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On some consequences of the canonical transformation in tii¢éamiltonian theory of water waves ;—,"‘ECMWF

Abstract

We discuss some consequences of the canonical transfomiatihe Hamiltonian theory of water waves
(Zakharov, 1968). Using Krasitskii’'s canonical transfatian we derive general expressions for the second
order wavenumber and frequency spectrum, and the skewndstha kurtosis of the sea surface. For
deep-water waves, the second-order wavenumber spectrdrntharskewness play an important role in
understanding the so-called sea state bias as seen by a/taater. According to the present approach,
but in contrast with results obtained by Barrick and Web87{), in deep-water second-order effects on the
wavenumber spectrum are relatively small. However, inlshalvater where waves are more nonlinear, the
second-order effects are relatively large and help to éxpie formation of the observed second harmonics
and infra-gravity waves in the coastal zone. Second-offfiects on the directional frequency spectrum are
as a rule more important, in particular it is shown how thek8saofrequency correction affects the shape of
the frequency spectrum, and it is also discussed why in theegbof second-order theory the mean square
slope cannot be estimated from time series.

The kurtosis of the wave field is a relevant parameter in theatien of extreme sea states. Here, itis argued
that, in contrast perhaps to one’s intuition, the kurtosisrdases while the waves approach the coast. This
is related to the generation of the wave-induced currentiamdssociated change in mean sea level.
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1 Introduction

Surface gravity waves are usually described in the confietkteopotential flow of an ideal fluid. As discovered
by Zakharov (1968), the resulting nonlinear evolution digms can be obtained from a Hamiltonian, which is
the total energye of the fluid, while the appropriate canonical variables &eegurface elevation(x,t) and
the valuey of the potentiakp at the surfacey(x,t) = @(x,z=n,t)).

For small wave steepness the potential inside the fluid magxpeessed in an approximate manner in terms
of the canonical variables and as a result the Hamiltoniaornes a series expansion in terms of the action
variableA(k,t) (which is related to the Fourier transform of the canonicaiables). The second order term
corresponds then to linear theory, while the third and foartler terms represent effects of three and four wave
interactions. Excluding effects of capillarity, it is wddhown that the dispersion relation for surface gravity
waves does not allow resonant three wave interactions aad@ssequence there exist a non-singular canonical
transformation of the type

A=A(ga")

that allows to eliminate the third-order terms from the Héonian. In terms of the new action variatdék  t)
the Hamiltonian now only has quadratic and quartic termsthedHamilton equation attains a relatively simple
form and is known as the Zakharov equation.

The properties of the Zakharov equation have been studiggeiat detail by, for example, Crawfort al.
(1981), Yuen and Lake (1982), and Krasitskii and Kalmykd®83d). Thus the nonlinear dispersion relation, first
obtained by Stokes (1947) follows from the Zakharov equatiod also the instability of a weakly nonlinear,
uniform wave train (the so-called Benjamin-Feir Instapjli the results on growth rates, for example, are in
good agreement with the results by Longuet-Higgins (19%8) did a numerical study of the instabilities of
deep-water waves in the context of the exact equations.

It is noted that once the solution to the Zakharov equatidmdsvn fora, one still needs to apply the canonical
transformation to recover the actual action varialland hence the surface elevation. Although the difference
between the two action variables is only of the order of theersaeepness, explaining why relatively less atten-
tion has been devoted to the consequences of the canominafdrmation, there are a number of applications
where one is interested in the effects of bound waves. Exesvgyk the high frequency (HF) radar (e.g. Wyatt,
2000) which basically measures aspects of the second-spaetrum, and the estimation of the sea state bias
as seen by an Altimeter (Elfouhaiét al. (1999).

In this paper | would like to study some properties and conseges of the canonical transformation in the
context of the statistical theory of weakly nonlinear oceaves. Using the Zakharov equation it may be
argued that to lowest order the action densiti,t) obeys Gaussian statistics. Then, using the canonical
transformation, effects of nonlinearity on the momentshef$urface elevation may be evaluated.

As a first example, | consider the second mom{grfh and the associated wavenumber variance spedfkn
and directional frequency spectruf{Q, 8). The second-order corrections to the wave spectrum (ctiled
second-order spectrum for short) are obtained by deriviggreeral expression for the wavenumber-frequency
spectrum. The wave number spectrum and the frequency gpetten follow from the marginal distribution
laws. Some of the properties of these second-order speaetrdistussed in some detail, both for deep-water
and for shallow water.

Regarding the wavenumber spectrum it is shown that the c@@ns given by the second-order spectrum are
small compared to the first-order spectrum. This contragtsBarrick and Weber (1977) whose work indicates
that for large wavenumbers the perturbation expansiorrgidge However, following Creamet al. (1989) it

is argued here that Barrick and Weber (1977) overlooked guoiitant, quasi-linear term which removes the
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divergent behaviour of the second-order spectrum. Creatradr (1989) considered improved representations
of ocean surface waves using a Lie transformation and apfiieir work to the determination of the second-
order spectrum in one-dimension. Our results on the seoothel- spectrum, although obtained via the different
route of Krasitskii's canonical transformation, are in qete agreement with Creamet al. (1989), but
our result is slightly more general as it holds for two-dirsienal propagation and also in waters of finite
depth. It is worthwhile to mention that Krasitskii (1994)dafiakharov (1992) considered the slightly simpler
problem of the higher order corrections to the action dgrsgiectrum. They found that the second-order action
density spectrum contains two groups of terms, namely tevhish are fully nonlinear and they describe the
generation of second harmonics and infra-gravity wavest@ms which are termed quasi-linear because they
are proportional to the first-order action spectrum. Thesgliaear terms are an example of a self-interaction
and give a nonlinear correction to the action or energy offtbe waves, whereas the fully nonlinear terms
describes the amount of energy of the bound waves which dsatisty the linear dispersion relation.

