit non-dimensional horizontal length corresponds to 1000 km. Equations (18)–(20) below appear
in non-dimensional form (Note, that the same symbols will be used for the non-dimensional variables). The
equations describing the evolution of streamfunction perturbationsy are given by(

¶

¶ t
+z

¶

¶x

)(
¶ 2y

¶x2 +
¶ 2y

¶z2

)
= 0 (18)

in the interior, 0< z< 1, and (
¶

¶ t
+z

¶

¶x

)
¶y

¶z
− ¶y

¶x
= 0 (19)

at the top and bottom boundaries,z= 0 andz= 1. Equations (18) and (19) describe the conservation of QG
potential vorticity and the advection of temperature at the boundaries, respectively.

Equations (18) and (19) are discretised in the vertical using 21 equidistant levels. A Fourier representation with
16 wavenumbers is used for the horizontal direction. Thereby, waves with wavelength betweenL/16 andL can
be described in the channel. The total energy inner product is defined as

〈y; ỹ〉=
1
2

∫ L

0
dx

∫ 1

0
dz

(
¶y

¶x
¶ỹ

¶x
+
¶y

¶z
¶ỹ

¶z

)
. (20)

In the examples given below, the total energy metric will be used at initial time and final time. Furthermore, the
non-dimensional optimisation times are set tot1 = 4 andt2 = 8; these values correspond to dimensional times
of 24 h and 48 h. This choice is motivated by an optimisation time of 48 h used in the operational ECMWF
EPS and recent experimentation with 24-hour optimisation time singular vectors using a diabatic tangent-linear
model (Coutinho et al.2004; Hoskins and Coutinho2005; Walser et al.2006).
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Figure 2: The leading three singular vectors (SVs) for the discretised Eady problem using the total energy metric at initial
and final time (top: SV 1, middle: SV 2, bottom: SV 3). The non-dimensional optimisation timet1 = 4 corresponds to a
dimensional time of 24 h. Plotted is the streamfunction (Dashed contours: negative values; zero-contour omitted). The
discretisation is described in Sec. 3.1; the singular values are given in Table1.

3.2 Results

The leading 3 singular vectors for the non-dimensional optimisation timest1 = 4 andt2 = 8 are plotted in
Figures2 and3, respectively. We will refer to these singular vectors ast1-singular vectors andt2-singular
vectors in short. The streamfunction perturbations exhibit the familiar tilt against the vertical shear and resemble
the leading singular vectors presented byMukougawa and Ikeda(1994) and byMorgan and Chen(2002). In
their studies, the horizontal wavelength is set as external parameter. Here, it is determined by the singular
vector computation itself. The dimensional wavelengths of the leading 3 singular vectors are 2.50Ld, 2.00Ld
and 3.33Ld for t1 and 3.33Ld, 2.50Ld and 5.00Ld for t2. In particular, thet1-singular vectors 1 and 3 have the
same wavelength as thet2-singular vectors 2 and 1. The leadingt2-singular vectors are more confined around
mid-height (z= 0.5H) and are more tilted than thet1-singular vectors with the same horizontal wavelength.

Now, we apply the ortho-normalisation approach. For this example, subspaceL1 is chosen to be the subspace
spanned by the leading threet1-singular vectorsvk(t1),k = 1,2,3. SubspaceL2 is obtained by projecting the
subspace spanned by the leading threet2-singular vectorsvk(t2),k = 1,2,3 into L1. The matrix of projection
coefficients is given by

[
vT

j (t2)A
−1vk(t1)

]
jk

=

 0 0 0.93+0.03i
0.77−0.06i 0 0

0 0 0

 ,

where i denotes the imaginary unit. The analysis is based on complex valued singular vectors (cf.Mukougawa
and Ikeda1994, for mathematical details). Multiplication of the complex singular vector by a complex number
of modulus 1 corresponds to a shift of the wave phase. The firstt2-singular vector has a large projection on the
third t1-singular vector and the secondt2-singular vector has a large projection on the firstt1-singular vector
whereas the thirdt2-singular vector is orthogonal toL1.
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Figure 3: as Fig. 2 but for a non-dimensional optimisation time oft2 = 8; this corresponds to 48 h.

