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On some consequences of the canonical transformation in theHamiltonian theory of water waves

Abstract

We discuss some consequences of the canonical transformation in the Hamiltonian theory of water waves
(Zakharov, 1968). Using Krasitskii’s canonical transformation we derive general expressions for the second
order wavenumber and frequency spectrum, and the skewness and the kurtosis of the sea surface. For
deep-water waves, the second-order wavenumber spectrum and the skewness play an important role in
understanding the so-called sea state bias as seen by a RadarAltimeter. According to the present approach,
but in contrast with results obtained by Barrick and Weber (1977), in deep-water second-order effects on the
wavenumber spectrum are relatively small. However, in shallow water where waves are more nonlinear, the
second-order effects are relatively large and help to explain the formation of the observed second harmonics
and infra-gravity waves in the coastal zone. Second-order effects on the directional frequency spectrum are
as a rule more important, in particular it is shown how the Stokes frequency correction affects the shape of
the frequency spectrum, and it is also discussed why in the context of second-order theory the mean square
slope cannot be estimated from time series.

The kurtosis of the wave field is a relevant parameter in the detection of extreme sea states. Here, it is argued
that, in contrast perhaps to one’s intuition, the kurtosis decreases while the waves approach the coast. This
is related to the generation of the wave-induced current andthe associated change in mean sea level.
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On some consequences of the canonical transformation in theHamiltonian theory of water waves

1 Introduction

Surface gravity waves are usually described in the context of the potential flow of an ideal fluid. As discovered
by Zakharov (1968), the resulting nonlinear evolution equations can be obtained from a Hamiltonian, which is
the total energyE of the fluid, while the appropriate canonical variables are the surface elevationη(x, t) and
the valueψ of the potentialφ at the surface,ψ(x, t) = φ(x,z= η , t)).

For small wave steepness the potential inside the fluid may beexpressed in an approximate manner in terms
of the canonical variables and as a result the Hamiltonian becomes a series expansion in terms of the action
variableA(k, t) (which is related to the Fourier transform of the canonical variables). The second order term
corresponds then to linear theory, while the third and fourth order terms represent effects of three and four wave
interactions. Excluding effects of capillarity, it is well-known that the dispersion relation for surface gravity
waves does not allow resonant three wave interactions and asa consequence there exist a non-singular canonical
transformation of the type

A = A(a,a∗)

that allows to eliminate the third-order terms from the Hamiltonian. In terms of the new action variablea(k, t)
the Hamiltonian now only has quadratic and quartic terms andthe Hamilton equation attains a relatively simple
form and is known as the Zakharov equation.

The properties of the Zakharov equation have been studied ingreat detail by, for example, Crawfordet al.
(1981), Yuen and Lake (1982), and Krasitskii and Kalmykov (1993). Thus the nonlinear dispersion relation, first
obtained by Stokes (1947) follows from the Zakharov equation and also the instability of a weakly nonlinear,
uniform wave train (the so-called Benjamin-Feir Instability); the results on growth rates, for example, are in
good agreement with the results by Longuet-Higgins (1978),who did a numerical study of the instabilities of
deep-water waves in the context of the exact equations.

It is noted that once the solution to the Zakharov equation isknown fora, one still needs to apply the canonical
transformation to recover the actual action variableA, and hence the surface elevation. Although the difference
between the two action variables is only of the order of the wave steepness, explaining why relatively less atten-
tion has been devoted to the consequences of the canonical transformation, there are a number of applications
where one is interested in the effects of bound waves. Examples are the high frequency (HF) radar (e.g. Wyatt,
2000) which basically measures aspects of the second-orderspectrum, and the estimation of the sea state bias
as seen by an Altimeter (Elfouhailyet al. (1999).

In this paper I would like to study some properties and consequences of the canonical transformation in the
context of the statistical theory of weakly nonlinear oceanwaves. Using the Zakharov equation it may be
argued that to lowest order the action densitya(k, t) obeys Gaussian statistics. Then, using the canonical
transformation, effects of nonlinearity on the moments of the surface elevation may be evaluated.

As a first example, I consider the second moment〈η2〉 and the associated wavenumber variance spectrumF(k)
and directional frequency spectrumF(Ω,θ). The second-order corrections to the wave spectrum (calledthe
second-order spectrum for short) are obtained by deriving ageneral expression for the wavenumber-frequency
spectrum. The wave number spectrum and the frequency spectrum then follow from the marginal distribution
laws. Some of the properties of these second-order spectra are discussed in some detail, both for deep-water
and for shallow water.

Regarding the wavenumber spectrum it is shown that the corrections given by the second-order spectrum are
small compared to the first-order spectrum. This contrasts with Barrick and Weber (1977) whose work indicates
that for large wavenumbers the perturbation expansion diverges. However, following Creameret al. (1989) it
is argued here that Barrick and Weber (1977) overlooked an important, quasi-linear term which removes the
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divergent behaviour of the second-order spectrum. Creameret al. (1989) considered improved representations
of ocean surface waves using a Lie transformation and applied their work to the determination of the second-
order spectrum in one-dimension. Our results on the second-order spectrum, although obtained via the different
route of Krasitskii’s canonical transformation, are in complete agreement with Creameret al. (1989), but
our result is slightly more general as it holds for two-dimensional propagation and also in waters of finite
depth. It is worthwhile to mention that Krasitskii (1994) and Zakharov (1992) considered the slightly simpler
problem of the higher order corrections to the action density spectrum. They found that the second-order action
density spectrum contains two groups of terms, namely termswhich are fully nonlinear and they describe the
generation of second harmonics and infra-gravity waves, and terms which are termed quasi-linear because they
are proportional to the first-order action spectrum. The quasi-linear terms are an example of a self-interaction
and give a nonlinear correction to the action or energy of thefree waves, whereas the fully nonlinear terms
describes the amount of energy of the bound waves which do notsatisfy the linear dispersion relation.

While the second-order wavenumber spectrum consists of twocontributions, namely one contribution giving
the effects of bound waves and one quasi-linear term, the second-order frequency spectrum has an additional
term which, not surprisingly, is related to the Stokes frequency correction. In deep water the Stokes frequency
correction has only a small impact on the spectral shape nearthe peak. However, second-order corrections do
have an impact on the high-frequency tail of the spectrum. Taking as first-order spectrum a Phillips’ spectrum
which has anΩ−5 tail, it is found that from twice the peak frequency and onwards the sum of the first and
second-order spectrum (called the total spectrum from now on) has approximately anΩ−4 shape. Hence,
second-order corrections to the frequency spectrum are important and they mainly stem from the combined
effects of the generation of bound waves and the quasi-linear self-interaction.

In shallow water, gravity waves are typically more nonlinear as the ratio of the amplitude of the second harmonic
to the first harmonic rapidly increases with decreasing dimensionless depth. Therefore, compared to the first-
order spectrum the second-order spectrum may give rise to considerable contributions, in particular in the
frequency domain around twice the peak frequency and in the low-frequency range where forced infra-gravity
waves are generated. In addition, for a dimensionless depthof O(1), the Stokes frequency correction is found
to give a considerable down-shift of the peak of the frequency spectrum.

As a second example I consider the determination of the skewness and the kurtosis of the sea surface. The
skewness parameter is important when one is interested in the determination of the sea state bias as experienced
by a Radar Altimeter on board of a satellite (see e.g. Srokosz, 1986), while the kurtosis is an important
parameter to assess whether there is an increased probability of an extreme sea state, e.g. the likely occurrence
of freak waves (Janssen, 2003). In particular, the dependence of these statistical parameters on spectral shape
and dimensionless depth is studied. Regarding the depth-dependence, the important role of the wave-induced
mean sea level is pointed out. In the presence of wave groups finite amplitude ocean waves give rise to a set-
down, and as a consequence the skewness and kurtosis parameter are reduced to a considerable extent. This
has important consequences for the occurrence of extreme events in shallow water.

The programme of this paper is as follows. After giving some background on the reason why this study
was started,§2 gives a brief overview of the Hamiltonian theory of surfacegravity waves while in Appendix
A1 a detailed derivation of the canonical transformation ispresented. In§3 the general expression of the
wavenumber-frequency spectrum is obtained in terms of the coefficients of the canonical transformation. The
wavenumber and the directional frequency spectrum then follow immediately from the marginal distribution
laws.§3 shows that the total wavenumber spectrum agrees with the deep-water result of Creameret al. (1989),
highlighting the important role of the quasi-linear term. Also, some interesting properties of the second-order
frequency spectrum for both deep water and water of finite depth are discussed. In particular, the deep-water
frequency spectra have a fatter tail due to the bound waves which gives rise to a considerable overestimate
of the mean square slope. Furthermore, in shallow water the Stokes frequency correction results in a sizeble
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down-shift of the peak of the spectrum. In§4 skewness and kurtosis are determined for general spectra and
the dependence of the statistical parameters on depth and spectral shape is briefly studied. Conclusions are
presented in§5.

As the development presented here is fairly elaborate, Appendix A.3 gives all the relevant results starting from
the canonical transformation of a single wave train and these single mode results have been used as a check on
the general results of the main text. A preliminary account of this work may be found in Janssen (2004).

1.1 Background

This investigation started when it was realized that according to the work of Barrick and Weber (1977) the
weakly nonlinear pertubation expansion for surface gravity waves is not convergent. For small wave steepness
the nonlinear evolution equations have been solved by meansof a perturbation expansion by several authors
(Tick, 1959; Longuet-Higgins, 1963; Barrick and Weber, 1977), which allows to write down an expression
for the second-order correction to the wavenumber frequency spectrumF(k,ω). By integratingF(k,ω) over
angular frequency, the following elegant result for the thetotal wavenumber spectrumF(k) is found,

F(k) = E(k)+
1
2

k2
∫ ∞

k/2
dk′ E(k′)E(|k−k′|) (1)

whereE(k) is the first-order spectrum.

It is instructive to determineF(k) for a simple input spectrumE(k). For the Phillips’ spectrum

E(k) =
1
2

αpk−3, k≥ k0, (2)

with k0 the peak wavenumber andαp the Phillips’ parameter, the result is
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for k > 2k0, while for k < 2k0 one has

F(k) = E(k)+
1
8

α2
p

[

6
k3 log

(
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+1

)

+
k2
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0
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}]

. (4)

A plot of this special case is given in Fig.1 and the present result is labelledB&W. It is striking that for large
k the second-order spectrum dominates the first-order spectrum. This is highly undesirable because it signals
that the perturbation approach is not convergent. As a consequence, parameters such as the mean square slope
defined by

mss=
∫

dk k2F (5)

are to a large extent determined by the second-order spectrum.

It is straightforward to obtain the behaviour ofF(k) for largek by taking the appropriate limit of Eq. (4),

lim
k→∞

F(k) =
1
8

α2
p

kk2
0

(6)

which shows thatF(k) behaves like 1/k hence parameters such as the mean square slope really diverge.
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The divergence of the expansion in small wave slope has been made plausible in the past by several researchers.
The expansion is a small amplitude development around zero mean surface. While this may be appropriate for
the large scale waves, small scale waves are riding on the long waves. Hence for these small waves the domain
is not bounded by a zero mean surface but has a large scale variation determined by the long waves. This will
affect the solution of the potential equation for the short waves and hence will affect the spectrum of the short
waves. Others would argue that the divergence of the expansion for high wave numbers suggests that these
short waves become very nonlinear hence very steep resulting in micro-scale wave breaking, which would limit
energy levels at the high wave numbers.

However, it turns out that the Barrick and Weber (1977) result is most likely flawed. This was pointed out for
the first time by Creameret al. (1989) who considered improved representations of ocean surface waves using
Lie- and canonical transformations and applied their work to the determination of the second-order spectrum.
Surprisingly, they found in stead of Eq. (1)

F(k) = E(k)+
1
2

k2
∫ ∞

k/2
dk′ E(k′)E(|k−k′|)−k2E(k)

∫ ∞

0
dk′ E(k′). (7)

The additional, quasi-linear term was explained by noting that Barrick and Weber (1977) did not include con-
tributions from the product of the first and third order surface elevationη , since their second-order spectrum
is entirely determined by the second-order surface elevation. It is immediately evident that the additional term
cancels the singular behaviour of the first term, as for a Phillips’ spectrum the extra term equals−1

8α2
p/kk2

0. It
is therefore important to include the extra quasi-linear term. In fact, for large wavenumbers one finds from Eq.
(7) for the Phillips’ spectrum

F(k) = E(k)+
α2

p

8k3

[

6log(
k2

k2
0

−1)−7

]

, (8)

hence, the second-order spectrum behaves in a similar fashion as the first-order Phillips’ spectrum. This is also
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Figure 1: Second-order effects on the surface wave height spectrum, illustrating the importance of the quasi-linear term.
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shown in Fig. 1 where the quasi-linear term shown in (7) gives a large and important correction to the high
wavenumber tail of the second-order spectrum.

The Creameret al. result has important consequences for the theory of ocean waves, and I therefore thought it
worthwhile to follow a somewhat different path by choosing as starting point Zakharov’s treatment of surface
waves. A key role in this approach is the canonical transformation which separates resonant from non-resonant
contributions to the evolution of surface waves. The canonical transformation represents the effects of bound
waves, and once this transformation is known it is relatively straightforward to obtain an expression for the
second-order spectrum. This will be done for the case of two-dimensional propagation for arbitrary spectra.
Applying the result for unidirectional waves in one dimension the Creameret al. result will be recovered.

2 Hamiltonian formulation

Modern ocean wave theories start from the Hamiltonian formulation of the nonlinear evolution equations of the
potential flow of an ideal fluid. Zakharov (1968) discovered that the Hamiltonian is given by the total energy
E of the fluid, while the appropriate canonical variables are the surface elevationη(x, t) and the valueψ of the
potentialφ at the surface,ψ(x, t) = φ(x,z= η , t)).

Here, the total energy is given by

E =
1
2

∫ ∫ η

−D0

dzdx
(

(∇φ)2 +(
∂φ
∂z

)2
)

+
g
2

∫

dx η2.