While the second-order wavenumber spectrum consists otomtributions, namely one contribution giving
the effects of bound waves and one quasi-linear term, thensearder frequency spectrum has an additional
term which, not surprisingly, is related to the Stokes feagy correction. In deep water the Stokes frequency
correction has only a small impact on the spectral shapethegeak. However, second-order corrections do
have an impact on the high-frequency tail of the spectrurkinggas first-order spectrum a Phillips’ spectrum
which has arQ " tail, it is found that from twice the peak frequency and oragathe sum of the first and
second-order spectrum (called the total spectrum from newhas approximately a@—* shape. Hence,
second-order corrections to the frequency spectrum arerbant and they mainly stem from the combined
effects of the generation of bound waves and the quasitlis&l&interaction.

In shallow water, gravity waves are typically more nonlinasithe ratio of the amplitude of the second harmonic
to the first harmonic rapidly increases with decreasing dsimnless depth. Therefore, compared to the first-
order spectrum the second-order spectrum may give risensiderable contributions, in particular in the
frequency domain around twice the peak frequency and inatheflequency range where forced infra-gravity
waves are generated. In addition, for a dimensionless agptt{1), the Stokes frequency correction is found
to give a considerable down-shift of the peak of the frequepectrum.

As a second example | consider the determination of the skesvand the kurtosis of the sea surface. The
skewness parameter is important when one is interested mhetiermination of the sea state bias as experienced
by a Radar Altimeter on board of a satellite (see e.g. Srqkb886), while the kurtosis is an important
parameter to assess whether there is an increased probabidin extreme sea state, e.g. the likely occurrence
of freak waves (Janssen, 2003). In particular, the depeedehthese statistical parameters on spectral shape
and dimensionless depth is studied. Regarding the deprdence, the important role of the wave-induced
mean sea level is pointed out. In the presence of wave growips implitude ocean waves give rise to a set-
down, and as a consequence the skewness and kurtosis paraneceteduced to a considerable extent. This
has important consequences for the occurrence of extreemtsen shallow water.

The programme of this paper is as follows. After giving sonaelkground on the reason why this study
was started§2 gives a brief overview of the Hamiltonian theory of surfagavity waves while in Appendix
Al a detailed derivation of the canonical transformatiorprissented. I3 the general expression of the
wavenumber-frequency spectrum is obtained in terms of de€ficients of the canonical transformation. The
wavenumber and the directional frequency spectrum théowdmmediately from the marginal distribution
laws. §3 shows that the total wavenumber spectrum agrees with @ \aater result of Creamet al. (1989),
highlighting the important role of the quasi-linear termis@, some interesting properties of the second-order
frequency spectrum for both deep water and water of finitehdape discussed. In particular, the deep-water
frequency spectra have a fatter tail due to the bound wavéshvgives rise to a considerable overestimate
of the mean square slope. Furthermore, in shallow water titleeS frequency correction results in a sizeble
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down-shift of the peak of the spectrum. 44 skewness and kurtosis are determined for general speura a
the dependence of the statistical parameters on depth @&otrapshape is briefly studied. Conclusions are
presented ifg5.

As the development presented here is fairly elaborate, AgligeA.3 gives all the relevant results starting from
the canonical transformation of a single wave train andetts&sgle mode results have been used as a check on
the general results of the main text. A preliminary accotthis work may be found in Janssen (2004).

1.1 Background

This investigation started when it was realized that adogrdo the work of Barrick and Weber (1977) the
weakly nonlinear pertubation expansion for surface gyaweves is not convergent. For small wave steepness
the nonlinear evolution equations have been solved by meagperturbation expansion by several authors
(Tick, 1959; Longuet-Higgins, 1963; Barrick and Weber, ZQ#&vhich allows to write down an expression
for the second-order correction to the wavenumber frequspectrumF (k, w). By integratingF (k, w) over
angular frequency, the following elegant result for thettital wavenumber spectruf(k) is found,

F(k):E(k)+%k2 ;dk’E(k’)E(|k—k’|) (1)

whereE (k) is the first-order spectrum.

It is instructive to determin€& (k) for a simple input spectrur (k). For the Phillips’ spectrum

E(k) = %apk*"‘, k > ko, (2
with ko the peak wavenumber amg) the Phillips’ parameter, the result is
1,[6 k? K2 (6 1 K+k3 4
F(k=E(K)+=a2|=log( - —1)+—53{—=—= —
9-200+59 |59~ g (@ ke w1 )
for k > 2kg, while for k < 2ky one has

F(k) = E(k)+%a§

6 k K [3 6k 3k+ 1k

A plot of this special case is given in Fif.and the present result is labellB&W. It is striking that for large

k the second-order spectrum dominates the first-order spectfhis is highly undesirable because it signals
that the perturbation approach is not convergent. As a cesee, parameters such as the mean square slope
defined by

mss— / dk I2F 5)

are to a large extent determined by the second-order sp&ctru

It is straightforward to obtain the behaviouretk) for largek by taking the appropriate limit of Eq4),

a2
lim F (k) = =22

m FK) = 515 (6)

which shows thaF (k) behaves like 1k hence parameters such as the mean square slope reallyediverg
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The divergence of the expansion in small wave slope has bade plausible in the past by several researchers.
The expansion is a small amplitude development around zeemrsurface. While this may be appropriate for
the large scale waves, small scale waves are riding on tigedames. Hence for these small waves the domain
is not bounded by a zero mean surface but has a large sca¢ioardetermined by the long waves. This will
affect the solution of the potential equation for the shaat/@s and hence will affect the spectrum of the short
waves. Others would argue that the divergence of the exprarisi high wave numbers suggests that these
short waves become very nonlinear hence very steep raguitmicro-scale wave breaking, which would limit
energy levels at the high wave numbers.