The projected and ortho-normalisedt2-singular vectors are a basis ofL2. They are plotted in Figure4. As one
would expect, the structure of the first twot2-singular vectors has been significantly altered whereas the third
t2-singular vector remains unchanged.

Next, the subspace approach is applied withL1 still given by the subspace spanned by the leading threet1-
singular vectors. The optimisation for timet2 is then restricted toL1 usingTs = E1/2M(t2)P(L1) in Equa-
tion (16). Here,M(t2) andE denote the propagator from time 0 tot2 and the total energy metric, respectively.
The singular values for thet2-subspace singular vectors are always smaller than the singular values of thet2-
singular vectors (Table1). This is a general property of the subspace approach because perturbations restricted
to a subspace cannot be more optimal than perturbations computed in the full space.

The central question of this work can be addressed now: Are thet2-subspace singular vectors spanning a
different space than the projectedt2-singular vectors? The answer isyesbecause the secondt2-subspace
singular vector has a wavelength of 2.00Ld and is therefore orthogonal to the leading three projectedt2-singular
vectors, which have different wavelength (see Figs.4 and5). However, the firstt2-subspace singular vector is
identical to the third (projected)t2-singular vector and the thirdt2-subspace singular vector is similar to the
second projected and (ortho-)normalisedt2-singular vector.

The singular vectors optimised inL1 always maximise the explained variance, see Equation (17) in Sec. 2.
As the leading threet2-subspace singular vectors span a different space than the leading three projectedt2-
singular vectors, one would expect the former to explain more forecast error variance. Total forecast error
variances explained by the spaces spanned by the leading five projected singular vectors and by the leading
five subspace singular vectors are given in Table2. The numbers confirm that the subspace singular vectors
explain indeed more forecast error variance than the projectedt2-singular vectors. The results show that the
difference between the two approaches is largest for small dimensionn = 1,2 of the spaceL2. In the limit
of increasing dimensionn, the covariance matrixAp(L2) converges towards the covariance matrixAp(L1) for
both methods and the explained forecast error variances have to become identical. Note, that the leading three
t2-singular vectors explain 22.6% of the total forecast error variance att = t2. This value is exceeded by
the variance explained byL1 + L2 for dim(L2) = 3 with the ortho-normalisation approach while the subspace
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Figure 4: as Figure 3 but for the three vectors that are obtained from thet2-singular vectors (cf. Fig. 3) by projecting
them onto the orthogonal complement of thet1-singular vectors (cf. Fig. 2) and subsequent ortho-normalisation.

Figure 5: as Figure 3 but for the leading three subspace singular vectors of the Eady model computed for optimisation
timet2 in the subspace orthogonal to the leading threet1-singular vectors (top: SV 1, middle: SV 2, bottom: SV 3). The
singular values are given in Tab.1.

Technical Memorandum No. 519 9
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Table 1: Singular values of the leading 5 singular vectors for the discretised Eady problem and optimisation timest1,t2.

singular vectorj 1 2 3 4 5
t1 = 4 6.39 6.18 6.08 5.83 5.75
t2 = 8 24.36 22.25 17.86 16.38 14.27

subspacet2 = 8 17.86 16.02 14.91 14.27 13.56

Table 2: Percentage of total forecast error variance at t= t2 explained by subspaces L2 and L1 +L2 for dim(L1) = 3 and
dim(L2) = 1, . . . ,5.

dim(L2)
method subspace 1 2 3 4 5

ortho-norm. L2 1.6 5.1 10.2 14.3 17.6
subspace L2 5.1 9.3 12.8 16.1 19.1

ortho-norm. L1 +L2 16.0 19.5 24.7 28.7 32.0
subspace L1 +L2 19.5 23.7 27.3 30.5 33.5

approach already exceeds 22.6% for dim(L2) = 2.