The boundary conditions at the surface, namely the kinematic boundary condition and Bernoulli’s equation, are
then equivalent to Hamilton’s equations,

∂η
∂ t

=
δE
δψ

,
∂ψ
∂ t

= −δE
δη

, (9)

whereδE/δψ is the functional derivative ofE with respect toψ , etc. Inside the fluid the potentialφ satisfies
Laplace’s equation,

∇2φ +
∂ 2φ
∂z2 = 0 (10)

with boundary conditions
φ(x,z= η) = ψ (11)

and
∂φ(x,z)

∂z
= 0, z= −D0, (12)

with D0 the water depth. If one is able to solve the potential problem, thenφ may be expressed in term of
the canonical variablesη and ψ . Then the energyE may be evaluated in terms of the canonical variables,
and the evolution in time ofη and ψ follows at once from Hamilton’s equations (Eq.(9)). This was done
by Zakharov (1968), who obtained the deterministic evolution equations for deep water waves by solving the
potential problem (10-12) in an iterative fashion for small steepnessε . In addition, the Fourier transforms ofη
andψ were introduced, for example

η =

∫ ∞

−∞
dk η̂(k)eik.x (13)

whereη̂ and similarlyψ̂ are the Fourier transforms ofη andψ . Here,k is the wavenumber vector, andk its
absolute value.
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In order to proceed, introduce

T0 = tanhkD0

and the linear dispersion relation for surface gravity waves

ω2 = gkT0. (14)

In waters of arbitrary depth we have the following relation between the Fourier transform ofη andψ and the
action density variableA(k, t)

η̂ =

√

ω
2g

(A(k)+A∗(−k)) , ψ̂ = −i

√

g
2ω

(A(k)−A∗(−k)) . (15)

In terms of the action variable the energy of the fluid becomesto fourth order in amplitude

E =

∫

dk1ω1A1A∗
1 +

∫

dk1,2,3δ1−2−3V
(−)
1,2,3 [A∗

1A2A3 +c.c.]

+ 1
3

∫

dk1,2,3δ1+2+3V
(+)
1,2,3 [A1A2A3+c.c.]

+

∫

dk1,2,3,4δ1−2−3−4W
(1)
1,2,3,4 [A∗

1A2A3A4+c.c.] (16)

+ 1
2

∫

dk1,2,3,4δ1+2−3−4W
(2)
1,2,3,4A∗

1A∗
2A3A4

+ 1
4

∫

dk1,2,3,4δ1+2+3+4W
(4)
1,2,3,4 [A∗

1A∗
2A∗

3A∗
4+c.c]

Here,V() andW() are complicated expressions ofω andk which are given by Krasitskii (1994). For conve-
nience all relevant interaction coefficients are also recorded in the Appendix.

The evolution equation forA now follows from Hamilton’s equation∂A/∂ t = −iδE/δA∗, and evaluation of
the functional derivative of the full expression forE with respect toA∗ gives,

∂
∂ t

A1+ iω1A1 = −i
∫

dk2,3

{

V(−)
1,2,3A2A3δ1−2−3 +2V(−)

3,2,1A∗
2A3δ1+2−3

+V(+)
1,2,3A∗

2A∗
3δ1+2+3

}

− i
∫

dk2,3,4

{

W(1)
1,2,3,4A2A3A4δ1−2−3−4

+W(2)
1,2,3,4A∗

2A3A4δ1+2−3−4+3W(1)
4,3,2,1A∗

2A∗
3A4δ1+2+3−4

+W(4)
1,2,3,4A∗

2A∗
3A∗

4δ1+2+3+4

}

. (17)

Eq. (17) is the basic evolution equation of weakly nonlinear gravity waves and it includes the relevant amplitude
effects up to third order.

A great simplification of the expression for the energy is achieved by introducing a canonical transformation
A = A(a,a∗) that eliminates the contribution of the non-resonant second and third order terms as much as
possible. The first few terms are given by

A1 = a1 +
∫

dk2,3

{

A(1)
1,2,3a2a3δ1−2−3+A(2)

1,2,3a∗2a3δ1+2−3

+A(3)
1,2,3a∗2a∗3δ1+2+3

}

+
∫

dk2,3,4

{

B(1)
1,2,3,4a2a3a4δ1−2−3−4 (18)

+B(2)
1,2,3,4a∗2a3a4δ1+2−3−4+B(3)

1,2,3,4a∗2a∗3a4δ1+2+3−4

+B(4)
1,2,3,4a∗2a∗3a∗4δ1+2+3+4

}

. . . .
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The unknownsA() andB() are obtained by systematically removing the non-resonant third- and fourth-order
contributions to the wave energy, and insisting that the form of the energy remains symmetric. These expres-
sions are quite involved and have been given by Krasitskii (1990, 1994) for example. The derivation of these
coefficients is given in the Appendix and here, we only give the transfer coefficient for the quadratic terms
explicitely. They read

A(1)
1,2,3 = −

V(−)
1,2,3

ω1−ω2−ω3
, A(2)

1,2,3 = −2
V(−)

3,2,1

ω1 + ω2−ω3
, A(3)

1,2,3 = −
V(+)

1,2,3

ω1 + ω2 + ω3

and they show that in the absence of resonant three wave interactions the transformationA = A(a,a∗) is indeed
nonsingular.

Elimination of the variableA in favour of the new action variablea results in a great simplification of the wave
energyE (see (16). It becomes

E =
∫

dk1ω1a∗1a1 +
1
2

∫

dk1,2,3,4T1,2,3,4a∗1a∗2a3a4δ1+2−3−4,

where the interaction coefficientT1,2,3,4 is given by Krasitskii (1990, 1994) and in Appendix A.1. The interac-
tion coefficient enjoys a number of symmetry conditions, of which the most important one isT1,2,3,4 = T3,4,1,2,
because this condition implies thatE is conserved. In terms of the new action variablea, Hamilton’s equation
becomes∂a/∂ t = −iδE/δa∗, or,

∂a1

∂ t
+ iω1a1 = −i

∫

dk2,3,4T1,2,3,4a∗2a3a4δ1+2−3−4, (19)

which is known as the Zakharov Equation. Clearly, by removing the non-resonant terms, a considerable sim-
plification of the form of the evolution equation describingfour-wave processes has been achieved. As a con-
sequence of the canonical transformation the interaction coefficientT now represents two types of four-wave
processes. The first type is called the direct interaction and involves the interaction of four free waves (that
obey the linear dispersion relation) and in the interactioncoefficient this process has the weightW(2)

1,2,3,4. The
second type is called a virtual state interaction because two free waves generate a virtual state consisting of
bound waves which then decays into a different set of free waves. In the interaction coefficient this process
is represented by products of the second-order interactioncoefficientsV±

1,2,3. For narrow band waves in deep
water these two processes can be shown to have equal weight.

The Zakharov equation has been used in the past as a starting point for the stability analysis of ocean waves.
In addition, it is the appropriate starting point to obtain the Hasselmann equation (see e.g. Janssen, 2004)
which describes the evolution of the action density spectrum of an ensemble of surface gravity waves owing
to (quasi-) resonant four-wave interactions. The Hasselmann equation forms the corner stone of present day
wave forecasting systems. However, strictly speaking one still needs to apply the canonical transformation (18)
in order to obtain the surface elevation and the associated wave variance spectrum. This is the main subject
of the present paper. Therefore, the evolution of the free-wave action variable follows from the Zakharov
equation and by applying the canonical transformation (18) the nonlinear corrections to the surface elevation
and the wave variance spectrum may be obtained at every instant. In other words a diagnostic relation will be
obtained which immediately will give the changes in the surface elevation spectrum due to second harmonics,
infra-gravity waves and in case of the frequency spectrum, due to the Stokes frequency correction. Noting that
the integral over the surface elevation spectrum measures the potential energy of the system, it can be shown
analytically that for deep-water waves the spectrum is changed in such a way that total wave variance (hence
potential energy) is conserved. By excluding the contributions to the wave spectrum at zero wavenumber we
can numerically show that also in shallow water the total wave variance is conserved by the diagnostic relation.
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It is expected that the conservation of wave variance by the canonical transformation is related to the property
of this transformation to ensure that the Zakharov equationis Hamiltonian. However, such a direct connection
has not been established yet, but deserves further work.

3 Second-order spectrum

The main purpose of this section is to derive a general expression for the wavenumber-angular frequency
spectrum in terms of the interaction coefficientsA(i)(i = 1,3) andB(i)(i = 1,4) that appear in the canonical
transformation and the nonlinear interaction coefficientT. Then, from the so-called marginal distribution laws
the wavenumber and frequency spectrum are obtained. The main result is that for given free-wave spectrum,
which follows from the solution of the energy balance equation, the canonical transformation provides us with
a mapping that immediately gives the appropriate nonlinearlow-frequency/wavenumber part of the spectrum
and the contributions by second-harmonics. This is illustrated by some examples from surface gravity waves
in deep water and in water of intermediate depth(kD0 ≃ 1). Compared to the Barrick and Weber (1977)
result two new features are discovered. In agreement with Creameret al. (1989) a quasi-linear term is found
which removes the high-wavenumber catastrophe. In addition, for frequency spectra it is found that the Stokes
nonlinear frequency correction contributes to the second-order spectrum.

3.1 The wavenumber-frequency spectrum

The purpose of this section is to derive a general expressionfor wavenumber-frequency spectrum correct to
second order. In order to do so we begin by considering the two-point correlation function

ρ(ξ ,τ) = 〈η(x+ ξ , t + τ)η(x,τ)〉,

and the wavenumber-frequency spectrumF(k,Ω) then follows immediately by Fourier transformation in space
and time ofρ , i.e.,

F(k,Ω) =
1

8π3

∫

dξ dτ ρ(ξ ,τ)ei(k ·ξ−Ωτ). (20)

Here, k and angular frequencyΩ cover the whole real domain. Note that from the reality ofη and the
homogeneity of the wave field it follows that the wavenumber-frequency spectrum enjoys the properties:
F(k,Ω) = F∗(k,Ω) = F(−k,−Ω).

Once the wavenumber-frequency spectrum is known the wavenumber spectrumF(k) and the frequency spec-
trum F(Ω) follow from the marginal distribution laws:

F(k) =

∫

dΩ F(k,Ω); F(Ω) =

∫

dk F(k,Ω). (21)

These marginal distribution laws follow in a straightforward fashion from the definition of the wavenumber-
frequency spectrum. For example, the wavenumber spectrum can be obtained by integrating Eq. (20) over
angular frequency and realizing that the resulting integral over Ω is aδ -function inτ-space, i.e.

∫

dΩ F(k,Ω) =
1

8π3

∫

dξ dτ ρ(ξ ,τ)
∫

dΩ ei(k ·ξ−Ωτ) =
1

4π2

∫

dξ ρ(ξ ,0) eik ·ξ .
= F(k)

and the last equality follows because the wavenumber spectrum is just the Fourier transform of the spatial
correlation function. In a similar fashion the relation forthe frequency spectrum may be established.
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Evaluation of the spatial aspects of the two-point correlation function is fairly straightforward since in the
expression of the surface elevation in Eq. (13) we have adopted a Fourier representation in space. Unfortunately,
the time aspects ofρ(ξ ,τ) are more complicated as the action variablea(k, t) obeys the Zakharov equation
which is nonlinear. Only when it can be argued that, for example for small wave steepness, the nonlinear
term in the Zakharov equation can be neglected, it is straightforward to treat the time aspects of the correlation
function as well because the action variable then executes asimple oscilation with the angular frequency of
linear surface gravity waves. The latter approach is justified for small wave steepness when one is interested in
the lowest order expression of the wavenumber-frequency spectrum (see e.g. Komenet al., 1994). Here, we are
interested in the second-order spectrum, which is of the order of the square of the lowest-order spectrum. The
nonlinear term in the Zakharov equation, which gives for example the Stokes frequency correction for a single
wave train, is of the order of the amplitude to the third powerand it will be shown that this will give rise to a
contribution to the second-order, frequency spectrum which is of the same order of magnitude as the generation
of second-harmonics and the low-frequency set-down.

The relation between two-point correlation function and Fourier amplitude can be established in the following
manner. Substitute the Fourier expansion ofη into spatial correlation functionρ and use reality ofη (η̂(k) =
η̂∗(−k)) to establish

ρ(ξ ,τ) = 〈
∫

dk1dk2η̂(k1, t1)η̂∗(k2, t2)e
i
[

k1·x−k2·(x+ξ )
]

〉,

wheret1 = t, andt2 = t + τ . For a homogeneous sea,

〈η̂(k1, t1)η̂∗(k2, t2)〉 = R(k1,τ)δ (k1−k2) (22)

the correlation function becomes

ρ(ξ ,τ) =
∫

dk1R(k1,τ)e−ik1·ξ ,

This is then substituted in the expression for the wave spectrum, giving

F(k,Ω) =
1

2π

∫

dτ R(k,τ)e−iΩτ , (23)

and further reduction can only be achieved once the time evolution of R(k,τ) is known.

Clearly, in order to obtain the wavenumber-frequency spectrum evaluation of the second moment〈η̂(k1, t1)η̂∗(k2, t2)〉
is required. Thus we need the surface elevation in terms of the action variableA (Eq. (15)) and we need the
canonical transformation (18). Writing

η̂1 = f1(A(k1)+A∗(−k1)) , f1 =

(

ω1

2g

)1/2

, (24)

the second moment becomes

〈η̂1(t1)η̂∗
2(t2)〉 = f1 f2〈A1(t1)A

∗
2(t2)+A∗

−1(t1)A−2(t2)+A1(t1)A−2(t2)+A∗
−1(t1)A

∗
2(t2)〉.

In order to make progress in the evaluation of the second moment, we will make some additional assumptions
on the statistics of the ’free-wave’ action variablea,1 which are consistent with the Zakharov equation (19).
First, we assume weakly nonlinear waves, henceA= O(ε), whereε is a small parameter of the size of the wave
steepness. Since we are interested in the second order spectrum an answer up toO(ε4) is required. Second, it

1For one time levelt1 only. Two-timelevel statistics are obtained from the dynamical evolution equation fora directly.
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is assumed that the action variablea follows the statistics of a homogeneous, stationary field with zero mean
value〈a1〉. Therefore, we introduce the action density spectrumN(k) according to

〈a1(t1)a2(t1)
∗〉 = N1δ1−2, (25)

while 〈a1a2〉 vanishes. Because of the cubic nonlinearity in the Zakharovequation the third moment is small,
〈a1a2a3〉 = O(ε5), while the fourth moment becomes

〈a1(t1)a2(t1)a3(t1)
∗a∗4(t1)〉 = N1N2(δ1−3δ2−4 + δ1−4δ2−3)+O(ε6). (26)

TheO(ε6) term is an estimate of the fourth-order cumulant. However, as shown in Janssen (2003), under the
exceptional circumstances that freak waves are present, the fourth-order term becomes significantly larger then
the present estimate. Strictly speaking, the fourth-ordercumulant is, through its dependence on the resonance
function, also inversely proportional to the width of the wave spectrum. Hence, wave spectra should be suffi-
ciently wide, or in other words, the so-called Benjamin-Feir Index should be sufficiently small. This is most of
the time a valid assumption. The exception is, of course, when one is interested in parameters such as excess
kurtosis as this quantity is given by an integral over the sixth cumulant. Therefore, for the kurtosis calculation
performed in section 5 deviations of the pdf due to the nonlinear dynamics of the Zakharov will be taken into
account.