However, it turns out that the Barrick and Weber (1977) iteisuinost likely flawed. This was pointed out for
the first time by Creamest al. (1989) who considered improved representations of ocedacseuwaves using
Lie- and canonical transformations and applied their worthe determination of the second-order spectrum.
Surprisingly, they found in stead of EdL)(

F(k) = E(k) + %kz K E(K)E(k—K|)— k2E(k)/ dk’ E(K). (7)
k/2 0
The additional, quasi-linear term was explained by notivag Barrick and Weber (1977) did not include con-
tributions from the product of the first and third order sogalevation, since their second-order spectrum
is entirely determined by the second-order surface elmvatt is immediately evident that the additional term
cancels the singular behaviour of the first term, as for dipsiilspectrum the extra term equals}gag/klg%. It
is therefore important to include the extra quasi-lineamten fact, for large wavenumbers one finds from Eg.
(7) for the Phillips’ spectrum
ag K2
F(k):E(k)+% [6Iog(%—1)—7}, (8)

hence, the second-order spectrum behaves in a similabfaakithe first-order Phillips’ spectrum. This is also
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Figure 1: Second-order effects on the surface wave heigddtapm, illustrating the importance of the quasi-lineamte
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shown in Fig. 1 where the quasi-linear term shown if) @ives a large and important correction to the high
wavenumber tail of the second-order spectrum.

The Creameet al. result has important consequences for the theory of ocemesyand | therefore thought it
worthwhile to follow a somewhat different path by choosirggstarting point Zakharov’s treatment of surface
waves. A key role in this approach is the canonical transéion which separates resonant from non-resonant
contributions to the evolution of surface waves. The cagadrtransformation represents the effects of bound
waves, and once this transformation is known it is relagivaftaightforward to obtain an expression for the
second-order spectrum. This will be done for the case ofdirmensional propagation for arbitrary spectra.
Applying the result for unidirectional waves in one dimemsthe Creameet al. result will be recovered.

2 Hamiltonian formulation

Modern ocean wave theories start from the Hamiltonian féatman of the nonlinear evolution equations of the
potential flow of an ideal fluid. Zakharov (1968) discoverkdtithe Hamiltonian is given by the total energy
E of the fluid, while the appropriate canonical variables heedurface elevation (x,t) and the valuep of the
potential@ at the surfacey(x,t) = @(x,z=n,t)).

Here, the total energy is given by

//Dodzdx<D(p > 2/olxn

The boundary conditions at the surface, namely the kinerbatindary condition and Bernoulli's equation, are
then equivalent to Hamilton’s equations,

on OSE dy  BE

E:w> W:_ﬁa (9)

wheredE /dy is the functional derivative dE with respect tap, etc. Inside the fluid the potentigl satisfies
Laplace’s equation,

02
o+ 5 =0 (10)
with boundary conditions
px,z=n)=y (1)
and 5
X,Z
(p(gz ) = Oa Z= _D07 (12)

with Do the water depth. If one is able to solve the potential probldmn ¢ may be expressed in term of
the canonical variableg and . Then the energf may be evaluated in terms of the canonical variables,
and the evolution in time ofy and ¢ follows at once from Hamilton’s equations (E®)). This was done
by Zakharov (1968), who obtained the deterministic evolugquations for deep water waves by solving the
potential problemX0-12) in an iterative fashion for small steepnesdn addition, the Fourier transforms gf
andy were introduced, for example

n=[ ek (13)

wheref] and similarlyy are the Fourier transforms gf and . Here,k is the wavenumber vector, akdts
absolute value.
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In order to proceed, introduce
To = tanhkDg
and the linear dispersion relation for surface gravity vgave
w? = gkTo. (14)

In waters of arbitrary depth we have the following relatiatvibeen the Fourier transform gfand ¢ and the
action density variabl&(k,t)

= \/%(A(kHA*(—k)),llf = iy /o (AK) — A" (k). (15)

2w
In terms of the action variable the energy of the fluid becotadsurth order in amplitude
E= / dk1eo ALA; + / dk12301 2-3V{ 5 [AiAAg +C.C]
+1 / dk1258112: V55 [AAoAs +c.c
- / dk1,2,3,451727374W1(712),374 [ATA2A3As+c.C.] (16)
+3 / dk172,37451+2—3—4W1(,22>,3,4 1AAsA

4 * AK AK AK
+%1 / dk172-,37451+2+3+4W1(,2)73,4[ 1A2A3A; +C.C|

Here,V0U andW0 are complicated expressions @fandk which are given by Krasitskii (1994). For conve-
nience all relevant interaction coefficients are also redin the Appendix.

The evolution equation foA now follows from Hamilton’s equatio@A/dt = —idE /dA*, and evaluation of
the functional derivative of the full expression famwith respect taA* gives,

o | . o
EAl +iwA = —i / dkz3 {Vl(72’)3A2A351—2—3 + 2\/5§72’)1A2A351+2—3
+V1(£)3A§A§51+2+3} —I / dk234 {W1(712%374A2A3A451727374

+W1(722{374A§A3A451+2—3—4 + 3\/\/2227 1ASA3A401 1213 4

4 * Ak A K
+W1(72).,374'°\2'°\3'°~451+2+3+4} : (17)

Eq. (L7) is the basic evolution equation of weakly nonlinear gsavitives and it includes the relevant amplitude
effects up to third order.

A great simplification of the expression for the energy isiewdd by introducing a canonical transformation
A = A(a,a") that eliminates the contribution of the non-resonant secamd third order terms as much as
possible. The first few terms are given by

' 1 2)
Ar=a+ / dko3 {A(17%13612a3517273 + A:(|_7%13a2a351+273

+A(1?%‘,3a§a§51+2+3} + / dk234 {5(1’1373’432&36451—2—3—4 (18)

2 3
T B(l,%,3,4a§a3a451+2*3*4 + B(l,%,3,4a§a§a451+2+374

4
+B(1,%,3,4a§a§a251+2+3+4} o
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The unknownsAU andB! are obtained by systematically removing the non-resorard-tand fourth-order
contributions to the wave energy, and insisting that thenfof the energy remains symmetric. These expres-
sions are quite involved and have been given by Krasitski®Ql 1994) for example. The derivation of these
coefficients is given in the Appendix and here, we only give titansfer coefficient for the quadratic terms
explicitely. They read

(=) () (+)
AL Vias AD o Vao1 A _ Vias
1237 i —wp—w P Tt -’ YT o+ ws

and they show that in the absence of resonant three wavagtiters the transformatioh = A(a,a") is indeed
nonsingular.