So far, an example with dim(L1) = 3 was considered andL1 was optimised fort1 = 4 andL2 for t2 = 8.
Now, the dimensions ofL1 andL2 are varied between 1 and 5 with dim(L1) = dim(L2). Moreover, the order
of the optimisation times is examined, i.e. singular vectors are computed fort1 = 4, t2 = 8 as well as for
t1 = 8, t2 = 4. The forecast error variances explained byL1 + L2 at t = 4 andt = 8 are given in Table3.
As predicted by the theory in Sec. 2, more forecast error variance is explained by the subspace approach
than the ortho-normalisation approach for all dimensions and both lead times. However, the forecast error
variance explained by the ortho-normalisation approach is large; the ratio of variance explained by the ortho-
normalisation approach to the variance explained by the subspace approach exceeds 0.8 in all cases.

The subspaceL1 + L2 obtained with the ortho-normalisation approach does not depend on the order of the
optimisation criteria but it does so for the subspace approach. At timet = 4, the subspace approach witht2 = 4
explains more forecast error variance than witht2 = 8 except for dim(L1+L2) = 4. At timet = 8, the subspace
approach witht2 = 8 explains slightly more variance than witht2 = 4.

Table 3: Percentage of total forecast error variance explained by subspace L1 + L2 at time t fordim(L1) = dim(L2) =
1, . . . ,5.

dim(L1 +L2)
method t1 t2 t 2 4 6 8 10

ortho-norm. 4/8 8/4 4 5.5 8.9 11.6 14.9 17.8
subspace 4 8 4 5.5 10.3 11.9 15.3 18.7
subspace 8 4 4 5.5 9.9 14.3 17.5 20.7

ortho-norm. 4/8 8/4 8 14.6 19.2 24.7 29.6 33.2
subspace 4 8 8 14.6 20.8 27.3 31.1 34.8
subspace 8 4 8 14.6 19.4 25.5 30.5 34.9
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4 Application in the ECMWF EPS

This section describes how the methods developed in the previous section can be exploited to revise the initial
perturbations targeted on tropical cyclones in the operational ECMWF Ensemble Prediction System (EPS). In
the configuration operational up to September 2004, optimisation regions targeted on tropical cyclones were
restricted to latitudes between 25◦S and 25◦N. This ensured that the associated singular vectors were almost
orthogonal to the extra-tropical singular vectors, which are optimised for the regions from 30◦ latitude to the
pole. As a consequence of this latitudinal limitation of the tropical cyclone perturbations, the EPS had the
undesirable feature that the spread of tropical cyclone tracks exhibited a sudden decrease during extra-tropical
transitions. Users may have falsely interpreted the reduction in the spread of tropical cyclone positions as an
increase in predictability.

With the methods developed in this paper, it is possible to extend the perturbations targeted on tropical cyclones
further pole-ward without duplicating structures that are already represented in the set of used extra-tropical
singular vectors. Here, we compare the perturbation structures obtained with the ortho-normalisation approach
and the subspace approach. In the notation of Sec. 2, subspaceL1 refers to the space spanned by the leading
50 extra-tropical singular vectors. SubspaceL2 is the space spanned by the leading 5 singular vectors for a
particular tropical cyclone.