The action variableA is now expressed in terms of the free-wave action variable using the canonical transfor-
mation (18). For convenience we write (18) in the form

A = εa+ ε2b(a,a∗)+ ε3c(a,a∗), (27)

where we identifyb with the quadratic part of (18) while we identifyc with the cubic part of the transformation.
Now in shallow water Janssen and Onorato (2007) have shown that there is a wave-induced mean sea level
which is generated by the quadratic part of the canonical transformation. In other words, while〈a〉 and〈c〉
vanish this is not the case for〈b〉. However, normally, in agreement with experimental practice, the variance is
determined for a process that has zero mean so for this reasonthe mean value〈b〉 = b̄δ1 is substracted fromb.

One could contemplate to correct for the average level of each member of the ensemble separately, and this
will give different results for the wave spectrum and higher-order moments of the pdf because the mean sea
level correction is nonlinear in wave amplitude. However, this is not in agreement with experimental practice as
one intends to make observations which are representative for the area of interest. For example, if one derives
frequency spectra from timeseries (after substracting themean elevation) then these time series need to be
sufficiently long in order to be able to compare with the theoretical ensemble averages. A small segment of this
time series may be regarded as a certain member of the ensemble and depending on the number and the strength
of the wave groups each segment will have a mean elevation which in general will differ from the mean level
over the whole timeseries.2 As only the mean level over the whole time series is regarded as representative for
the sea state we shall substract the ensemble average elevation from the elevation signal. As a consequence, we
consider in stead of (27)

A = εa+ ε2b̃(a,a∗)+ ε3c(a,a∗), (28)

with b̃1 = b1− b̄1δ1. As a result,A in Eq. (25) has now a zero mean value, and, as a matter of fact lots of terms
will cancel in the subsequent calculations. Note that explicitely one finds for̄b,

b̄1 = lim
k1→0

∫

dk2N2A(2)
1,2,2.

2In other words, correcting the signal for the mean elevationper segment would remove an interesting low-frequency signal.
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Now substitute (28) in the expression for the second moments, then up to fourth order inε one finds

〈η̂1(t1)η̂∗
2(t2)〉 = f1 f2

{

ε2〈a1a∗2〉+ ε4(

〈b̃1b̃∗2〉+ 〈a1c∗2〉+ 〈c1a∗2〉+
〈a1c−2〉+ 〈c1a−2〉+ 〈b̃1b̃−2〉

)}

+c.c(1↔−2) . (29)

where for brevitya1 = a(k1, t1). The second moment consists of two groups of terms, namely a term propor-
tional ε2 which will give in lowest order the free-wave spectrum, while all the other terms, being ofO(ε4),
contribute to the second-order spectrum. However, the former term, being the dominant one, will also give rise
to a contribution to the second- order spectrum as the free wave action variablea obeys the nonlinear Zakharov
equation.

3.1.1 First-order spectrum and Stokes frequency correction

In this section we are going to evaluate the second momentg2 = 〈a1(t1)a∗2(t2)〉 and in particular its dependence
on the timescaleτ = t2− t1. Theτ-dependence ofg2(τ) is obtained from the Zakharov equation (19), where
it is noted thatg2 satisfies according to Eq. (25) the initial conditiong2(τ = 0) = N1δ1−2. Evaluating the first
τ-derivative ofg2 one finds

∂
∂τ

g2 = iω2g2 + i
∫

dk3,4,5〈a1(t1)a3(t2)a
∗
4(t2)a

∗
5(t2)〉δ2+3−4−5.

The evolution equation forg2 is solved by means of the multiple timescale technique. Thus, one introduces the
fast time scaleτ0 = τ and the slow timescaleτ2 = ε2τ , together with an expansion ofg2 in terms of the small
parameterε2:g2 = ε2g(2)

2 + ε4g(4)
2 + .... In lowest order one then finds

(

∂
∂τ0

− iω2

)

g(2)
2 = 0,

with solution

g(2)
2 = G1(τ2)δ1−2eiω1τ0, (30)

whereG1 is still a function of the slow time scaleτ2. The second-order equation becomes
(

∂
∂τ0

− iω2

)

g(4)
2 = − ∂

∂τ2
g(2)

2 +S2,

and using the closure assumption

〈a1(t1)a3(t2)a
∗
4(t2)a

∗
5(t2)〉 = ε4G1G3exp(iω1τ0){δ1−4δ3−5+ δ1−5δ3−4}

the source functionS2 becomes

S2 = 2iG1eiω1τ0

∫

dk3T1,3,3,1G3,

Removal of secularity in the second-order equation then gives the slow-time evolution ofG(τ2)

∂
∂τ2

G1 = 2iG1

∫

dk3T1,3,3,1G3,

which is all that is needed to evaluate second-order corrections related to the Stokes frequency correction.
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Returning now to the wavenumber-frequency spectrum (23) we use (30) in (29) to obtain

F(k,Ω) =
f 2(k)
2π

∫

dτ
{

G(k,τ2)e
i(ω1−Ω)τ +G∗(−k,τ2)e

−i(ω1+Ω)τ
}

SinceG is a slowly varying function of time, it is possible to give anapproximate expression for the wavenumber-
frequency spectrum by means of partial integration. Alternatively, one may perform a Taylor expansion ofG(τ)
for small time. The result is

F(k,Ω) ≃ f 2(k)

[

G(k,0)δ (Ω−ω(k))+ i
∂G(k,0)

∂τ2
δ ′(Ω−ω(k))

]

+

c.c (k →−k,Ω →−Ω)

Making use of the evolution equation forG and the initial conditionG(τ = 0) = N the eventual result is

F(k,Ω) = FL+S(k,Ω)+ (k →−k,Ω →−Ω), (31)

where

FL+S(k,Ω) =
1
2

E0δ (Ω−ω(k))− 1
2

E0δ ′(Ω−ω(k))
∫

dk1 T̂0,1,1,0E1,

with T̂0,1,1,0 = T0,1,1,0/ f 2
1 andE is the lowest order surface elevation spectrum

E(k) =
ωN(k)

g
(32)

The first term in Eq. (31), proportional to a delta-function, corresponds to the familiar expression for the
wavenumber, angular frequency spectrum of linear ocean waves (cf. Komenet al., 1994) while the term
proportional to the derivative of the delta-function represents a correction due to the Stokes frequency. The
latter term is of the order of the square of the wave spectrum and is formally as important as the contributions
of the bound waves to the wave spectrum.

3.1.2 The nonlinear and quasi-linear corrections

Continuing with the evaluation of the second moment of the surface elevation we are now going to determine
the higher-order contributions that are ofO(ε4). Since these contributions are of higher order it is sufficient
to use the time evolution of the action variables according to linear theory, cf. Eq. (30). The ensemble
averages involvinga, b andc may be further evaluated by using the quadratic and cubic parts of the canonical
transformation. Note that although〈a1a2〉 vanishes this is not the case for correlations such as〈a1c−2〉 because
c−2 contains a cubic term which correlates witha1. In this fashion one finds

〈a1c−2 +c1a−2〉 = 2δ1−2eiω1τ
{

N1

∫

dk2N2B(3)
−1,1,2,2 +N−1

∫

dk2N2B(3)
1,−1,2,2

}

,

while

〈a1c∗2 +c1a∗2〉 = 4δ1−2N1eiω1τ
∫

dk2N2B(2)
1,2,2,1.

Furthermore

〈b̃1b̃−2〉 = 2δ1−2

∫

dk3,4N3N4

[

A(1)
1,3,4A(3)

−1,3,4δ1−3−4ei(ω3+ω4)τ+

A(3)
1,3,4A(1)

−1,3,4δ1+3+4e−i(ω3+ω4)τ +2A(1)
4,3,1A(1)

3,4,−1δ1+3−4e−i(ω3−ω4)τ
]

,
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while

〈b̃1b̃∗2〉 = 2δ1−2

∫

dk3,4N3N4

[

A(1)
1,3,4A(1)

1,3,4δ1−3−4ei(ω3+ω4)τ+

A(3)
1,3,4A(3)

1,3,4δ1+3+4e−i(ω3+ω4)τ +2A(1)
4,3,1A(1)

4,3,1δ1+3−4e−i(ω3−ω4)τ
]

Combining everything together, we obtain the fourth-ordercontribution to the second moment, and from this
one immediately then infersR(k,τ) introduced in Eq. (22). According to (23) the wavenumber-frequency
spectrum is the Fourier transform ofR with respect to timeτ and as a consequence we find the result

F(k1,Ω1) = FL+S(k1,Ω1)+
1
2

∫

dk2,3E2E3
{

A
2

2,3δ1−2−3δ (Ω1−ω2−ω3)

+B
2
2,3δ1+2−3δ (Ω1 + ω2−ω3)+2C2,2,3,3δ1−2δ (Ω1−ω2)

}

+(k1 →−k1,Ω1 →−Ω1). (33)

where we addedFL+S(k1,Ω1) from (31), while

A2,3 =
f2+3

f2 f3

(

A(1)
2+3,2,3 +A(3)

−2−3,2,3

)

, B2,3 =
1
2

f2−3

f2 f3

(

A(2)
3−2,2,3 +A(2)

2−3,3,2

)

, (34)

and

C0,1,2,3 = B̂(2)
0,3,2,1 + B̂(3)

−0,1,2,3 =
f0

f1 f2 f3

(

B(2)
0,3,2,1 +B(3)

−0,1,2,3

)

(35)

Here, the transfer coefficientsA andB 3 have a fairly straightforward physical interpretation, asA measures
the strength of the generation of the sum of two waves, hence measures the strength of the generation of second
harmonics, whileB measures the generation of low-wavenumbers, and hence alsothe generation of the mean
sea level induced by the presence of wave groups. The coefficientC measures the correction of the first order
amplitude of the free waves by third-order nonlinearity. The transfer coefficientsA andB are symmetric in
their indices,

A2,3 = A3,2, B2,3 = B3,2,

while also

A2,3 = A−2,−3, B2,3 = B−2,−3,

holds.

The expression for the spectrumF(k1,Ω1) may be further simplified because the presence of theδ -functions
allows the evaluation of a number of integrals, but no details will be presented here. It suffices to point out that
the nonlinear terms (the ones involvingA andB) in Eq. (33) agree with the general result obtained by Barrick
and Weber (1977), and furthermore, in the special case of onedimensional propagation, the nonlinear part of
the wavenumber, angular-frequency spectrum is found to agree with the result given by Komen (1980), who
corrected some misprints found in Barrick and Weber (1977).

3 Apart from a factor of two these coefficients coincide with the work of Longuet-Higgins (1963) on second-order corrections to the
sea surface elevation
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3.2 The wavenumber spectrum

According to the marginal distribution law (21) the wavenumber spectrumF(k) follows from the integration
of the wavenumber-frequency spectrum (33) over angular frequency. The general result is

F(k1) =
1
2

E1 +
1
2

∫

dk2,3E2E3
{

A
2

2,3δ1−2−3 +B
2
2,3δ1+2−3

}

+E1

∫

dk2E2C1,1,2,2 +{k1 →−k1} , (36)

From (36) it is seen that the second-order wavenumber spectrum has a fully-nonlinear and a quasi-linear term
only. When the wavenumber-frequency spectrum is integrated over angular frequency the contribution by
the Stokes frequency correction vanishes, as expected, as this term is proportional to the derivative of theδ -
function with respect toΩ1. This is in agreement with expectation as the wavenumber spectrum, being equal to
the Fourier transform of the spatial correlation functionρ(ξ ,0), obviously does not explicitely depend on the
time evolution as given by the Zakharov equation. It is emphasized that the result (36) is for thefrozen surface
elevation spectrum, and therefore the wavenumber spectrumF(k) is an even function of wavenumberk1, as
can easily be verified.

No systematic study has been undertaken so far to investigate under what conditions the result for the wavenum-
ber spectrum, Eq. (36), converges. For deep-water waves and for realistic wave spectra it was found, and this
will be shown in a moment, that the changes to the first-order spectra were small. The situation is different
for shallow water waves because the interaction coefficients become quite large. For the first-order spectra that
have been studied in this paper it appears that the changes remain relatively small forkD > 1. In the opposite
case one might even obtain negative spectra, which is of course highly undesirable.

Before we discuss a number of special cases, namely the case of a single wave train and the one-dimensional
case of a continuous spectrum of waves propagating in one direction, we mention that using numerical in-
tegration it can be shown that the second-order surface elevation spectrum as given in (36) has the special
property that its variance vanishes when the contribution to the spectrum at zero wavenumber is ignored. This
is discussed in more detail when moments of the wavenumber and frequency spectrum are discussed in§3.3.2.

3.2.1 Single wave train

In this case the first-order spectrum is given by

E(k) = m0δ (k −k0), (37)

wherem0 is the zero moment, and substitution of (37) into Eq. (36) gives

F(k) =
1
2

m0

[

1+2m0

(

B̂(2)
0,0,0,0 + B̂(3)

−0,0,0,0

)]

δ (k −k0)+
1
2
A

2
0,0m2

0δ (k −2k0)

+ (k ↔−k) . (38)

Here, we consider the deep-water case only while shallow water effects are treated in Appendix A.3. For deep
water waves in one dimension the expressions forB(2),B(3), andA(i) are relatively simple coefficients. They
become:

B(2)
0,0,0,0 = −1

2
k3

0

ω0
,B(3)

−0,0,0,0 =
1
4

k3
0

ω0
,
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while

A(1)
0+0,0,0 =

1
4

(

2g
ω0+0

)1/2

(1+
√

2)
k2

0

ω0
, A(3)

−0−0,0,0 =
1
4

(

2g
ω0+0

)1/2

(1−
√

2)
k2

0

ω0
.

Hence, the coefficients in (38) read

B̂(2)
0,0,0,0 = −k2

0, B̂(3)
−0,0,0,0 =

k2
0

2
, A

2
0,0 = k2

0, (39)

and, therefore, from (38) one obtains as positive wavenumber spectrumF+(k) = 2F(k) (k > 0),

F+(k) = m0
{(

1−k2
0m0

)

δ (k −k0)+k2
0m0δ (k −2k0)

}

. (40)

It is immediately evident from the above expression that thecanonical transformation gives a second order
correction to the shape of the wave spectrum which results inan additional second harmonic peak atk = 2k0,
while also the energy of the first harmonic atk = k0 has a correction. In agreement with the energy preserving
property of the canonical transformation the wave varianceof the total spectrum is, however, unchanged as

∫

dk F+(k) = m0.

Therefore, the increase in wave variance due to the presenceof the peak at twice the wave numberk0 is exactly
compensated by the second-order correction to the energy ofthe first harmonic. The latter correction can be
traced back to the matrix elementsB(2) andB(3) (see Eq. (38)). In particular,B(2) causes a reduction of the
wave variance at the first harmonic (see (39)) and as explained in Appendix A.1 the form of this matrix hasbeen
chosen in such a way that the free wave action variablea obeys an evolution equation which is Hamiltonian.