Elimination of the variableé\ in favour of the new action variabkeresults in a great simplification of the wave
energyE (see (6). It becomes

' * 1 ' * ok
E= / dklahala1+§ / dk1234T123481858384012 3 4,

where the interaction coefficiefi 23 4 is given by Krasitskii (1990, 1994) and in Appendix A.1. Théerac-
tion coefficient enjoys a number of symmetry conditions, bfaln the most important one ®§ 234 = Tz 412,
because this condition implies tHatis conserved. In terms of the new action variaglélamilton’s equation
becomewa/dt = —idE/da’, or,

Jda; . : .
L rimay = i / dk234T1 234858384011 2-3-4, (19)

ot
which is known as the Zakharov Equation. Clearly, by remgthre non-resonant terms, a considerable sim-
plification of the form of the evolution equation describifayir-wave processes has been achieved. As a con-
sequence of the canonical transformation the interact@fficientT now represents two types of four-wave
processes. The first type is called the direct interactiahiavolves the interaction of four free waves (that
obey the linear dispersion relation) and in the interactoafficient this process has the weig‘mlﬁzz)m. The
second type is called a virtual state interaction becausefiee waves generate a virtual state éOnsisting of
bound waves which then decays into a different set of freeegiain the interaction coefficient this process
is represented by products of the second-order interacb?elfficientsvfzg. For narrow band waves in deep
water these two processes can be shown to have equal weight. -

The Zakharov equation has been used in the past as a stavtimtgfgr the stability analysis of ocean waves.
In addition, it is the appropriate starting point to obtdie tHasselmann equation (see e.g. Janssen, 2004)
which describes the evolution of the action density spettofi an ensemble of surface gravity waves owing
to (quasi-) resonant four-wave interactions. The Hassatnemuation forms the corner stone of present day
wave forecasting systems. However, strictly speaking th@seds to apply the canonical transformatid)(

in order to obtain the surface elevation and the associata@ wariance spectrum. This is the main subject
of the present paper. Therefore, the evolution of the fragenaction variable follows from the Zakharov
equation and by applying the canonical transformatit®) the nonlinear corrections to the surface elevation
and the wave variance spectrum may be obtained at everyinsteother words a diagnostic relation will be
obtained which immediately will give the changes in the atefelevation spectrum due to second harmonics,
infra-gravity waves and in case of the frequency spectrum,td the Stokes frequency correction. Noting that
the integral over the surface elevation spectrum measheepdtential energy of the system, it can be shown
analytically that for deep-water waves the spectrum is ghdrin such a way that total wave variance (hence
potential energy) is conserved. By excluding the contiilng to the wave spectrum at zero wavenumber we
can numerically show that also in shallow water the totalewaariance is conserved by the diagnostic relation.
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It is expected that the conservation of wave variance by déimewmical transformation is related to the property
of this transformation to ensure that the Zakharov equasi¢teamiltonian. However, such a direct connection
has not been established yet, but deserves further work.

3 Second-order spectrum

The main purpose of this section is to derive a general egimedor the wavenumber-angular frequency
spectrum in terms of the interaction coefficied® (i = 1,3) andB")(i = 1,4) that appear in the canonical
transformation and the nonlinear interaction coefficienhen, from the so-called marginal distribution laws
the wavenumber and frequency spectrum are obtained. Thenesilt is that for given free-wave spectrum,
which follows from the solution of the energy balance equatithe canonical transformation provides us with
a mapping that immediately gives the appropriate nonlil@asfrequency/wavenumber part of the spectrum
and the contributions by second-harmonics. This is ilaistt by some examples from surface gravity waves
in deep water and in water of intermediate defkDy ~ 1). Compared to the Barrick and Weber (1977)
result two new features are discovered. In agreement wigau@Geret al. (1989) a quasi-linear term is found
which removes the high-wavenumber catastrophe. In additto frequency spectra it is found that the Stokes
nonlinear frequency correction contributes to the seamaér spectrum.

3.1 The wavenumber-frequency spectrum

The purpose of this section is to derive a general expregsiowavenumber-frequency spectrum correct to
second order. In order to do so we begin by considering thepwat correlation function

P&, T)=(N(x+&t+1)N(X,1)),

and the wavenumber-frequency spectiiefk, Q) then follows immediately by Fourier transformation in spac
and time ofp, i.e.,

F(k,Q) /dfdrp (&, 7)dk€-0n, (20)

Here, k and angular frequenc@ cover the whole real domain. Note that from the realitynofand the
homogeneity of the wave field it follows that the wavenumibequency spectrum enjoys the properties:
F(k,Q) =F*(k,Q) = F(—k,—Q).

Once the wavenumber-frequency spectrum is known the waveeuspectrunt (k) and the frequency spec-
trum F (Q) follow from the marginal distribution laws:

:/dQ F(k.Q): F(Q) :/dk F(k,Q). 21)
These marginal distribution laws follow in a straightforddashion from the definition of the wavenumber-

frequency spectrum. For example, the wavenumber spectambe obtained by integrating Eq2Q] over
angular frequency and realizing that the resulting integvaer Q is ad-function int-space, i.e.

/dQF (k,Q) /dEdrp (&.7) /dQe‘ k-&-an) 7112 /df p(&,0) K€ = F k)

and the last equality follows because the wavenumber speads just the Fourier transform of the spatial
correlation function. In a similar fashion the relation fbe frequency spectrum may be established.