Initial perturbations for both approaches have been computed daily during the period 11–24 September 2006.
In this period, the tropical cyclones Gordon, Shanshan, Helene and Yagi underwent extra-tropical transitions.
The ortho-normalisation approach and the subspace approach will be referred to as experiments O and S, re-
spectively. Apart from the ortho-normalisation approach, both experiments adopt the currently operational
configuration for the EPS initial perturbations (Leutbecher and Palmer2007): All sets of singular vectors are
computed with 48-hour optimisation time. The spectral model is triangularly truncated at wavenumber 42 and
uses 62 levels. The extra-tropical singular vectors are computed with an adiabatic version of the tangent-linear
model whereas the singular vectors targeted on tropical cyclones are computed with a diabatic tangent-linear
model, which is computationally more expensive than the adiabatic version.Puri et al.(2001) showed that the
representation of diabatic processes in the tangent-linear model is required in order to obtain initial perturba-
tions relevant for tropical cyclone motion. The initial perturbations for each of the extra-tropical regions (90◦S–
30◦S and 30◦N–90◦N) are constructed from the leading 50 singular vectors whereas the initial perturbations
for each region targeted on a tropical cyclone is based on the leading 5 singular vectors. In both experiments,
initial perturbations are computed for tropical cyclones between 40◦S and 40◦N. The algorithm determining the
optimisation region for a tropical cyclone takes into account the position of the tropical cyclone as predicted by
the operational EPS run initialised 12 hours prior to the singular vector initial time (van der Grijn et al.2004).

Now, the similarity of the different initial perturbations obtained by experiments O and S is discussed for the
tropical cyclones undergoing extra-tropical transitions. Three different subspaces are considered: subspace F
spanned by singular vectors computed in the full space (from Exp. O); subspace FP obtained by projecting the
subspace F into the orthogonal complement of the extra-tropical Northern Hemisphere singular vectors (from
Exp. O); subspace S spanned by the singular vectors computed in the orthogonal complement of the extra-
tropical SVs (from Exp. S). Consistent with the operational EPS, results for the spaces spanned by the leading
five singular vectors are discussed. Structural differences between the three spaces are quantified using the
similarity index introduced byBuizza(1994). It measures the degree of parallelism of subspaces. The index
varies between 0 (orthogonal subspaces) and 1 (identical subspaces). It is computed as the average square norm
of the projection of the ortho-normal basis vectors of one subspace on the other subspace. Here, the index is
computed using the total energy inner product.

In the period 11-24 September, there are 26 sets of singular vectors targeted on tropical cyclones where the
optimisation regions significantly overlaps with the extra-tropical optimisation region. For these cases, the
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Table 4: Similarity indices between singular vector (SV) subspaces F, FP, and S: (F) SVs computed in full space, (FP)
space spanned by full space SVs projected into the orthogonal complement of the extra-tropical SVs, (S) SVs computed in
subspace. The latitude of the tropical cyclone position at optimisation time is given in column Lat∗.

tropical cyclone Date Lat∗(◦N) FP-S F-S FP-F
Gordon 11 Sep 25 0.80 0.75 0.85
Gordon 12 Sep 29 0.98 0.89 0.91
Gordon 13 Sep 31 1.00 0.94 0.94
Gordon 14 Sep 31 0.81 0.69 0.82
Gordon 15 Sep 33 0.94 0.76 0.80
Gordon 16 Sep 37 0.74 0.39 0.45
Gordon 17 Sep 38 0.75 0.31 0.39
Gordon 18 Sep 38 0.87 0.46 0.52
Gordon 19 Sep – 0.80 0.50 0.58
Gordon 20 Sep – 0.85 0.65 0.72
Shanshan 14 Sep 27 0.99 0.86 0.87
Shanshan 15 Sep 33 0.97 0.74 0.76
Shanshan 16 Sep 39 0.92 0.50 0.54
Shanshan 17 Sep 43 0.80 0.33 0.42
Shanshan 18 Sep – 0.96 0.37 0.38
Helene 19 Sep 29 0.99 0.95 0.95
Helene 20 Sep 33 0.95 0.60 0.62
Helene 21 Sep 37 0.80 0.42 0.47
Helene 22 Sep 40 0.84 0.53 0.61
Helene 23 Sep – 0.94 0.45 0.48
Helene 24 Sep – 0.93 0.46 0.49
Yagi 20 Sep 26 0.96 0.88 0.91
Yagi 21 Sep 31 0.98 0.78 0.79
Yagi 22 Sep 36 0.74 0.42 0.55
Yagi 23 Sep – 0.93 0.44 0.46
Yagi 24 Sep – 0.77 0.32 0.39