In Appendix A.3 we derive the wave spectrum of a single wave train in a slightly different fashion by writing
down the canonical transformation for a single wave train (Eq. (A14)) and by deriving the corresponding
expression for the surface elevation. It is then straightforward to obtain the wave spectrum by evaluation of the
Fourier transform of the spatial correlation function (cf.Eq. (A19)). The present expression for the single-wave
spectrum given in (40) is in perfect agreement with the deep-water version of Eq. (A19) given in Appendix
A.3.

In Appendix A.3 it is also pointed out that the usual Stokes expansion for a single wave train is not unique.
In fact, there is a whole family of solutions that satisfies the Hamilton equations (18). The canonical transfor-
mation for the single wave train belongs to this family. Thistransformation is unique, however, because the
single mode is regarded as the limit of the continuous case, while the canonical transformation for general wave
spectra has to satisfy the additional requirement that the equations of motion remain Hamiltonian.

3.2.2 Continuous spectrum of waves propagating in one direction

We now take the case of one-dimensional propagation and we assume that the waves are propagating in the
positivex-direction. Therefore,

E(k) =

{

E(k), k > 0,
0, k < 0.

For this choice of lowest-order wave spectrum the expression for the wave spectrum (36) may be simplified
considerably. The positive wave number spectrum becomes

F+(k1) = E1+2E1

∫ ∞

0
dk2E2

(

B̂(3)
−1,1,2,2 + B̂(2)

1,2,2,1

)

+
∫ k1

0
dk2E2E1−2A

2
2,1−2

+

∫ ∞

0
dk2E2E1+2B

2
2,1+2+

∫ ∞

k1

dk2E2E2−1B
2
2,2−1, (41)
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For numerical evaluation of the expression (41) one needs to rewrite the convolution integrals, in particular the
third and the fifth term of the right hand side, because the argumentk1−k2 or k2−k1 vanishes in the integration
range. When bothk1 andk2 are large, the integral involves the product of energy at lowwavenumbers, which is
large, with energy at high wavenumbers, giving very noisy results for the high wavenumber spectrum (unless
one would be able to discretize with very large resolution).In order to avoid noisy results I have transformed
the third and fifth term in such a way that these conditions do not occur. For example, in the third term the
integration interval is split in two, namely from 0 tok1/2 and fromk1/2 tok1. Next, because the integrals are of
the convolution type andA is symmetric, it is straightforward to show that the second integral equals the first.
Furthermore, the fifth integral can be written as an integralover the domain 0 to∞ by using the transformation
k2 − k1 = k3. Then, using the symmetry property ofA , the result is identical to the fourth integral. As a
consequence, (41) becomes

F+(k1) = E1+2E1

∫ ∞

0
dk2E2

(

B̂(3)
−1,1,2,2 + B̂(2)

1,2,2,1

)

+2
∫ k1/2

0
dk2E2E1−2A

2
2,1−2

+2
∫ ∞

0
dk2E2E1+2B

2
2,1+2. (42)

Note that substitution of the single mode spectrum given in (37) into (42) yields the result (40).

In agreement with Creameret al. (1989) the second order spectrum consists of two contributions, a fully
nonlinear contribution (the last two terms of (42)) and a quasi-linear term (the second term of (42)). We will
now show that the fully nonlinear term is in agreement with the Barrick and Weber (1977) result, while the
expression for the quasi-linear term agrees with Creameret al. (1989). In order to show this one needs to
evaluate the transfer coefficients for the one-dimensionalcase. Making use of the work of Jackson (1979) and
numerical evaluations I find

A1,2 =
s1s2

2
|k1 +k2|, B1,2 = −s1s2

2
|k1−k2|, (43)

wheres1 ands2 denote the signs of the wave numbersk1 andk2.

Substitution of (43) into the fully nonlinear termsNL then gives

NL =
k2

1

2

∫ k1/2

0
dk2E2E1−2+

k2
1

2

∫ ∞

0
dk2E2E1+2.

The first integral equals the integral with the same argumentover the domain(k1/2,k1), while the last integral
can be rewritten in an integral over the domain(k1,∞), and the result becomes

NL =
k2

1

2

∫ ∞

k1/2
dk2E2E|1−2|.

which agrees with Eq. (2).

Next, the coefficients in the quasi-linear term are evaluated. In one dimension one finds (with the help of Miguel
Onorato who used Mathematica) the simple expressions

B̂(2)
1,2,2,1 = −1

2
k2

1

(

1+
ω2

ω1

)

, B̂(3)
−1,1,2,2 =

1
2

k2
1

ω2

ω1
,→ C1,2,2,1 = −1

2
k2

1, (44)

and the quasi-linear termQL becomes

QL = −k2
1E1

∫ ∞

0
dk2E2,
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which agrees with the Creameret al. (1989) result. The resulting spectrum, correct to second order becomes

F+(k1) = E1 +
k2

1

2

∫ ∞

k1/2
dk2E2E|1−2|−k2

1E1

∫ ∞

0
dk2E2, (45)

which is in complete accord with the result (7). Hence, it is concluded that the quasi-linear term, evaluated with
the formalism developed by Zakharov, plays an important role, as it removes a divergent part from the fully
nonlinear term. As a consequence, it seems likely that the Hamiltonian approach of Zakharov combined with
the canonical transformation of Krasitskii leads to convergent results. The advantage of this approach over the
one by Creameret al. (1989) is that we now immediately have the generalisation totwo dimensions as well
(see Eq. (36)).

As a final check of the results we have evaluated numerically the second-order spectrum by using the general
expression given in Eq. (42). All integrals in this paper will be evaluated with the Trapezoid rule on a grid
with variable resolution. The wavenumbers are on a logarithmic scale with∆k/k = 0.10 and the total number
of wavesN is N = 80, therefore spanning a wavenumber rangekmax/kmin = (1+ ∆k/k)N−1 which is typically
a factor of 2000. The result of this integration is shown in Fig. 1 and coincides with the analytical result
labeled with Eqns. (3,4, 7). The second-order spectrum remains indeed small comparedto the first-order
result. Furthermore, it has been checked that also for the standing wave case, which has potentially a stronger
nonlinearity, the quasi-linear term removes the divergentpart of the nonlinear term. In fact, in the latter case
one finds that for deep-water waves the second order spectrumis precisely twice the one in the propagating
example, cf. Eq. (45).

3.3 The angular frequency spectrum

In order to obtain the directional frequency spectrumF(Ω,θ), whereθ is the propagation direction of the
waves, we introduce polar coordinates in wavenumber space so that for example we have for the first-order
spectrum

E(k)dk = E(k,θ)kdkdθ = E(Ω,θ)dΩdθ1 → E(k) = vg(k)E(Ω,θ)/k

According to the marginal distribution law (21) the angular frequency spectrum follows from the integration
of the wavenumber-frequency spectrum over the wave vectork. However, our interest is in the directional
frequency spectrumF(Ω,θ) and we define it by integratingF(k,Ω) over the absolute wavenumberk = |k|
only, and by considering positive frequencies only (hence the factor of two)

F(Ω,θ) = 2
∫

kdk F(k,Ω), Ω > 0. (46)

A number of integrations in Eq. (46) may be performed because of the presence of threeδ -functions in the
wavenumber frequency spectrum given in Eq. (33) and the directional frequency spectrum becomes after some
straightforward algebraic manipulations

F(Ω1,θ1) = E(Ω1,θ1)−
∂

∂Ω

{

E(Ω1,θ1)

∫

dΩ2dθ2 T̂1,2,2,1E(Ω2,θ2)

}

+2
∫ Ω1/2

0
dΩ2dθ2 E(Ω1−Ω2,θ1−θ2)E(Ω2,θ2)A

2
1−2,2

+2
∫ ∞

0
dΩ2dθ2 E(Ω1 + Ω2,θ1 + θ2)E(Ω2,θ2)B

2
1+2,2

+2E(Ω1,θ1)
∫

dΩ2dθ2 E(Ω2,θ2)C1,1,2,2 (47)
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This is the main result of this section. For given first-order, free-wave spectrumE(Ω,θ) Eq. (47) gives the
second-order corrections to the free-wave spectrum. However, it must be emphasized that all wavenumbers
in the above mapping relation should be converted to angularfrequencies using the inverse of the dispersion
relation Eq. (14): For example,k2 = k(Ω2), while k1−2 = k(Ω1−Ω2), andk1+2 = k(Ω1 + Ω2). Although for
deep-water the expressions for these wavenumbers can be obtained explicitely, for shallow water this can only
be done numerically using an iteration scheme.

It is instructive to compare the result for the frequency-direction spectrum with the one for the wavenumber
spectrum given in Eq. (36). It is then clear that the fully nonlinear terms and the quasi-linear term in Eq.
(47) have, regarding their form, a close resemblance to the corresponding terms in the wavenumber spectrum.
However, the frequency-direction spectrum has an additional term which is related to a Doppler shift of the
frequency by nonlinear effects (the so-called Stokes frequency correction). Note that this term involves minus
the derivative of the first-order frequency spectrum with respect to frequency, and, therefore, in deep-water
where the Stokes frequency correction is positive the result will be a shift of the frequency spectrum towards
higher frequencies while in shallow waters where the Stokesfrequency correction is negative the frequency
spectrum will be shifted towards lower frequencies. For a detailed discussion of this effect on deep-water
single wave trains see Janssen and Komen (1982).

3.3.1 Deep-water waves in one dimension

For one-dimensional deep-water waves it is fairly straightforward to obtain the interaction coefficients (see
Eqns. (43) and (44) for A , B andC respectively). Furthermore, the interaction coefficientT1,2,2,1 is given by
the simple expression (Zakharov, 1991)

T1,2,2,1 =

{

k1k2
2, k2 < k1,

k2
1k2, k2 > k1.

Substituting all this in Eq. (47) the frequency spectrum for unidirectional waves becomes

F(Ω1) = E(Ω1)−
2
g2

∂
∂Ω1

E(Ω1)

{

Ω2
1

∫ Ω1

0
dΩ2 Ω3

2E(Ω2)+ Ω4
1

∫ ∞

Ω1

dΩ2 Ω2E(Ω2)

}

+
1

2g2

{

∫ Ω1/2

0
dΩ2 E(Ω1−Ω2)E(Ω2)

[

(Ω2−Ω1)
2 + Ω2

2

]2
(48)

+Ω2
1

∫ ∞

0
dΩ2 E(Ω1 + Ω2)E(Ω2)

(

Ω1 +2Ω2)
2)

}

− Ω4
1

g2 E(Ω1)

∫ ∞

0
dΩ2 E(Ω2)

Note that the fully nonlinear contribution to the second-order frequency spectrum is in complete agreement
with a result obtained by Komen (1980).

Let us study in more detail the angular frequency spectrum and in particular the consequences of the nonlinear
corrections, for the realistic case of a JONSWAP spectrum (Hasselmannet al., 1973) with peak frequency
Ω0 = 0.5, Phillips’ parameterαp = 0.01, and overshoot parameterγ = 1. In Fig. 2 we show the frequency
dependence of the total increment to the first-order JONSWAPspectrum due to second-order effects and in
addition we show increments due to the fully nonlinear term,the quasi-linear term and the Stokes frequency
correction separately as given by Eq. (47). The fully nonlinear term is always positive and with increasing
frequency shows a sudden increase around twice the peak frequency, while for large frequencies it has anf−1

tail. The quasi-linear term is always negative and it attains its minimum value aroundf = 1.5 f0. This term also
has anf−1 tail which, as will be seen in a moment, cancels the tail of thefully nonlinear term in such a way that
in agreement with Eq. (49) the sum of the two terms has anf−3 behaviour. For deep-water waves the Stokes
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Figure 2: Second-order effects on the frequency spectrum asfunction of f/ f0. In addition, the effects of the fully nonlinear
term, the quasi-linear term and the Stokes frequency correction are given separately as well.

frequency correction gives rise to a shift of the wave spectrum towards higher frequencies and therefore in Fig.
2 we see a typical negative-positive signature of this term. In the frequency range of 1.2 f0 < f < 2 f0 the Stokes
frequency correction compensates the effect of the quasi-linear term while for large frequencies it falls off more
rapidly than both the fully nonlinear term and the quasi-linear term. Adding all contributions together it is seen
that the main effect is a shift of the low-frequency part of the wave spectrum towards higher frequencies, while
at high frequencies there is a small increase in spectral levels. One would conclude from Fig.2 that the Stokes
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Figure 3: Comparison of wavenumber and frequency spectra including second-order effects (red). For clarity the first-
order spectrum (black) and the second-order contribution (green) are shown as well. For deep water waves the Stokes
frequency correction is hardly visible near the peak of the frequency spectrum, while second order effects have a pro-
nounced impact on the high-frequency tail of the wave spectrum. However, second-order effects on the wavenumber
spectrum are not visible.

frequency correction plays an important role in the modification of the frequency spectrum, but the main change
is near the peak of the first-order spectrum which has most of the variance. As a consequence, for the present
example the Stokes frequency correction only gives a small modification of the first-order spectrum while
the small increments at high frequency give a relatively large modification of the first-order spectrum. This
follows from Fig.3 where the right panel shows the first-order frequency spectrum, the contribution by second
order effects and the total spectrum. Therefore, as far as the total spectrum is concerned, the main second-
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order effect is a somewhat fatter high-frequency tail. Onlyfor young, steep windsea (having an overshoot
parameterγ ≃ 3, and a Phillips’ parameterαp ≃ 0.02) or, as will be evident in the next section, only in the
fairly extreme circumstances of shallow water a significantimpact of the Stokes frequency correction on the
frequency spectrum is to be found.

The presence of a somewhat fatter high-frequency tail in thefrequency spectrum has important consequences,
so let us discuss this aspect in more detail. A fit of the high frequency part of the spectrum from two times the
peak frequency until 10 times the peak frequency with a powerlaw of the typef−m gives a slopem of about 4.
This is intriguing as this slope has been reported frequently in observational studies (Toba, 1973; Kawaiiet al.,
1977; Mitsuyasuet al., 1980; Kahma, 1981, Forristall, 1981 and Donelanet al., 1985), but later experimental
studies suggest that at high frequencies there is a transition from f−4 to f−5 (e.g. Hara and Karachintsev,
2003) There are also a number of theoretical explanations infavour of an f−4 power law. These range from
the familiar concept of the Kolmogorov inertial energy cascade caused by the resonant four-wave interactions
(Zakharov and Filonenko, 1967) to Doppler shifting of shortwaves by the presence of the orbital motion of
the long waves (e.g. Banner, 1990), while Belcher and Vassilicos (1997) explain thef−4 power law in terms
of the dominance of bound waves (associated with sharp crested free gravity waves) over the high-frequency
free waves. Our explanation of a fatter high-frequency tailcomes closest to the work of Belcher and Vassilicos
(1997). In the present approach the occurrence of sharp crested waves is implicit in the choice of the high-
frequency tail of the first-order spectrum (a Phillips’ spectrum), but alternative choices of a first-order spectrum
will give rise to a fatter tail as well. Note that we have considered unidirectional waves only and it would be of
interest to study effects of directionality (cf. Eq. (47)) on wave variance levels at high frequencies. This is left
for further study.