Technical Memorandum No. 579 9
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Evaluation of the spatial aspects of the two-point corietatunction is fairly straightforward since in the
expression of the surface elevation in Et@)(we have adopted a Fourier representation in space. Unfigly,

the time aspects g (&, 1) are more complicated as the action variah(k,t) obeys the Zakharov equation
which is nonlinear. Only when it can be argued that, for exanfipr small wave steepness, the nonlinear
term in the Zakharov equation can be neglected, it is sttimigiard to treat the time aspects of the correlation
function as well because the action variable then execugasigle oscilation with the angular frequency of
linear surface gravity waves. The latter approach is jestifor small wave steepness when one is interested in
the lowest order expression of the wavenumber-frequenegtepm (see e.g. Komest al,, 1994). Here, we are
interested in the second-order spectrum, which is of theravfithe square of the lowest-order spectrum. The
nonlinear term in the Zakharov equation, which gives fomegke the Stokes frequency correction for a single
wave train, is of the order of the amplitude to the third powaed it will be shown that this will give rise to a
contribution to the second-order, frequency spectrum kisiof the same order of magnitude as the generation
of second-harmonics and the low-frequency set-down.

The relation between two-point correlation function andifi@r amplitude can be established in the following
manner. Substitute the Fourier expansiomahto spatial correlation functiop and use reality of) (i (k) =
n*(—k)) to establish

p(&.7) = { [ dkadkai (k)" (kz ) KX K048
wheret; =t, andt, =t + 1. For a homogeneous sea,
(N (ky,t)N* (k2,t2)) = R(ky, T)8 (k1 —k2) (22)

the correlation function becomes
p(&E,T) = /dklR(kl,r)e*ikl'E,
This is then substituted in the expression for the wave gpegtgiving
_ 17/ —iQT
F(k,Q) = 2n/ dr R(k, 7)e 1", (23)

and further reduction can only be achieved once the timasgwal of R(k, 7) is known.

Clearly, in order to obtain the wavenumber-frequency spetevaluation of the second momeéntky,t1)n*(ka,t2))
is required. Thus we need the surface elevation in termsec&ttion variabléA (Eg. (15)) and we need the
canonical transformatiori8). Writing

1/2
At = f1 (A(ke) + A" (k1)) , f1 = (%) , (24)

the second moment becomes
(N1(t1)N3(t2)) = f1fa(Ar(t) A5 (t2) + A% 1 (t1)A 2(t2) +Ar(tr) A 2(t2) + A" 1 (t1) As(t2)).

In order to make progress in the evaluation of the second mgme will make some additional assumptions
on the statistics of the 'free-wave’ action varialalé which are consistent with the Zakharov equatia)(
First, we assume weakly nonlinear waves, heheed (¢), wheree is a small parameter of the size of the wave
steepness. Since we are interested in the second orderuspent answer up to’(e4) is required. Second, it

1For one time level; only. Two-timelevel statistics are obtained from the dyiwhevolution equation foa directly.
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is assumed that the action varialaldollows the statistics of a homogeneous, stationary fielth wéro mean
value(a;). Therefore, we introduce the action density spectNifk) according to

(ar(t1)az(ty)”) = Nudy 2, (25)

while (ayay) vanishes. Because of the cubic nonlinearity in the Zakharmation the third moment is small,
(agapag) = (), while the fourth moment becomes

(au(t1)an(t1)asg(ty) @} (t1)) = NiNo (8138 4+ 61482 3) + O(£°). (26)

The 6’(56) term is an estimate of the fourth-order cumulant. Howeveshown in Janssen (2003), under the
exceptional circumstances that freak waves are presenfptinth-order term becomes significantly larger then
the present estimate. Strictly speaking, the fourth-ocdenulant is, through its dependence on the resonance
function, also inversely proportional to the width of thewsapectrum. Hence, wave spectra should be suffi-
ciently wide, or in other words, the so-called Benjaminrfedlex should be sufficiently small. This is most of
the time a valid assumption. The exception is, of course,wdre is interested in parameters such as excess
kurtosis as this quantity is given by an integral over théhsoumulant. Therefore, for the kurtosis calculation
performed in section 5 deviations of the pdf due to the nealirdynamics of the Zakharov will be taken into
account.

The action variablé\ is now expressed in terms of the free-wave action variahlgguse canonical transfor-
mation (L8). For convenience we writd 8) in the form

A= ca+e%b(a a’) +£3c(a,a’), (27)

where we identifyb with the quadratic part ofl@) while we identifyc with the cubic part of the transformation.
Now in shallow water Janssen and Onorato (2007) have shomirthre is a wave-induced mean sea level
which is generated by the quadratic part of the canonicakfoamation. In other words, whil&) and (c)
vanish this is not the case f@). However, normally, in agreement with experimental pegtthe variance is
determined for a process that has zero mean so for this réasonean valuéb) = bd; is substracted frorb.

One could contemplate to correct for the average level df @ember of the ensemble separately, and this
will give different results for the wave spectrum and highester moments of the pdf because the mean sea
level correction is nonlinear in wave amplitude. Howeueis s not in agreement with experimental practice as
one intends to make observations which are representativttd area of interest. For example, if one derives
frequency spectra from timeseries (after substractingmban elevation) then these time series need to be
sufficiently long in order to be able to compare with the tle¢tioal ensemble averages. A small segment of this
time series may be regarded as a certain member of the erssambtiepending on the number and the strength
of the wave groups each segment will have a mean elevatiochvitnigeneral will differ from the mean level
over the whole timeseriésAs only the mean level over the whole time series is regardee@resentative for
the sea state we shall substract the ensemble averageaidvain the elevation signal. As a consequence, we
consider in stead oR(/)