similarity indices between the three spaces F, FP and S are listed in Table4. In 9 of 26 cases, the similarity
index between space FP and space F is lower than 0.5. This implies that the singular vectors computed in the full
space have a significant projection on the extra-tropical singular vectors. In consequence, the subspace singular
vectors differ significantly from the singular vectors computed in the full space for these 9 cases. The similarity
index between spaces F and S drops below 0.5 in 11 cases. These cases include all cases with similarity index
FP-F lower than 0.5. The projection of space F into the orthogonal complement of the extra-tropical singular
vectors increases the similarity to the subspace singular vectors considerably. The similarity index between
spaces FP and S is less than 0.8 in only 4 cases and it is larger than 0.7 in all 26 cases. In conclusion, the
ortho-normalisation approach and the subspace approach appear to yield very similar spaces in most cases.

5 Discussion

The focus has been on two optimisation criteria but both approaches can be applied to more than two optimi-
sation criteria. In the ortho-normalisation approach, thek-th subspace is obtained by projecting the singular
vectors of thek-th optimisation criterion onL1 + . . .+Lk−1. In the subspace approach, thek-th singular vector
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computation is restricted toL1 + . . .+Lk−1.

Whether there is a need to enforce orthogonality, will depend on the particular choice of the optimisation criteria
and also on the dimension of the subspaces. An interesting limiting case occurs if one considers two identical
optimisation criteria. LetL1 be the subspace spanned by the leading`1 singular vectors. Then, the first`1
vectors projected onL1 will be identical to zero and explain no forecast error variance at all. In contrast, the
j-th subspace eigenpair (singular value, singular vector) computed inL1 is identical to the(`1+ j)-th eigenpair
computed in the full state space (This statement assumes that the singular values are all different. If they are not,
only the spaces for a given singular value are unique.). This property has been exploited to check the correctness
of the implementation of subspace singular vectors in the ECMWF Integrated Forecast System (IFS) and in the
Eady model example. It could also be employed to restart a singular vector computation, i.e. to append singular
vectors to an existing set. Another interesting limiting case occurs if one considers final time metrics involving
projections on disjoint parts of the state space, e.g. local projection operators on geographically separated
regions. Then, the leading singular vectors computed for different criteria are expected to be almost mutually
orthogonal and there is no need to enforce orthogonality. However, orthogonality becomes an issue if one
considers overlapping optimisation regions.

The ortho-normalisation approach and the subspace approach have both been applied to the computation of ini-
tial perturbations of the ECMWF EPS. The two methods have been exploited in order to extend pole-wards the
perturbations targeted on tropical cyclones. Results of daily computations in the period 11-24 September 2006,
which covers the extra-tropical transition of tropical cyclones Gordon, Shanshan, Helene and Yagi, indicate that
both approaches tend to yield quite similar subspaces. Note, that the pole-ward extension of perturbations tar-
geted on tropical cyclones has been implemented in the operational EPS in September 2004 using the subspace
approach. The decision was based on the fact that both approaches incur about the same computational cost
but the subspace approach is, in principle, superior to the ortho-normalisation approach. The results presented
here suggest that this superiority may be small in practice, though, and the sample size required to demonstrate
the superiority of the subspace approach is likely to be computationally prohibitive. The pole-ward extension
of the perturbations targeted on tropical cyclones has resulted in a more consistent spread of tropical cyclone
tracks during the extra-tropical transitions.