The presence of an enhanced tail in the high-frequency spectrum is also plainly evident in the following simple
example. For the Phillips’ spectrum Eq. (3), converted to angular frequency space, hence,

E(Ω) = αpg2Ω−5, Ω > Ω0,

it is possible to evaluate all integrals in Eq. (48) explicitely, but the resulting analytical expression looks much
more elaborate than the corresponding one for the wavenumber spectrum (c.f. (3)-(4)), so we will not present
these details. It is only mentioned that second-order corrections to the angular frequency spectrum play indeed
a much more important role than in case of the wave number spectrum. To be definite, from the exact solution
one may obtain an asymptotic expansion in powers of the square of Ω/Ω0, valid for large frequencies

F(Ω) ≃ E(Ω)

(

1+
αp

2
Ω2

Ω2
0

)

, Ω >> Ω0, (49)

which shows that there is a considerable contribution to thefrequency spectrum by the bound waves as it scales
with Ω−3. In sharp contrast, the contribution of the bound waves to the wavenumber spectrum scales apart
from a logarithmic dependence ask−3 which is a similar behaviour as the first-order spectrum (cf.Eq. (8)).
Therefore, bound waves give rise to a fatter high-frequencytail, while at the same time in the wavenumber
domain the contribution of the bound waves is small. This is illustrated in the left panel of Fig.3 where the
wavenumber spectrum shows hardly any change in the high-wavenumber tail due to the bound waves while in
the right panel there are visible changes to the frequency spectrum to be noted.

3.3.2 A remark on moments of the spectrum

It can be readily verified that the zeroth moment of the second-order spectrum for the case of one-dimensional
propagation vanishes. This follows from the numerical evaluations in deep water and also in shallow water
when the contributions to the wave spectrum at zero wave number are ignored. The question is therefore of
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interest whether this conservation property can be proven in an analytical manner. For deep-water waves this
follows immediately from an integration of the general result for the wave number spectrum, Eq. (36), over
wavenumber with the result

〈η2〉 =

∫

dk1E1+

∫

dk1dk2E1E2
[

A
2

1,2 +B
2
1,2 +2C1,1,2,2

]

(50)

and upon using the expressions for the interaction coefficients given in Eqns. (43) and (44) the vanishing of the
second integral follows at once. Hence, in deep water the wave variance, even in the presence of bound waves,
is given by the integral over the first-order spectrum only. Asimilar proof may be given for the second-order
frequency spectrum, while this also follows in a trivial wayfrom the wavenumber-frequency spectrum and the
marginal distributions laws (21). Note that I have been unable to obtain a proof of this property of the second-
order spectrum for two dimensional propagation in deep water. For shallow water waves only an analytical
proof is available in the case of a single wave train. To that end one uses the expression for the spectrum of a
single wave train given in Eq. (A20) and ignores the contribution at zero wavenumber. Upon using (A17) the
vanishing of the variance of the second-order spectrum follows at once.

It should be clear, however, that all other moments of the spectrum are affected by the presence of bound waves.
We will discuss this in some detail for the mean square slope of deep-water waves as this quantity is relevant
in satellite retrieval algorithms, the albedo of the sea surface and in air-sea interaction studies. It is important
to realize that in the presence of bound waves the mean squareslopemssdoes not follow from the usual fourth
moment of the frequency spectrum. For free waves, obeying the linear dispersion relationΩ = ω(k) it can be
shown that indeed

∫

dk k2F(k) =
∫

dΩ (Ω4/g2)F(Ω) and hence the fourth moment of the frequency spectrum
equals the mean square slope. However, bound waves do not obey the dispersion relation from linear theory,
while also the frequency spectrum shifts towards higher frequencies because of the Stokes frequency correction.
This is most easily understood by considering the example ofa single wave train. Substitution of the expression
for the spectrum of a single wave train, i.e.

E(k) = m0δ (k−k0),

in Eq. (33) one finds for the wavenumber-frequency spectrum

F(k,Ω) =
1
2

m0
(

1−k2
0m0

)

δ (k−k0)δ (Ω−ω0)−k2
0m2

0ω0δ (k−k0)δ ′(Ω−ω0)+

1
2

k2
0m2

0δ (k−2k0)δ (Ω−2ω0)+ (k→−k,Ω →−Ω).

Here, the first term combines the linear term and the quasilinear effect, the second term represents the effect of
the Stokes frequency correction while the third term gives the generation of second harmonics. The wavenum-
ber spectrum follows immediately from an integration over angular frequency,

F(k) =

∫

dΩ F(k,Ω) = m0
(

1−k2
0m0

)

δ (k−k0)+k2
0m2

0δ (k−2k0),

and hence the mean square slope becomes

mss=
∫

dk k2F(k) = k2
0m0

(

1+3k2
0m0

)

.

On the other hand, the frequency spectrum follows from the marginal distribution law (46), hence

F(Ω) = m0
(

1−k2
0m0

)

δ (Ω−ω0)−2k2
0m2

0ω0δ ′(Ω−ω0)+k2
0m2

0δ (Ω−2ω0),

and the fourth moment of the frequency spectrumm4 becomes

m4 =

∫

dΩ
Ω4

g2 F(Ω) = k2
0m0

(

1+23k2
0m0

)

.
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Evidently there is a considerable difference betweenm4 andmss. There are two reasons for this difference.
First, the frequency of the waves is subject to a Doppler shift caused by the Stokes frequency correction which
shifts the frequency spectrum towards higher frequencies.Secondly, the second harmonic has a frequency 2ω0

and a wavenumber 2k0, but according to the fourth moment the wave variance at 2ω0 has a wavenumber 4k0 as
k = ω2/g = 4ω2

0/g. Hence, for deep water waves the fourth momentm4 and the mean square slopemsswill be
different.

Returning now to Fig.3 where a comparison of wavenumber and frequency spectra is shown, it is immediately
evident that also for a continuous spectrum the fourth moment is larger than the mean square slope as due to
the nonlinear corrections the level of the high frequency part of the frequency spectrum has increased. This has
important consequences for the estimation of the mean square slope from frequency spectra as obtained from
buoy time series. Assuming that buoys can observe only frequencies below a cut-off frequency, say of 0.5 Hz,
then well resolved sea states, corresponding to large wave heights, are in particular prone to an overestimation
of the mean square slope. Using a JONSWAP spectrum the overestimation due to the incorrect interpretation
of the fourth moment as a proxy for mean square slope may be determined. For example for a wind speed of
20 m/s and a wave height of 10 m the means square slope may be overestimated by 30%, while a low wave
height case only gives an overestimation of 5%. Therefore, estimates of the mean square slope from frequency
spectra may have considerable errors.

3.3.3 Shallow water effects

Let us apply now the general expression for the directional frequency spectrum (47) to the case of shallow water.
It was already mentioned that in order to evaluate the second-order contribution to the frequency spectrum in
waters of finite depth the inverse of the dispersion relation(14) is required. However, in the shallow water case
this inversion cannot be given in an analytical manner so therefore only numerical results will be presented in
this §.

The examples that will be discussed here are taken from the CERC manual on surf zone hydrodynamics,
Chapter 4, page II-4-16. In this manual three examples of wave spectra in shallow water are shown for depths of
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Figure 4: Second-order effects on the frequency spectrum asfunction of f/ f0. The effects of the fully nonlinear term, the
quasi-linear term and the shift by the Stokes frequency correction are given separately as well. The left panel shows the
case D= 3 m (k0D = 1.49), while the right panel shows the case D= 1.7 m (k0D = 1.00). Note the pronounced difference
in the shift due to the Stokes frequency correction, being positve in the left panel and negative in the right panel. Also note
the change of scale suggesting the sensitive dependence of the second-order spectrum on depth.
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3, 1.7 and 1.4 m, but only the first two cases will be consideredas the most shallow example is in the surf zone,
where violent breaking occurs which is not taken into account in the present context. As first-order spectrum
we take a JONSWAP spectrum with peak angular frequencyΩ0 = 2.1, a Phillips’ parameterαp = 0.015, an
overshoot parameterγ = 7, while the frequency widthσ = 0.07. For depthsD of 3 and 1.7 m the dimensionless
depthsk0D at the peak of the spectrum are 1.65 and 1.06 respectively. For the case in the surf zone withD = 1.4
m the dimensionless depth is 0.89 which is beyond the limit ofconvergence of the present approach (47).

Let us study the increments for the casesD = 3 m andD = 1.7 m using the same first-order spectrum. They are
shown in Fig.4. First of all note the change of scale by a factor of 5 when going towards more shallow water
indicating that indeed the second-order spectrum depends in a sensitive manner on depth. Secondly, while the
increments for the nonlinear and quasi-linear term are qualitatively similar, the increments due to the Stokes
frequency correction are markedly different. The case ofk0D = 1.49 (D = 3 m) is similar to the deep-water
problem having a positive frequency shift, while fork0D = 1.00 (D = 1.7 m) the frequency shift is negative.
This is qualitatively in agreement with the well-known result that for a single wavetrain the Stokes frequency
correction is positive forkD > 1.363, while it is negative in the opposite case (Whitham, 1974; Janssen and
Onorato, 2007). However, the present case is not quite narrow-band and by trial and error it was found that
the transition from positive to negative shift occurred at aslightly lower value of dimensionless depth, namely
k0D ≃ 1.2. In contrast with deep-water waves the increments due to the Stokes frequency correction are now
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Figure 5: Variance spectra as function of frequency (Hz) fortwo different values of depth obtained from the same first-
order spectrum, showing the sensitive dependence of the presence of second harmonics and wave-induced set-down on
depth.
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quite significant and they are visible near the peak of the total wave spectrum. This is illustrated in Fig.5
where for the same first-order spectrum the sum of first-and second order spectrum is shown for the two values
of depth. Comparing the first-order spectrum with the total spectrum it is clear that forD = 3 m there is
hardly any shift of the spectrum, while for the more shallow caseD = 1.7 m there is a definite down-shift of
the total spectrum, therefore once more supporting the sensitive dependence of the second-order spectrum on
depth. In particular, note the rapid increase of the low-frequency infra-gravity wave energy by a factor of 10
while dimensionless depth only decreases by about 60%, while also the second harmonic peak appears to be
sensitive to depth variations. Finally, the increased high-frequency levels caused by second-order nonlinearity
are evident in Fig.5. In both cases the high-frequency part of the spectrum follows closely af−4 power law in
the range between 1 and 5 Hz. Removing the quasi-linear effect would, just as in the case of deep-water spectra,
result in a much more rapid divergence from the first-order spectrum. This is illustrated in Fig. (6) where it is
clear that without the quasi-linear term higher levels in the high-frequency part of the spectrum are obtained.
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Figure 6: Impact of the quasi-linear term on the variance frequency spectrum for a depth of 1.7 m, showing a much fatter
high-frequency tail when the quasi-linear term is removed.Observations obtained from Robert Jensen show a fairly good
agreement with the second-order spectrum when the quasi-linear term is included.

Observations of the frequency spectrum were kindly digitized by Robert Jensen from the Cerc manual and they
are shown in Fig.6 as well. A fair agreement between the theoretical spectrum (including the quasi-liner effect)
and observations is found, in particular for the high-frequency part of the spectrum. Note that the generation
of second harmonics, both theoretically and experimentally, has been studied before by, for example, Norheim
et al. (1998). These authors investigated the consequences of a stochastic formulation of the Boussinesq wave
shoaling equations and a good agreement with observations of the wave spectrum was found. However, there
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was a tendency to overestimate the level of the high-frequency tail of the spectrum and this overestimate could
perhaps have been avoided by introducing the quasi-linear effect in their stochastic model.

Finally, it is seen from Fig.6 that the low-frequency, infra-gravity part of the spectrumis completely determined
by the fully nonlinear term of Eq. (47). An extensive discussion and verification of this aspect ofsecond-order
theory has been presented by Herberset al. (1994), who point out that the nonlinear term in (47) refers to
the forced part of the infra-gravity waves, which is usuallyonly a small part of the total energy in the infra-
gravity range. However, using the observed Bi-spectrum thecontributions of the forced infra-gravity waves
from the observed directional wave spectrum may be isolatedand a good agreement between observed forced
and theoretical forced infra-gravity wave energy is obtained. For further recent work see Toffoliet al. (2007).

4 Skewness and Kurtosis for general wave spectra

Let us now try to determine the skewnessC3 and kurtosis parameterC4 for general wave spectra. These
parameters measure deviations from the Normal distribution and this information is of relevance for certain
practical applications such as the determination of the so-called sea state bias as seen by an Altimeter or the
detection of extreme sea states. Skewness and kurtosis follow from the third and fourth moment of the surface
elevation pdf and they are defined in this paper as follows:

C3 =
µ3

µ3/2
2

, C4 =
µ4

3µ2
2

−1, (51)

whereµn = 〈ηn〉, n = 2,3,4, are the second, third and fourth moment of the pdf of the surface elevation, while
the first moment〈η〉 is assumed to vanish. For a Gaussian pdf bothC3 andC4 vanish.

In order to evaluate these moments the surface elevation is expressed in terms of the Fourier integral (13) and
the Fourier amplitudes are expressed in terms of the action density variableA. In the next step we apply the
canonical transformation (18) which is of the formA = εa+ ε2b+ ε3c. Hence, the moments may be expressed
in terms ofa, b(a,a∗) andc(a,a∗), hence these moments may be evaluated when the statistics for a are known.
The free action variablea satisfies the Zakharov equation, and thus in principle the statistical properties ofa
may be obtained. We have seen that for weakly nonlinear wavesit is found that in good approximation the
stochastic variablea obeys Gaussian statistics, but as shown by Janssen (2003) deviations from the Normal
distribution are important for the dynamical evolution of the wave spectrum (due to four-wave interactions)
which may result in a significant contribution to the kurtosis. However, deviations from Normality are not
important for the skewness of the sea surface.

The evaluation of these statistical parameters is an enormous effort and as a first step, in Appendix A3 skewness
and kurtosis as obtained from the canonical transformationare determined for a single wave train. The single
mode result for skewness and kurtosis will serve as a reference for checking the general results for a spectrum
of waves. These will be derived in the following§s.