A=ca+e’b(a,a’) +e3c(a a), (28)

with by = by — 5151. As aresultAin Eg. 25) has now a zero mean value, and, as a matter of fact lots oterm
will cancel in the subsequent calculations. Note that ekpliy one finds fotb,

by — lim /dk NoA2)
1T o) A2z

2In other words, correcting the signal for the mean elevatiemsegment would remove an interesting low-frequencyasign
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Now substitute Z8) in the expression for the second moments, then up to foudirdn € one finds

(M)A () = fufa{e*(aay) +e* ((babs) + (arch) + (cras)+
(1C_2) + (C1a_2) + (01b_)) } +c.c(1 e —2). (29)

where for brevitya; = a(k,t1). The second moment consists of two groups of terms, namelgnaropor-
tional €2 which will give in lowest order the free-wave spectrum, \ehdll the other terms, being (zﬁ(e“),
contribute to the second-order spectrum. However, thedotarm, being the dominant one, will also give rise
to a contribution to the second- order spectrum as the free aetion variable obeys the nonlinear Zakharov
equation.

3.1.1 First-order spectrum and Stokes frequency corractio

In this section we are going to evaluate the second momeat(a; (t1)a;(t2)) and in particular its dependence
on the timescalg = t; —t;. The 1-dependence ad(7) is obtained from the Zakharov equatidl®), where

it is noted thaig, satisfies according to Eq2%) the initial conditiongz(T = 0) = N1&;_». Evaluating the first
T-derivative ofg, one finds

d ) .
pras il /dk31475<a1(t1)a3(t2)a2(t2)a,§(t2)>62+3,4,5.

The evolution equation fag, is solved by means of the multiple timescale technique. ;Ttwis introduces the
fast time scalag = 1 and the slow timescale, = £°1, together with an expansion g$ in terms of the small

parametee?:g, = £2g5” + £4g5” + .... In lowest order one then finds

J . 2 _
<0T0—IO)2> gz _Oa

with solution
0y = Gy(12) 8126, (30)

whereG; is still a function of the slow time scafe. The second-order equation becomes

o7 . @_ 0
<0T0 |w2>gz - (31'292 +SZ’

and using the closure assumption
(a1 (t1)as(t2) @5 (t2)as(tp)) = £*G1Gzexp(ionT0){d1 403 5+ 81503 4}

the source functios, becomes
S= 2iG16iMT°/dk3T1,373,1G3,

Removal of secularity in the second-order equation theesgiie slow-time evolution @(1,)

iGl = 2iGl/.dk3Tl‘3 31Gs,
1o T

which is all that is needed to evaluate second-order céorectelated to the Stokes frequency correction.
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Returning now to the wavenumber-frequency spectr2@p e use 80) in (29) to obtain
2 _ _
F(k,Q) = fz—(r[k)/dT {G(k,Tz)el(wl_Q)T —{—G*(—k,Tz)e_l(wH_Q)T}

SinceG s a slowly varying function of time, it is possible to give approximate expression for the wavenumber-
frequency spectrum by means of partial integration. Atiéuely, one may perform a Taylor expansionGifr)
for small time. The result is

9G(k,0)

) = i [aosta- ) 752

d'(Q— w(k))] +
cc(k——-k,Q— —-Q)
Making use of the evolution equation f@rand the initial conditiorG(t = 0) = N the eventual result is
F(k,Q)=Fsk,Q)+(k— —k,Q— —-Q), (31)
where

1 1 .
FLis(k,Q) = §E05(Q —w(k))— §E05’(Q —w(k)) /dkl To.1,1,0E1,

with 'f(),l,l,o =To110/ ff andE is the lowest order surface elevation spectrum

~ wN(k)
9

The first term in Eq. 1), proportional to a delta-function, corresponds to theiliamexpression for the
wavenumber, angular frequency spectrum of linear ocearesvésf. Komenet al,, 1994) while the term
proportional to the derivative of the delta-function regaets a correction due to the Stokes frequency. The
latter term is of the order of the square of the wave spectmdnisaformally as important as the contributions
of the bound waves to the wave spectrum.

E(k)

(32)

3.1.2 The nonlinear and quasi-linear corrections

Continuing with the evaluation of the second moment of théase elevation we are now going to determine
the higher-order contributions that are @f&?). Since these contributions are of higher order it is sufficie
to use the time evolution of the action variables accordmdirtear theory, cf. Eq. 30). The ensemble
averages involving, b andc may be further evaluated by using the quadratic and cubis péathe canonical
transformation. Note that althoughsay) vanishes this is not the case for correlations sucfags ») because
C_» contains a cubic term which correlates wéh In this fashion one finds

(agC_2+cCr1a o) = 28, {Nl/dkzNzB(?’ilz’z + Nl/deNZB(li)’)l,z,z} ,
while
(a1Ch + C185) = 431 _oN1 T / dkzNzBf;m.
Furthermore
(bib o) = 251—2/dk374N3N4 [A(l%%’4A@i73’451_3_4ei(ub+w4)r+

3 1 i 1 1 Ci(en—
A(11%74A(7£37451+3+4e '(“H“"‘)T+2A27%11Aé’2177161+3_4e i(w3—ay)T 7
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while

(0b5) = 2815 / dk34N3N, [Af%AAngél_e,_Llé(‘*’3+‘*’4>T+

3) A(3 . 0 .1 o
A A 40138 (T L AT AL 5y g e (Gt

Combining everything together, we obtain the fourth-orcmtribution to the second moment, and from this
one immediately then inferB(k, 1) introduced in Eq. Z2). According to @3) the wavenumber-frequency
spectrum is the Fourier transform Riwith respect to timea and as a consequence we find the result

1
F(k1,Q1) = Fs(ke,Q1)+ 5 /dkz,sEzEs {%2,35172735(91 — Wy — )

+ 5 30142-30(Q1+ W — W3) + 26223301 28(Q1 — wp) }
+(k1 — _kval — —Ql). (33)

where we addeé# ; s(k1,Q;) from (31), while

f2r3 (2 (1) (3) 1f23/,(2 )
=—(A A =——— (A A 4
o3 f2f3< 213231 —2—372,3) , B3 5 f2f3< 322371 2—3,372>7 (34)
and
_ a0 53 __fo /@ 3)
S50,1,2,3— Bo73,2,1+B—o,1,2,3— fifof (Bo73,271+B—071,273) (35)
1faf3