For regional applications, ensemble prediction systems using singular vectors targeted on the region of interest,
e.g. part of Europe, have been considered (Hersbach et al.2000; Frogner and Iversen2001). At forecast
ranges beyond the singular vector optimisation time, such targeted ensemble prediction systems might be spread
deficient because the perturbations have propagated through the region of interest and initial conditions further
upstream were not perturbed. Using one of the approaches discussed here, the initial perturbations could be
augmented by perturbations based on a second set of singular vectors that are optimised for a much larger
region, say the Northern Hemisphere extra-tropics, which contains the region of interest. It is anticipated that
this could extend the forecast range at which such targeted ensemble prediction systems would be useful.

Current operational ensemble prediction systems in which initial uncertainties are represented by singular vec-
tors are using one optimisation time only. This raises the question which value of the optimisation time yields
the best ensemble forecasts. Short optimisation times will guarantee that tangent-linear dynamics constitutes a
more accurate approximation of finite-amplitude perturbation dynamics. The appropriate scale for the ampli-
tude of the initial perturbations is set by the amplitude of typical analysis errors. Estimates of the time scale up
to which the tangent-linear approximation is useful for synoptic-scale atmospheric dynamics range from about
24 h to about 72 h (Gilmour et al.2001; Reynolds and Rosmond2003). However, short optimisation times
may yield perturbations that are suboptimal for the longer forecast ranges. Thus, a trade-off may be required
between the relevance of the perturbations for the longer forecast ranges and the accuracy of the tangent-linear
approximation. Furthermore, one would expect that there is no optimisation time that is optimal for all forecast
ranges. Therefore, an ensemble using perturbations based on multiple sets of singular vectors, each computed
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for a different optimisation time, may be superior to an ensemble based on perturbations computed for a single
optimisation time. The example of singular vectors computed for two different optimisation times in the Eady
model illustrated that some of the singular vectors for optimisation time 1 have a large projection on singular
vectors for optimisation time 2. Therefore, it is expected that approaches which accommodate multiple opti-
misation times will require a method to enforce the orthogonality of the different sets of singular vectors. The
example has also demonstrated that the subspace singular vector approach explains more forecast error vari-
ance than the approach of orthogonalising independently computed singular vectors. However, the difference
of the explained variances is rather small. In all examples with the Eady model, the variance explained by the
ortho-normalisation approach exceeds 80% of the variance explained by the subspace approach.

The overall computational cost of the two approaches to construct mutually orthogonal subspaces for different
optimisation criteria is approximately equal because the main cost is incurred by the tangent-linear and ad-
joint integrations in the singular vector computations and not by the projections. There may be a difference
though for time-critical applications like numerical weather prediction if the tangent-linear and adjoint code is
not scaling well on parallel computing architectures. The computation of subspace singular vectors implies a
sequential approach: The computation of subspace singular vectors for the second optimisation criterion re-
quires the singular vectors of the first optimisation to define the projection operator. To speed up the sequential
singular vector computations, the number of processors used for each computation can be increased. In the
limit of code that scales perfectly on a parallel architecture, the independent computation and the sequential
computation can be run within the same wall-clock time using the same overall resources. It is worth noting
here that the operational constraints on the resources available for singular vector computations in ensemble
prediction systems can be relaxed significantly by using a trajectory started from a short-range forecast for
the tangent-linear and adjoint integrations rather than a trajectory started from an analysis.Leutbecher(2005)
showed for the ECMWF EPS that this change yields almost identical singular vectors and does not appear to
affect the skill of the probabilistic forecasts.

When multiple optimisation criteria are considered, there is no unique way how to define an optimal subspace
for all of them. Here, a sequential approach has been developed. For each criterion a separate optimisation is
performed in order to obtain a subspace of a given dimension. The optimisation is restricted to the orthogonal
complement of the sum of the already obtained subspaces. The resulting sum of subspaces depends on the
order of the optimisation criteria. For one particular criterion one order may explain more forecast error vari-
ance than the other orders. However, for another optimisation criterion, another order may be best. This was
illustrated by the Eady model example. The non-commutativity of the optimisation criteria is avoided by an
alternative method of accounting for multiple optimisation criteria. It optimises a weighted sum of the forecast
error variances associated with the individual criteria (Mark Buehner, personal communication). However, the
resulting subspace will depend on the choice of weights. Without carefully choosing the weights, the resulting
subspace may be dominated by structures that optimise only one of the criteria.