4.1 Skewness calculation

Relatively little attention will be paid to the derivation of skewnessC3 as its general form for deep-water waves
is already known (cf. Longuet-Higgins, 1963; Srokosz, 1986). However, the present development is given
because it is a direct generalisation of the deep-water result towards shallow waters.
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Because of the assumption of a homogeneous sea the third moment µ3 becomes

µ3 = 〈η3〉 =
∫

dk1,2,3〈η̂1η̂2η̂3〉,

where the Fourier transform ofη is related to the action variableA through Eq. (24). Using this last equation
in (51) one finds

µ3 =
∫

dk1,2,3 f1 f2 f3{〈A1A2A3〉+3〈A1A2A∗
3〉+c.c} .

In order to make progress we use the expression of the bias corrected action variable (28), which is an expansion
of the canonical transformation in terms of the small steepnessε . Realizing that only a result correct to fourth
order inε is required one finds

µ3 = ε3
∫

dk1,2,3 f1 f2 f3{〈a1a2a3〉+3〈a1a2a∗3〉}+

ε4
∫

dk1,2,3 f1 f2 f3
{

3〈a1a2b̃3〉+6〈a1a∗2b̃3〉+3〈a1a2b̃∗3〉
}

+c.c.

Invoking now the Gaussian statistics of the free wave actionvariablea it is immediately evident that the third
moments such as〈a1a2a3〉 vanish. In addition, using the random-phase approximationon the fourth moment
(cf. Eq. (26)), the moments involving̃b can all be expressed in terms of products of the action density N.
Eliminating then the action density in favour of the surfaceelevation spectrumE using Eq. (32) the eventual
result for the third moment becomes after settingε = 1

µ3 = 3
∫

dk1,2E2E3(A1,2 +B1,2) ,

whereA andB have been introduced in Eq. (34). Finally, the second momentµ2 = 〈η2〉 follows immediately
from Eq. (50) and as only the lowest order result is required one finds

µ2 ≃ σ2 =
∫

dk1 E1,

and as a consequence the skewness becomes

C3 =
3

σ2

∫

dk1,2E2E3(A1,2 +B1,2) . (52)

Note that this expression for the skewness holds for both deep-water and shallow water waves. The skewness
of the sea surface is, as expected, entirely determined by the sum interactions as measured byA1,2 and the
difference interactions as weighted byB1,2.

As a final check of the result the limit of a narrow-band wave train in Eq. (52) was taken, i.e.E1 = σ2δ (k1−k0),
and it is straightforward to show that the result agrees withthe expression for a single wave given in Appendix
A.3 (see Eq. (A24)).

4.2 Calculation of fourth moment

Using (13) and (15) the fourth moment becomes for a homogeneous sea state

µ4 = 〈η4〉 =
∫

dk1,2,3,4M1,2,3,4〈A1A2A3A4 +4A1A2A3A∗
4+3A1A2A∗

3A∗
4〉+c.c. (53)

Technical Memorandum No. 579 27



On some consequences of the canonical transformation in theHamiltonian theory of water waves

whereM1,2,3,4 = (ω1ω2ω3ω4)
1/2/4g2.

Now substitute the canonical transformation (28) into (53) and retain only terms up to sixth order inε . The
result is

µ4 =

∫

dk1,2,3,4M1,2,3,4
{

3ε4〈a1a2a∗3a∗4〉+ ε6 [4〈c1a2a3a4〉+12〈c1a2a3a∗4〉

+4〈c∗1a2a3a4〉+12〈c1a2a∗3a∗4〉+6〈a1a2b̃3b̃4〉+12〈a1a2b̃3b̃∗4〉+12〈a1a∗2b̃3b̃4〉
+6〈a∗1a∗2b̃3b̃4〉+12〈a1a∗2b̃3b̃∗4〉

]

+c.c.
}

(54)

Clearly, there is one fourth-order term while the remainingterms, all connected to the canonical transformation,
are only sixth order in the steepness parameterε . The fourth-order term has already been discussed by Janssen
(2003), where it is shown that the deviations from Gaussian statistics, as induced by the nonlinear dynamics,
gives rise to a kurtosisC4 which is proportional to the square of the Benjamin-Feir Index. However, all the
other terms in Eq. (54) are small and therefore only the lowest order contributionto the pdf, i.e. the Gaussian
distribution, is required to evaluate these terms. For thisreason the fourth moment consists of two parts, namely

µ4 = µdyn
4 + µcan

4 ,

where a general expression forµdyn
4 is given in Janssen (2003). Here we concentrate on the contribution of the

canonical transformation to the fourth moment. It is fairlystraightforward to evaluate the correlations involving
c, using the relevant symmetries and the random phase approximation for the sixth moment, i.e.

〈a1a2a3a∗4a∗5a∗6〉 = N1N2N3 [δ1−4(δ2−5δ3−6 + δ2−6δ3−5)+ δ1−5(δ2−4δ3−6 + δ2−6δ3−4)

+δ1−6(δ2−4δ3−5+ δ2−5δ3−4)]+O(ε8).

Introducing one additional matrix, namely

D0,1,2,3 =
f0

f1 f2 f3

(

B(1)
0,1,2,3 +B(4)

−0,1,2,3

)

which basically respresent the strength of the basic mode inthird order and the third harmonic respectively and
expressing the action densityN in terms of the wave variance, the c-terms become

12ε6
∫

dk1,2,3E1E2E3

{

C1,1,2,2 +
1
2
D1+2+3,1,2,3 +

1
2
C1+2−3,1,2,3

}

. (55)

The terms involving̃b in Eq. (54) are a bit harder to deal with. The eventual result is

12ε6
∫

dk1,2,3E1E2E3

{

A1,3A2,3 +B1,3B2,3 +2A1,3B2,3 +
1
2
A

2
2,3 +

1
2
B

2
2,3

}

(56)

Combining (55) and (56) the fourth moment becomes

µcan
4 = 3ε4

∫

dk1,2,3E1E2+12ε6
∫

dk1,2,3E1E2E3{A1,3A2,3 +B1,3B2,3 +2A1,3B2,3

+
1
2
A

2
2,3 +

1
2
B

2
2,3 +C1,1,2,2 +

1
2
D1+2+3,1,2,3 +

1
2
C1+2−3,1,2,3

}

. (57)

Recall that the variance is given by Eq. (50), i.e.

〈η2〉 =
∫

dk1E1 +
∫

dk1dk2E1E2

[

A
2

1,2 +B
2
1,2+2C1,1,2,2

]

, (58)
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then the kurtosis parameterCcan
4 can now be evaluated for small steepness. The result is, after setingε equal to

one,

Ccan
4 =

4
σ4

∫

dk1,2,3E1E2E3

{

(A1,3 +B1,3)(A2,3 +B2,3)+
1
2
D1+2+3,1,2,3 +

1
2
C1+2−3,1,2,3

}

(59)

and this result is in agreement with the general form found byOnoratoet al. (2008), but the coefficient inside
the curly brackets was not evaluated explicitely.

Here, we note that all the boldface terms in (57) and (58) cancel each other, leaving a very simple expression
for C4 indeed. Note also that all the terms in (59) have a simple physical interpretation. The matrixA corre-
sponds to the second harmonic, the matrixB gives the mean surface elevation response,C gives the third-order
correction to the amplitude of the free gravity waves whileD corresponds to the amplitude of the third har-
monic. This interpretation becomes more clear when we take in (59) the limit of a narrow-band wave train, i.e.
E1 = σ2δ (k1−k0). The result is identical to Eq. (A23) of Appendix A3.

Finally, the total kurtosis is given by the sum of the canonical contribution and the contribution by dynamics,
i.e.

C4 = Cdyn
4 +Ccan

4 (60)

whereCdyn
4 is given by Eq. (29) of Janssen (2003).

4.3 An illustrative example

It is of interest to evaluate the expressions for the skewness C3 and kurtosisCcan
4 for a given wave spectrum

and to compare the result with its narrow-band limit. It is straightforward to do a numerical evaluation of the
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Figure 7: Skewness C3 (left panel) and kurtosis Ccan
4 (right panel) for a steepnessε = 0.1 as function of dimensionless

depth x= k0D. Red line corresponds to the case of a Phillips’ spectrum, while the black line corresponds to the case of a
single wave train with the same variance while the carrier wavenumber equals the peak wavenumber k0.

Eqns. (52) and Eq. (59). For wave spectrum the very simple windsea spectrum (2) suggested by Phillips (1958)
was chosen. For this simple spectrum the significant steepnessε = k0m1/2

0 = α1/2
p /2 and a Phillips’ parameter

αp = 0.04 was chosen in order to match the choice of steepness in the case of a single wave train discussed in
Appendix A.3. Fig.7 shows skewness and kurtosis as function of depth for two cases. The first one has the
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spectrum given in (2) while the second one has a delta-function spectrum of the form E(k) = σ2δ (k−k0) with
the same variance as the first case, and corresponds to the single wave train case of Appendix A.3. It is clear
that these two cases give a significantly different skewnessand kurtosis and hence knowledge of the spectral
shape is important in determining the value of the skewness and kurtosis.

In any eventCcan
4 is found to increase fairly rapidly as dimensionless depth decreases when the waves approach

the coast. However, the total kurtosis also has a contribution from the dynamics of the waves, see Eq. (60),
calledCdyn

4 . According to Janssen and Onorato (2007)Cdyn
4 becomes negative at around the value of dimen-

sionless depthk0D ≃ 1.3 which is the same point where the Stokes frequency correction vanishes. Combining
the dynamical and canonical contribution to the kurtosis itis found that the dynamical contribution dominates
and the net result is that when waves approach the coast the kurtosis is seen to decrease with depth. Hence
in shallow water the occurrence of extreme waves is less likely than in deep water. This perhaps surprising
conclusion is connected to the generation of a wave-inducedcurrect and the associated mean sea level change
in shallow water. These processes cause the vanishing of theStokes frequency correction atk0D ≃ 1.3 and slow
down the increase ofCcan

4 with decreasing dimensionless depth (see Appendix A.3).

5 Conclusions

In the hamiltonian formulation of surface gravity waves a key role is played by the canonical transformation
that eliminates effects of nonresonant interactions on theevolution of the free wave action variable as much
as possible. Therefore, the canonical transformation provides us with an elegant method to separate the non-
resonant interactions (bound waves for example) from the important resonant interactions as described by the
Zakharov equation. In a wave prediction system the evolution equation for the spectrum of an ensemble of
ocean waves is solved. This equation follows from the Zakharov equation and therefore gives the spectrum
of the free waves. In order to obtain the actual wave spectrumone still needs to take the consequences of the
canonical transformation into account.

Starting from the canonical transformation of surface gravity waves a general expression for wavenumber
and directional frequency spectrum has been obtained. These diagnostic relations are valid for general two-
dimensional spectra and may be applied both in deep and shallow waters (kD ≥ 1). For the wavenumber
spectrum it is found that there are two nonlinear corrections, one related to the generation of bound waves and
infra-gravity waves and one quasi-linear term giving a correction to the energy of the free waves. In agreement
with Creameret al. (1989) when the general result is applied to the case of one-dimensional propagation,
the combination of the nonlinear and quasi-linear correction results in a small change to the first-order free
wavenumber spectrum. This contrasts with the Barrick and Weber (1977) result for the second-order spectrum
who only considered the fully nonlinear term. This term on its own leads to divergent behaviour of the total
wave spectrum. In fact, for high wavenumbers the second-order correction is more important than the first-order
one signalling that the perturbation approach would fail.

A key role in this development is played by the quasi-linear term which removes the divergent behaviour of the
fully nonlinear term. In other words, a key role is played by theB(2)

1,2,3,4-term of the canonical transformation.
On the hand, this terms assures that the Zakharov equation isHamiltonian, on the other hand, this terms assures
the convergent behaviour of the second-order spectrum. It is therefore important to check that the form of this
term is correct. This is reported in Appendix A.1.

The result of this work on the wavenumber spectrum is relevant for estimation of the sea state bias as seen by an
Altimeter as was discussed by Elfouhailyet al. (1999). These authors used the second-order theory of Longuet-
Higgins (1963), which is equivalent to disregarding the quasi-linear term in Eq. (36). They basically used (36)
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to obtain the first-order spectrumE(k) from the observed wave spectrumF(k). Because the quasi-linear term
is disregarded it is not a big surprise that the first-order spectrumE(k) is found to deviate to a large extent from
the observed spectrum. As a consequence there will be considerable deviations from the ’classical’ sea state
bias results obtained by Jackson (1979) and Srokosz (1986),because these authors assumed that the first-order
spectrum is approximately given by the observed spectrum. However, when retaining the quasi-linear term in
Eq. (25) the differences between the first-order spectrum and the observed are expected to be small. This work
therefore justifies the approach followed by Jackson and Srokosz.

The directional frequency spectrum has, compared to the wavenumber spectrum, an additional correction re-
lated to the well-known Stokes frequency correction. In deep-water the effect of the Stokes frequency correction
is usually quite small. Nevertheless, we have seen that nearthe peak of the spectrum this term compensates to
a large extent the effect of the quasi-linear self-interaction. In shallow water gravity waves are steeper and as a
consequence the Stokes frequency correction has a pronounced impact on the shape of the frequency spectrum.
Also, the fully nonlinear and the quasi-linear term have a considerable impact. The fully nonlinear term will
give rise to forced infra-gravity waves while the combination of the fully nonlinear term and the quasi-linear
term determines the second harmonics and the level of the high-frequency tail. These last two aspects of the
spectral shape in shallow water have been studied extensively before (see for example Herberset al., (1994) and
Norheimet al., (1998)) and a good agreement with observations of the wave spectrum was obtained, although
perhaps a better agreement would have followed when the quasi-linear effect had been included.

Expressions of the skewness and kurtosis parameters were derived which are extensions of known results for
deep-water narrow-band wave trains to the case of general spectra in waters of finite depth. These parameters
are fairly sensitive to effects of the shape of the wave spectrum and this should be relevant for statistical
distributions of wave crests and the envelope of a wave train, for example. It is also made plausible that
the kurtosis of the sea surface elevation decreases when waves approach the coast, and this is caused by the
wave-induced mean sea level which for one-dimensional wavegroups is negative. Hence, for one-dimensional
waves extreme sea states are less likely to occur in waters ofintermediate depth (kD ≃ 1). Extension of this
work to the case of two-dimensional propagation is desirable as it is already known that, for example, the
dynamical part of the kurtosis reduces considerably when the directional width of the wave spectrum increases
(see Waseda (2006); Gramstad and Trulsen, 2007). First estimates, using parametrizations of the directional
effect do suggest, however, that the conclusion that waves are less extreme in shallow waters still holds.
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A Appendix: Remarks on Zakharov equation

A.1 Canonical transformation

In order to obtain the coefficients in the canonical transformation A(a,a∗), given in (18), we substitute the
transformation into the Hamilton equation (17) and considering weakly nonlinear waves we evaluate the re-
sulting equation to third order in amplitude only. The time derivatives in the quadratic and cubic terms of the
transformation are evaluated by means of the anticipated result (19) for the evolution in time of the free wave
canonical variablea(k, t). As only accuracy up to third-order in amplitude is requiredwe may use the linear
approximation∂a1/∂ t + iω1a1 = 0.