Here, the transfer coefficients’ and.% 2 have a fairly straightforward physical interpretation,cdsneasures
the strength of the generation of the sum of two waves, hem@sures the strength of the generation of second
harmonics, whileZ measures the generation of low-wavenumbers, and hencéhalgeneration of the mean
sea level induced by the presence of wave groups. The ceeffi€imeasures the correction of the first order
amplitude of the free waves by third-order nonlinearity.eThansfer coefficientsy and.% are symmetric in
their indices,

a3 = 32, Bo3= P32,
while also
3= _p_3, Boz=RB_>_3,

holds.

The expression for the spectruftki, Q1) may be further simplified because the presence obtfienctions
allows the evaluation of a number of integrals, but no detaill be presented here. It suffices to point out that
the nonlinear terms (the ones involvirg and %) in Eq. (33) agree with the general result obtained by Barrick
and Weber (1977), and furthermore, in the special case oflonensional propagation, the nonlinear part of
the wavenumber, angular-frequency spectrum is found teeagith the result given by Komen (1980), who
corrected some misprints found in Barrick and Weber (1977).

3 Apart from a factor of two these coefficients coincide with thork of Longuet-Higgins (1963) on second-order correwito the
sea surface elevation
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3.2 The wavenumber spectrum

According to the marginal distribution lav2{) the wavenumber spectruf(k) follows from the integration
of the wavenumber-frequency spectrud3)(over angular frequency. The general result is

1 1
F(ky) = §E1+5/dk2,3E2E3{%27351—2—3+'@%,351+2—3}
+E1/dk2E2%”1,1,2,2 +{k1 — —ka}, (36)

From (36) it is seen that the second-order wavenumber spectrum haly-abnlinear and a quasi-linear term
only. When the wavenumber-frequency spectrum is intedrateer angular frequency the contribution by
the Stokes frequency correction vanishes, as expectetijsatetm is proportional to the derivative of tide
function with respect t®@;. This is in agreement with expectation as the wavenumbetispe, being equal to
the Fourier transform of the spatial correlation funct@(Z ,0), obviously does not explicitely depend on the
time evolution as given by the Zakharov equation. It is enspteal that the resulBg) is for thefrozen surface
elevation spectrum, and therefore the wavenumber spedtrknis an even function of wavenumbkg, as
can easily be verified.

No systematic study has been undertaken so far to invesstigiater what conditions the result for the wavenum-
ber spectrum, Eq.3), converges. For deep-water waves and for realistic wagetispit was found, and this
will be shown in a moment, that the changes to the first-ordectsa were small. The situation is different
for shallow water waves because the interaction coeffisibatome quite large. For the first-order spectra that
have been studied in this paper it appears that the changesreelatively small fokD > 1. In the opposite
case one might even obtain negative spectra, which is otedughly undesirable.

Before we discuss a number of special cases, namely the tassrmle wave train and the one-dimensional
case of a continuous spectrum of waves propagating in oeetidin, we mention that using numerical in-
tegration it can be shown that the second-order surfacat@evspectrum as given ir8§) has the special
property that its variance vanishes when the contributiotiié spectrum at zero wavenumber is ignored. This
is discussed in more detail when moments of the wavenumlokefraguency spectrum are discussed3rB.2.

3.2.1 Single wave train

In this case the first-order spectrum is given by
E(k) = mod(k — ko), (37)

wheremy is the zero moment, and substitution 8%) into Eq. 36) gives

1 5 A 1
Fk) = Mo [1+ 2o (Bé?op,o + B(—Sc)xop,oﬂ S(k —ko) + 5%2,0”%5(k —2Ko)

+(k < —k). (38)

Here, we consider the deep-water case only while shallowvedfects are treated in Appendix A.3. For deep
water waves in one dimension the expressionsBfét,B(), andAl) are relatively simple coefficients. They
become:

5@ _ 1K @ 1k

0,0,0,0 — 2@7 —0,0,00 —
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while
1/2 2 1/2 2
® _1<29> 1 SING) _1<29> ko
I CERV L NN S 1-v2)-2,
AOJrO,O,O 4 W40 ( )(*b 0-00,0" 4 W40 ( )(*b
Hence, the coefficients ir88) read
2
5(2 5(3
Bg),()),o,o =I5, B(fc)),o,o,o = %a Ao =K, (39)
and, therefore, from3@) one obtains as positive wavenumber spectfurtk) = 2F (k) (k > 0),
Fi (k) = mo { (1 kjmo) (k — ko) + kimod(k — 2Ko) } . (40)

It is immediately evident from the above expression thatdéeonical transformation gives a second order
correction to the shape of the wave spectrum which resulis iadditional second harmonic peakat 2k,
while also the energy of the first harmonickat kg has a correction. In agreement with the energy preserving
property of the canonical transformation the wave variasfdbe total spectrum is, however, unchanged as

/dk F, (K) = mo.

Therefore, the increase in wave variance due to the preséitice peak at twice the wave numbeyis exactly
compensated by the second-order correction to the enerthedirst harmonic. The latter correction can be
traced back to the matrix elemeri2§? andB® (see Eq. 88)). In particular,B® causes a reduction of the
wave variance at the first harmonic (s86)j and as explained in Appendix A.1 the form of this matrix baen
chosen in such a way that the free wave action varialgbeys an evolution equation which is Hamiltonian.