6 Conclusions

Here, the representation of initial uncertainty using multiple sets of singular vectors optimised for different
criteria is discussed. Methods which represent initial uncertainties consistent with an analysis error covariance
estimateA require that subspaces associated with different sets of singular vectors are orthogonal with respect
to the inner product based onA−1.

This paper introduces the concept of singular vectors optimised in a subspace which is orthogonal to a sub-
space of an independent set of singular vectors. It is proven that this subspace method is optimal in the sense
of augmenting an arbitrary given subspace in order to maximise the explained forecast error variance in the
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augmented space.

The subspace approach has been compared with a simple ortho-normalisation approach which can also be
employed in order to generate initial perturbations from multiple sets of singular vectors that are not already
mutually orthogonal.

The subspace approach and the ortho-normalisation approach have been applied to an idealised example based
on the Eady model and to the ECMWF EPS. In both applications, the simple ortho-normalisation approach
provides perturbations which are quite similar to the perturbations obtained with the subspace approach.
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A Appendix: Proof of the subspace singular vector properties

In order to shorten the notation,T2 is replaced byT in the following. First, statement (a) in Sec. 2.4 is
proved. Letw be a singular vector ofTs with singular values > 0. Therefore,w solves the eigenproblem
TT

s Tsw = s2A−1w. Now, letz∈ L1. This implies

zTA−1w = s−2zTTT
s Tsw = s−2(

P(L1)z
)T TTTsw = 0, (21)

becauseP(L1)z = 0. Equation (21) impliesw ∈ L1 which proves (a).

Now we prove statement (b) in Sec. 2.4. The proof relies on the maximum variance property of operatorTs. In
order to apply this property we first need to prove the following two equivalences (23) and (24).

For all subspacesL ⊂ L1, P(L) = P(L1)P(L). This implies

TA p(L)TT = TsAp(L)TT
s , ∀L ⊂ L1. (22)

Therefore
max

L⊂L1, dim(L)=k
tr

(
TA p(L)TT)

= max
L⊂L1, dim(L)=k

tr
(
TsAp(L)TT

s

)
. (23)

Next, it is shown that the maximum in Equation (23) remains unaltered if it is computed over allk-dimensional
subspaces in the statespaceL , i.e.

max
L⊂L , dim(L)=k

tr
(
TsAp(L)TT

s

)
= max

L⊂L1, dim(L)=k
tr

(
TsAp(L)TT

s

)
. (24)

It is obvious that L.H.S.≥ R.H.S. in Equation (24) asL1 ⊂ L . To show L.H.S.≤ R.H.S., we consider a
subspacẽL which is not inL1. We can writeL̃ = L′ + L′′ with L′ ⊂ L1 andL′′ ⊂ L1 and dim(L′) < k. As
P(L1)P(L′′) = 0,

tr
(
TsAp(L̃)TT

s

)
= tr

(
TsAp(L′)TT

s

)
≤ max

L⊂L1, dim(L)=k
tr

(
TsAp(L)TT

s

)
(25)
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which proves L.H.S.≤ R.H.S. in Equation (24).

Now, we make use of the maximum variance property of the singular vectors of operatorTs, Equation (13).
This yields,

max
L⊂L , dim(L)=k

tr
(
TsAp(L)TT

s

)
= tr

(
TsAp(L∗[Ts,k])TT

s

)
. (26)

But asL∗[Ts,k] ⊂ L1, operatorTs can be replaced byT on the right hand side of Equation (26). Combining
Equations (23), (24) and (26) proves Equation (17).
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