The result is

∂
∂ t

a1 + iω1a1 = −i
∫

dk2,3

{

[∆1−2−3A(1)
1,2,3 +V(−)

1,2,3]a2a3δ1−2−3

+[∆1+2−3A
(2)
1,2,3 +2V(−)

3,2,1]a
∗
2a3δ1+2−3 +[∆1+2+3A

(3)
1,2,3 +V(+)

1,2,3]a
∗
2a∗3δ1+2+3

}

− i
∫

dk2,3,4

{

[Z(1)
1,2,3,4 +W(1)

1,2,3,4 + ∆1−2−3−4B
(1)
1,2,3,4]a2a3a4δ1−2−3−4

+[Z(2)
1,2,3,4 +W(2)

1,2,3,4 + ∆1+2−3−4B
(2)
1,2,3,4]a

∗
2a3a4δ1+2−3−4

+[Z(3)
1,2,3,4 +3W(1)

4,3,2,1 + ∆1+2+3−4B
(3)
1,2,3,4]a

∗
2a∗3a4δ1+2+3−4

+[Z(4)
1,2,3,4 +W(4)

1,2,3,4 + ∆1+2+3+4B
(4)
1,2,3,4]a

∗
2a∗3a∗4δ1+2+3+4

}

. (A1)

where∆1−2−3 = ω1−ω2−ω3, ∆1+2−3−4 = ω1+ω2−ω3−ω4, etc. Furthermore, the coefficientsZ(i)(i = 1,4)
are given in terms of the second-order coefficientsV(±) andA(i) as follows

Z(1)
1,2,3,4 = 2/3

[

V(−)
1,2,1−2A(1)

3+4,3,4 +V(−)
1,3,1−3A(1)

2+4,2,4 +V(−)
1,4,1−4A(1)

2+3,2,3

+V(−)
3,1,3−1A(3)

−2−4,2,4 +V(−)
4,1,4−1A(3)

−2−3,2,3 +V(−)
2,1,2−1A(3)

−3−4,3,4

]

, (A2)

while

Z(2)
1,2,3,4 = −2

[

V(−)
1,3,1−3A(1)

4,2,4−2 +V(−)
1,4,1−4A(1)

3,2,3−2 +V(−)
3,1,3−1A(1)

2,4,2−4

+V(−)
4,1,4−1A(1)

2,3,2−3−V(−)
1+2,1,2A(1)

3+4,3,4−V(+)
−1−2,1,2A(3)

−3−4,3,4

]

, (A3)

and

Z(3)
1,2,3,4 = 2

[

V(−)
1,4,1−4A(3)

−2−3,2,3−V(−)
1+2,1,2A(1)

4,3,4−3−V(−)
1+3,1,3A(1)

4,2,4−2

+V(−)
4,1,4−1A(1)

2+3,2,3−V(+)
1,3,−1−3A(1)

2,4,2−4−V(+)
−1−2,1,2A(1)

3,4,3−4

]

, (A4)

while, finally,

Z(4)
1,2,3,4 = 2/3

[

V(+)
−1−2,1,2A(1)

3+4,3,4 +V(+)
−1−3,1,3A(1)

2+4,2,4 +V(+)
−1−4,1,4A(1)

2+3,2,3

+V(−)
1+3,1,3A(3)

−2−4,2,4 +V(−)
1+4,1,4A(3)

−2−3,2,3 +V(−)
1+2,1,2A(3)

−3−4,3,4

]

. (A5)

We comment on howZ(i)(i = 1,4) was obtained in a short while. Let us first simplify the second-order contri-
butions to Eq. (A1). This is straightforward as for gravity waves there are no resonant three wave interactions.
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Then,A(i) can be chosen in such a way that the second order terms vanish,and as a consequence we obtain

A(1)
1,2,3 = −

V(−)
1,2,3

ω1−ω2−ω3
, A(2)

1,2,3 = −2
V(−)

3,2,1

ω1 + ω2−ω3
, A(3)

1,2,3 = −
V(+)

1,2,3

ω1 + ω2 + ω3

and the evolution equation fora(k, t) becomes

∂
∂ t

a1 + iω1a1 =

− i
∫

dk2,3,4

{

[Z(1)
1,2,3,4 +W(1)

1,2,3,4 + ∆1−2−3−4B
(1)
1,2,3,4]a2a3a4δ1−2−3−4

+[Z(2)
1,2,3,4 +W(2)

1,2,3,4 + ∆1+2−3−4B
(2)
1,2,3,4]a

∗
2a3a4δ1+2−3−4

+[Z(3)
1,2,3,4 +3W(1)

4,3,2,1 + ∆1+2+3−4B
(3)
1,2,3,4]a

∗
2a∗3a4δ1+2+3−4

+[Z(4)
1,2,3,4 +W(4)

1,2,3,4 + ∆1+2+3+4B
(4)
1,2,3,4]a

∗
2a∗3a∗4δ1+2+3+4

}

.

Before we start eliminating a number of the third-order terms it is important to mention a number of ’natural’
symmetries.4 The second-order coefficientV(−) only satisfies symmetry with interchanging of the last indices,
hence,V(−)

1,2,3 = V(−)
1,3,2, while V(+)

1,2,3 is symmetric under all transpositions of 1, 2 and 3. Furthermore,W(1)
1,2,3,4 is

therefore symmetric under the transpositions of 2, 3, 4, whereasW(4)
1,2,3,4 is symmetric under transpositions of all

its indices. Also,W(2)
1,2,3,4 remains symmetric under transpositions within the groups (1,2) and (3,4). In addition,

the coefficients should allow the Hamiltonian to be a real quantity. For the Hamiltonian (16) this gives one
additional condition:W(2)

1,2,3,4 should be symmetric under transpositions of the pairs (1,2)and (3,4).

The coefficients occuring in the canonical transformation only enjoy a limited number of ’natural’ symmetries.
B(1)

1,2,3,4 is symmetric with respect to interchanges of 2, 3 and 4, whileB(2)
1,2,3,4 = B(2)

1,2,4,3 andB(3)
1,2,3,4 = B(3)

1,3,2,4

only. Finally, B(4)
1,2,3,4 is invariant for interchanging the indices 2, 3 and 4. In the construction ofZ(i)(i = 1,4)

we have made sure that they enjoy the same symmetries asB(i)(i = 1,4).

Let us now eliminate those third-order terms that do not giverise to resonant four wave interactions. These
are the terms involvingδ1−2−3−4, δ1+2+3−4, andδ1+2+3+4. These terms vanish when the correspondingB-
coefficients satisfy

B(1)
1,2,3,4 = − 1

ω1−ω2−ω3−ω4

(

Z(1)
1,2,3,4 +W(1)

1,2,3,4

)

,

B(3)
1,2,3,4 = − 1

ω1 + ω2+ ω3−ω4

(

Z(3)
1,2,3,4 +3W(1)

4,3,2,1

)

,

B(4)
1,2,3,4 = − 1

ω1 + ω2+ ω3 + ω4

(

Z(4)
1,2,3,4 +W(4)

1,2,3,4

)

.

As a consequence the evolution equation fora(k, t) becomes

∂
∂ t

a1 + iω1a1 = −i
∫

dk2,3,4T1,2,3,4a∗2a3a4δ1+2−3−4 (A6)

4These are symmetries that specify that the integrals occuring in the Hamiltonian (16) are unaffected by relabeling of the dummy
integration variables
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where we introduced the interaction coefficientT as

T1,2,3,4 = Z(2)
1,2,3,4 +W(2)

1,2,3,4 + ∆1+2−3−4B
(2)
1,2,3,4 (A7)

Finally, the determination of the termB(2) requires special attention, because surface gravity wavesenjoy
resonant interaction for the combination∆1+2−3−4 = ω1 + ω2−ω3−ω4 = 0. It is then not possible to simply
eliminate theδ1+2−3−4 term. Instead,B(2) is determined from the requirement that also in terms of the free-
wave action density we have a hamiltonian system. Hence, we require thatT1,2,3,4 = T4,3,2,1 is symmetrical.
AlthoughW(2) is symmetric,Z(2) andB(2) are not symmetric. Therefore,T andW(2) may be eliminated from
(A7) by subtracting the (4,3,2,1) version of (A7). Observing that∆4+3−2−1 = −∆1+2−3−4 one finds

∆1+2−3−4

(

B(2)
1,2,3,4 +B(2)

4,3,2,1

)

= Z(2)
4,3,2,1−Z(2)

1,2,3,4, (A8)

so the asymmetry inZ(2) drivesB(2). This still looks like a singular equation forB(2), but the remarkable thing
is that for wavenumber quartets satisfying the resonance condition k1+k2 = k3+k4 the right-hand side (RHS)
of Eq. (A8) is proportional to∆1+2−3−4. In order to see this we evaluateRHSby using (A3) with the result

RHS= −2V(−)
1,3,1−3V

(−)
4,2,4−2

[

1
ω3 + ω1−3−ω1

− 1
ω2 + ω4−2−ω4

]

−2V(−)
2,4,2−4V

(−)
3,1,3−1

[

1
ω1 + ω3−1−ω3

− 1
ω4 + ω2−4−ω2

]

−2V(−)
1+2,1,2V

(−)
3+4,3,4

[

1
ω1+2−ω1−ω2

− 1
ω3+4−ω3−ω4

]

−2V(+)
−1−2,1,2V

(+)
−3−4,3,4

[

1
ω1+2 + ω1+ ω2

− 1
ω3+4 + ω3 + ω4

]

.

Now the terms involving the angular frequencies are all proportional to∆1+2−3−4. For example, the first term
becomes

1
ω3 + ω1−3−ω1

− 1
ω2 + ω4−2−ω4

=
∆1+2−3−4 + ω4−2−ω1−3

(ω3 + ω1−3−ω1)(ω2 + ω4−2−ω4)

and for the resonance conditionk1 + k2 = k3 + k4 the termω4−2 − ω1−3 vanishes! As a consequence the
singular terms∆1+2−3−4 can be removed from (A8), leaving the regular equation

B(2)
1,2,3,4 +B(2)

4,3,2,1 = X1,2,3,4 +Y1,2,3,4, (A9)

with

X1,2,3,4 = −2A(1)
1+2,1,2A(1)

3+4,3,4 +2A(3)
−1−2,1,2A(3)

−3−4,3,4

and

Y1,2,3,4 = 2A(1)
2,4,2−4A(1)

3,1,3−1−2A(1)
1,3,1−3A(1)

4,2,4−2

I have grouped the terms inX andY because of the different symmetry properties. The termX enjoys the
’natural’ symmetries and the Hamiltonian property, i.e.,

X1,2,3,4 = X4,3,2,1, X1,2,3,4 = X1,2,4,3,

whileY has the Hamiltonian property but not the ’natural’ symmetryproperty as

Y1,2,3,4 = Y4,3,2,1, Y1,2,4,3 = −Y2,1,3,4,
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but the relationY1,2,3,4 = Y1,2,4,3 does not hold!. A solution of (A9) is now constructed respecting the ’natural’

symmetryB(2)
1,2,3,4 = B(2)

1,2,4,3. Therefore, I tried a solution of the type

B(2)
1,2,3,4 = α [Y1,2,3,4 +Y1,2,4,3]+βX1,2,4,3, (A10)

and substitution of this in (A9) givesα = 1/2 andβ = 1/2. Evidently, because Eq. (A9) is only an equation for

the symmetric part ofB(2)
1,2,3,4 one can always add to the solution an arbitrary asymmetric functionλ1,2,3,4 with

the property thatλ1,2,3,4 = λ1,2,4,3 = −λ4,3,2,1. Although this indeterminacy will affect the solution fora(k) it
does not affectA(k) and therefore one might as well chooseλ1,2,3,4 = 0.

Using (A10) and the expressions forX andY one finds forB(2)
1,2,3,4

B(2)
1,2,3,4 = 1/2[Y1,2,3,4 +Y1,2,4,3]+1/2X1,2,4,3

= A(1)
2,4,2−4A(1)

3,1,3−1−A(1)
4,2,4−2A(1)

1,3,1−3

+A(1)
2,3,2−3A(1)

4,1,4−1−A(1)
3,2,3−2A(1)

1,4,1−4 (A11)

−A(1)
1+2,1,2A(1)

3+4,3,4 +A(3)
−1−2,1,2A(3)

−3−4,3,4.

while using (A11) in the expression forT1,2,3,4 from Eq. (A7) one finds

T1,2,3,4 = W(2)
1,2,3,4

−V(−)
1,3,1−3V

(−)
4,2,4−2

[

1
ω3 + ω1−3−ω1

+
1

ω2 + ω4−2−ω4

]

−V(−)
2,3,2−3V

(−)
4,1,4−1

[

1
ω3 + ω2−3−ω2

+
1

ω1 + ω4−1−ω4

]

−V(−)
1,4,1−4V

(−)
3,2,3−2

[

1
ω4 + ω1−4−ω1

+
1

ω2 + ω3−2−ω3

]

−V(−)
2,4,2−4V

(−)
3,1,3−1

[

1
ω4 + ω2−4−ω2

+
1

ω1 + ω3−1−ω3

]

−V(−)
1+2,1,2V

(−)
3+4,3,4

[

1
ω1+2−ω1−ω2

+
1

ω3+4−ω3−ω4

]

−V(+)
−1−2,1,2V

(+)
−3−4,3,4

[

1
ω1+2 + ω1+ ω2

+
1

ω3+4 + ω3 + ω4

]

.

while the energy density in terms of the ’free wave’ action variablea becomes

E =

∫

dk1ω1a∗1a1 +
1
2

∫

dk1,2,3,4T1,2,3,4a∗1a∗2a3a4δ1+2−3−4.

In summary, I find exactly the same results as Krasitskii (1994). It should be emphasized that I have not made
explicitely use of the specific form of the coupling coefficientsV(±)

1,2,3 andW(i)
1,2,3,4 (i = 1,4). I have only utilized

their symmetry properties, and, therefore, the present result is fairly general. The succes of this approach
depends entirely on the observation that it is possible to obtain a non-singular answer for theB(2)

1,2,3,4 coefficient
of the canonical transformation. In other words, there mustbe some deep reason why the right-hand side of Eq.
(A8) is proportional to∆1+2−3−4, giving a regular equation forB(2)

1,2,3,4, but I haven’t been able to figure out the
reason why.

Finally, an important remark regarding the canonical transformation for resonant interactions. Consider once
more Eq. (A9) which determinesB(2)

1,2,3,4. It is emphasized that strictly speaking we only have a condition
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on B(2)
1,2,3,4 for non-resonant waves, namely when∆1+2−3−4 6= 0. Therefore, for resonant waves the canonical

transformation is arbitrary. For a continuous spectrum onemay apply, however, a continuity argument to
determine the canonical transformation. Clearly, (A9) determinesB(2)

1,2,3,4 away from the resonance surface, but,
nevertheless, the relation holds arbitrarily close to the resonance. Insisting on continuity of the transformation
therefore givesB(2)

1,2,3,4 at the resonance surface. This has implications for the finite amplitude expansion for
a ’single’ wave. Taking the narrow-band limit of a continuous spectrum will therefore give a different answer
than when one starts from a discrete wave from the outset.

A.2 Nonlinear transfer coefficients

Definingq = ω2/g the second-order coefficients become

V(±)
1,2,3 =

1

4
√

2

{

[k1 ·k2±q1q2]

(

gω3

ω1ω2

)1/2

+

[k1 ·k3±q1q3]

(

gω2

ω1ω3

)1/2

+[k2 ·k3 +q2q3]

(

gω1

ω2ω3

)1/2
}

with ki = |k i|,ωi = ω(ki). The third-order coefficients become

W(1)
1,2,3,4 =

1
3

[U2,3,−1,4 +U2,4,−1,3 +U3,4,−1,2−U−1,2,3,4−U−1,3,2,4−U−1,4,2,3]

W(2)
1,2,3,4 = U−1,−2,3,4 +U3,4,−1,−2−U3,−2,−1,4−U−1,3,−2,4−U−1,4,3,−2−U4,−2,3,−1

W(4)
1,2,3,4 =

1
3

[U1,2,3,4 +U1,3,2,4 +U1,4,2,3 +U2,3,1,4 +U2,4,1,3 +U3,4,1,2]

with

U1,2,3,4 =
1
16

(

ω3ω4

ω1ω2

)1/2
[

2(k2
1q2 +k2

2q1)−q1q2 (q1+3 +q2+3+q1+4 +q2+4)
]

.

A.3 Results for a single wave train

Here, we study the case of a single wave, and we will derive expressions for the wave spectrum, skewness and
kurtosis for both deep and shallow water waves. We also discuss the relation between the canonical transfor-
mation and the well-known Stokes expansion.

Let us apply the present formalism to the special case of a single wave. We therefore write

a1 = aδ (k1−k0), (A12)

and the Zakharov equation (A6) becomes

∂
∂ t

a+ iω0a = −iT0|a|2a (A13)
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with T0 = T0,0,0,0, where for arbitrary depthT0,0,0,0 was derived by Janssen and Onorato (2007). It reads

T0,0,0,0/k3
0 =

9T4
0 −10T2

0 +9

8T3
0

− 1
k0D0

{

(2vg−c0/2)2

c2
S−v2

g
+1

}

.

wherec0 = ω0/k0 is the phase speed andvg = ∂ω/∂k is the group velocity.

The differential equation (A13) may be solved with the Ansatza= a0 exp(−iΩ0t) and as a result one finds that
a0 is a constant while the angular frequencyΩ0 reads

Ω0 = ω0 +T0|a0|2,

which corresponds to the Stokes frequency correction. The next step is to evaluate the canonical transformation
A = A(a,a∗). Substitution of (A12) into (18) gives

A1 = A(2)
1,0,0|a|2δ (k1)+aδ (k1−k0)+A(1)

1,0,0a2δ (k1−2k0)+A(3)
1,0,0a∗2δ (k1 +2k0)+

B(2)
1,0,0,0|a|2aδ (k1−k0)+B(3)

1,0,0,0|a|2a∗δ (k1 +k0)+ (A14)

B(1)
1,0,0,0a3δ (k1−3k0)+B(4)

1,0,0,0a∗3δ (k1 +3k0).

Eq. (A14) shows that, apart from a mode at wave numberk0, A1 has contributions atk =±2k0, atk =±3k0 and
a nonlinear correction to the linear mode atk = ±k0. In second-order one also finds in general a wave-induced
mean elevation contribution (cf. Janssen and Onorato, 2007) which for deep water can be shown to vanish. The
surface elevationη then follows from substitution of (A14) into

η =
∫

dk

√

ω
2g

A(k) eikx +c.c.

and the result is, upon introduction of the surface elevation amplitudea according toa0 → (g/2ω0)
1/2a

η = ∆a2 +a
(

1+ γa2)cosθ + αa2cos2θ + βa3cos3θ + ...., (A15)

whereα , β , γ , and∆ are known functions of wavenumber and depth and they follow from an extension of the
second-order result of Janssen and Onorato (2007). Thus, the coefficients read:

∆ = lim
ε→0

g
2ω0

fε
(

A(2)
ε ,0,0 +A(2)

−ε ,0,0

)

, γ =
g

2ω0

[

B(2)
0,0,0,0 +B(3)

−0,0,0,0

]

,

α =

(

gω2

2ω2
0

)1/2
[

A(1)
2,0,0 +A(3)

−2,0,0

]

, β =

(

ω3

ω0

)1/2 g
2ω0

[

B(1)
3,0,0,0 +B(4)

−3,0,0,0

]

,

whereA
(i)(i = 1,3) andB

( j)( j = 1,4) are the matrices that naturally occur in the present Hamiltonian approach
and they are explicitely given in the Appendix A.1 and A.2. Here we introduced a slight abuse of notation as
the index ’2’ now refers to wavenumber 2k0, etc. It is a straightforward (but laborious) task to evaluate the
coupling coefficients. In deep water they become:

B(1)
3,0,0,0 =

33/4

8
(1+

√
3)

k3
0

ω0
,B(2)

0,0,0,0 = −1
2

k3
0

ω0
,B(3)

−0,0,0,0 =
1
4

k3
0

ω0
,

and

B(4)
−3,0,0,0 =

33/4

8
(1−

√
3)

k3
0

ω0
,
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while

A(1)
2,0,0 =

1
4

(

2g
ω2

)1/2

(1+
√

2)
k2

0

ω0
, A(3)

−2,0,0 =
1
4

(

2g
ω2

)1/2

(1−
√

2)
k2

0

ω0
.

Using the expression for the coupling coefficients the following canonical transformation for a single wave is
found:

η/a =

(

1− ε2

8

)

cosθ +
1
2

ε cos2θ +
3
8

ε2cos3θ (A16)

whereε = k0a is the wave slope,θ = k0x−Ω0t +φ , φ is the arbitrary phase of the wave andΩ0 = ω0
(

1+ ε2/2
)

is the nonlinear dispersion relation.

The present weakly nonlinear expansion of the surface elevation in terms of the steepnessε is an example of a
Stokes expansion. However, it should be noted that the Stokes expansion is not unique. This can be checked by
obtaining the expansion of the surface elevation from the original Hamilton equations (17), and it can be shown
that there is a whole family of solutions, parametrized by the initial condition of the first-harmonic amplitude
at third order in wave steepness. The solution (A16) belongs to this family, and clearly this is the one that
is relevant to establish a connection between the single mode results and the narrow-band limit of the result
for general wave spectra. Also note that the family of Stokessolutions can be generated from the canonical
transformation by using a slightly more general starting point, namely Eq. (A12) with a = a(0) + ε2a(2) with
a(2) arbitrary.

For arbitrary depth the canonical transformation for a narrow-band wave train can be evaluated as well. After
some tedious but straightforward algebra all the matrix elements can be eliminated in favour of wave number
k0 andT0 = tanhx. Hence,

∆ = −k0

4
c2

S

c2
S−v2

g

[

2(1−T2
0 )

T0
+

1
x

]

, α =
k0

4T3
0

(

3−T2
0

)

,

β =
3k2

0

64T6
0

[

8+
(

1−T2
0

)3
]

, γ = −1
2

α2, (A17)

wherex = k0D, T0 = tanhx, c2
S = gD, vg = ∂ω/∂k, ω = (gk0T0)

1/2. These results were checked against
calculations of the matrix elements on the computer. Furthermore, the deep water limit is in agreement with
the known results given in Eq. (A16).

In order to derive expressions for the wave spectrum, the wave variance, skewness and kurtosis of a random,
narrow-band wave train we have to make the assumption that the sea state is Gaussian and homogeneous. For
a narrow-band wave train normality of the pdf of the linear wave implies that the phase is uniformly distributed
while the amplitudea obeys the Rayleigh distribution. Here,a will be scaled withσ =

√
m0 so that the pdf of

a becomes simply

p(a) = a e−
1
2a2

,

while the phase is uniformly distributed, hence

p(a,θ) = 1
2π a e−

1
2a2

.

Because of the presence of the wave-induced mean level, the average ofη is not zero. In agreement with
experimental practice, we substract the mean level〈η〉. In addition, in Eq. (A15) we scale amplitudea with σ
and we treatσ as a small parameter. Hence the surface elevation becomes

η = ∆σ2(a2−〈a2〉)+ σa
(

1+ γσ2a2)cosθ + ασ2a2 cos2θ + βσ3a3 cos3θ + ...., (A18)
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and now〈η〉 vanishes. Nevertheless, nonlinear quantities such as the second moment〈η2〉 will depend on the
parameter∆ (which measures the strength of the wave-induced mean sea level) as form > 1 〈(a2 −〈a2〉)m〉
does not vanish.

Let us first evaluate the wave spectrum for a homogeneous sea,which is essentially a quadratic quantity. To
that end we evaluate the spatial correlation function〈η((x+ r)η(x)〉 assuming homogeneity. The spectrum
F(k) then follows by taking the Fourier transform with respect todistancer. Now, since〈a2〉= 2,〈a4〉 = 8 and
〈a6〉 = 48, the spectrum becomes up to fourth-order inσ ,

F(k) = 1
2σ2

(

1+8σ2γ
)

δ (k−k0)+2σ4
[

∆2δ (k)+ α2δ (k−2k0)
]

+k→−k (A19)

and it can be verified that in the deep-water limit this resultagrees with the narrow-band limit of the spec-
tral approach, cf. Eq. (36). In the general case we see that the canonical transformation will give rise to a
second harmonic peak, a correction to the energy of the first harmonic and also a contribution to zero mean
wavenumber. It is left as an exercize for the reader that for finite depth the general result (A19) also agrees with
the narrow-band result obtained from Eq. (36). Just like in the main text, the determination of the frequency
spectrum requires special attention. In particular the Stokes frequency correction will affect spectral shape and
for a discussion on this see Janssen and Komen (1982).

The skewnessC3 and the kurtosisC4 are defined as

C3 = 〈η3〉/〈η2〉3/2,C4 = 〈η4〉/3〈η〉2−1, (A20)

hence we need to evaluate the third and fourth moments of the pdf,

〈η3〉 =

∫

η3 p(a,θ)dadθ , 〈η4〉 =

∫

η4 p(a,θ)dadθ

up to the required order inσ2, while we also need the second moment. The latter follows immediately from an
integration of the wavenumber spectrum, and as a result one finds

〈η2〉 = σ2+4σ4(

2γ + α2+ ∆2) . (A21)

In order to determine the skewness parameter we need to evaluate the third moment up the orderσ4. Using the
espression for the surface elevation (A18) one finds

η3 = σ3{

a3 cos3 θ +3σa2[

αa2 cos2θ cos2 θ + ∆(a2−〈a2〉)cos2θ
]}

+O(σ5).

We perform the averaging over the angleθ first. With 〈cos2θ〉 = 1
2 and〈cos2θ cos2 θ〉 = 1

4 one finds

〈η3〉 = 3σ3[

1
4α〈a4〉+ 1

2∆
(

〈a4〉− 〈a2〉2
)]

.

Now, since〈a2〉 = 2 and〈a4〉 = 8 the third moment becomes

〈η3〉 = 6σ3 (α + ∆) ,

and to lowest significant order the skewness becomes

C3 = 6σ (α + ∆) . (A22)

In a similar vein the kurtosis parameter can be obtained. In order to get non-trivial results an evaluation of the
fourth moment up toσ6 is required. Now,

η4 = σ4a4(

1+4γσ2a2)cos4 θ +4σ5a3 cos3θ
[

∆(a2−〈a2〉)+ αa2cos2θ + σβa3cos3θ
]

+6σ6a2 cos2θ
[

∆2(a2−〈a2〉)2 +2α∆a2(a2−〈a2〉)cos2θ + α2a4 cos2 2θ
]

+O(σ7).
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Figure 8: Skewness C3 and kurtosis C4 related to the canonical transformation for a steepnessε = 0.1 as function of
dimensionless depth x= k0D. Black line with wave-induced set-down, red line without wave-induced set-down.

Perform the averaging overθ first. To that end we need to know some additional integrals:

〈cos4θ〉 = 3
8,〈cos3 θ〉 = 0,〈cos3 θ cos2θ〉 = 0,〈cos3θ cos3θ〉 = 1

8,〈cos2θ cos2 2θ〉 = 1
4.

This gives

η4 =
3
8

σ4〈a4〉+ σ6
[

〈a6〉
{

3
2
(
β
3

+ γ + α2)+3(∆2+ α∆)

}

−〈a4〉〈a2〉(6∆2 +3α∆)+3∆2〈a2〉3
]

Now, since〈a2〉 = 2,〈a4〉 = 8, and〈a6〉 = 48, one finds

〈η4〉 = 3σ4 +24σ6[

β +3(γ + α2)+3∆2 +4α∆
]

.

Finally, by means of the expression for the variance (A21) the kurtosis becomes to lowest significant order

C4 = 8σ2[

β + γ +2(α + ∆)2] . (A23)

Hence, referring to (A17) we have now explicit expressions for the skewness and kurtosis of a narrow-band
wave train in terms of the wave variance, wave number and depth. In particular, for deep water one finds (see
e.g. Mori and Janssen, 2006)

C3 = 3ε , C4 = 6ε2, (A24)

whereε = k0σ is the ’significant’ steepness.

Finally, it is of interest to study the importance of the wave-induced mean level on the statistical properties of
the sea surface. As for a wave group one typically has a set-down and as for the range of dimensionless depth
x ≃ 1 |∆| < α it is seen from Eq. (A22) and (A23) that a set-down will give rise to a reduction of skewness
and kurtosis. This is illustrated in Fig.8 for both skewness and kurtosis plotted as a function of dimensionless
depthk0D. First of all we see that there is a dramatic increase of thesehigher order statistics when moving into
shallower water, but this increase is significantly slowed down when effects of the wave-induced set-down are
included.
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