In Appendix A.3 we derive the wave spectrum of a single waaitin a slightly different fashion by writing
down the canonical transformation for a single wave traig. (fA14)) and by deriving the corresponding
expression for the surface elevation. It is then straighifod to obtain the wave spectrum by evaluation of the
Fourier transform of the spatial correlation function €f. (A19)). The present expression for the single-wave
spectrum given in40) is in perfect agreement with the deep-water version of Bq.9) given in Appendix
A.3.

In Appendix A.3 it is also pointed out that the usual Stokegamsion for a single wave train is not unique.
In fact, there is a whole family of solutions that satisfies Hamilton equationsl@). The canonical transfor-
mation for the single wave train belongs to this family. Ttiensformation is unique, however, because the
single mode is regarded as the limit of the continuous calsibe Whe canonical transformation for general wave
spectra has to satisfy the additional requirement thatdhatens of motion remain Hamiltonian.

3.2.2 Continuous spectrum of waves propagating in one titinec

We now take the case of one-dimensional propagation and seresthat the waves are propagating in the
positivex-direction. Therefore,
E(K) :{ E(k), k>0,

0,k<0.

For this choice of lowest-order wave spectrum the expras&ipthe wave spectrun36) may be simplified
considerably. The positive wave number spectrum becomes

00 . . kq
Fi(k) = Ei+2E /0 dksE» (B(_?’%’LZ’Z—FB(f)Q’l) n /0 doEoEr 272

—{—/0 deEZElJrZ%%’lJFZ_'_/k dk2E2E271%§,2717 (41)
1
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For numerical evaluation of the expressidii)(one needs to rewrite the convolution integrals, in paldicthe
third and the fifth term of the right hand side, because theraantk; — k» or ko — k1 vanishes in the integration
range. When botk; andk; are large, the integral involves the product of energy atd@venumbers, which is
large, with energy at high wavenumbers, giving very noisults for the high wavenumber spectrum (unless
one would be able to discretize with very large resolutidn)order to avoid noisy results | have transformed
the third and fifth term in such a way that these conditions alooccur. For example, in the third term the
integration interval is split in two, namely from Okg/2 and fromk; /2 tok;. Next, because the integrals are of
the convolution type and’ is symmetric, it is straightforward to show that the secartdgral equals the first.
Furthermore, the fifth integral can be written as an integvalr the domain 0 tee by using the transformation
ko — ki = k3. Then, using the symmetry property of, the result is identical to the fourth integral. As a
consequenced() becomes

” 53) 5(2) oG 2
F+(k1) = Ei1+ ZEl/O dkoEs (8711172’2 + Bl,2,2,1) + 2/0 dk2E2E172%71_2
+2 /0 dkoE2E 2551 1o (42)

Note that substitution of the single mode spectrum giver3#) ito (42) yields the result40).

In agreement with Creamaat al. (1989) the second order spectrum consists of two contabsitia fully
nonlinear contribution (the last two terms d@f2j) and a quasi-linear term (the second term4s)). We will
now show that the fully nonlinear term is in agreement with Barrick and Weber (1977) result, while the
expression for the quasi-linear term agrees with Creaghed. (1989). In order to show this one needs to
evaluate the transfer coefficients for the one-dimensioasé. Making use of the work of Jackson (1979) and
numerical evaluations | find

o= 2Eka+kel, Brz =2k~ ke, 43)

wheres; ands, denote the signs of the wave numbkrandks.

Substitution of 43) into the fully nonlinear termslL then gives

k2 ki/2 k2 00
NL= -1 dkoBEsEq o+ -1 / dk2E2E1+2.
2 Jo 2 Jo

The first integral equals the integral with the same arguroeet the domairik; /2,k; ), while the last integral
can be rewritten in an integral over the doméip, «), and the result becomes

k2 00
NL= 2 / dkoE2E 1.
2 Jiu/2

which agrees with Eq.2).

Next, the coefficients in the quasi-linear term are evatlidi@one dimension one finds (with the help of Miguel
Onorato who used Mathematica) the simple expressions

5(2 1 W\ 43 1,0 1
B(l,%z,l = —Ekf <1+ a) ; B(_%,Lz,z = Ek%a’ — Gr221=—3Ks, (44)

and the quasi-linear ter@L becomes
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which agrees with the Creamet al. (1989) result. The resulting spectrum, correct to secoddrdsecomes

2 o o
Fy (k) = E1+% / dkoE2Epy 5 — KOE; / dioEs, (45)
ki/2 0
which is in complete accord with the resul) (Hence, it is concluded that the quasi-linear term, evetliaith

the formalism developed by Zakharov, plays an importarg,rak it removes a divergent part from the fully
nonlinear term. As a consequence, it seems likely that theilttmian approach of Zakharov combined with
the canonical transformation of Krasitskii leads to cogeait results. The advantage of this approach over the
one by Creameet al. (1989) is that we now immediately have the generalisatiotwtmdimensions as well

(see Eq. 86)).

As a final check of the results we have evaluated numeridalysecond-order spectrum by using the general
expression given in Eq.4Q). All integrals in this paper will be evaluated with the Teapid rule on a grid
with variable resolution. The wavenumbers are on a logaiithscale withAk/k = 0.10 and the total number
of wavesN is N = 80, therefore spanning a wavenumber rakgg,/kmin = (1 -+ Ak/k)N=1 which is typically

a factor of 2000. The result of this integration is shown ig.FL and coincides with the analytical result
labeled with Eqns. 34, 7). The second-order spectrum remains indeed small compardtk first-order
result. Furthermore, it has been checked that also for #melstg wave case, which has potentially a stronger
nonlinearity, the quasi-linear term removes the divergemt of the nonlinear term. In fact, in the latter case
one finds that for deep-water waves the second order spedrprecisely twice the one in the propagating
example, cf. Eq.45).

3.3 The angular frequency spectrum

In order to obtain the directional frequency spectrbiQ2, 0), where 8 is the propagation direction of the
waves, we introduce polar coordinates in wavenumber spatieas for example we have for the first-order
spectrum

E(k)dk = E(k, 0)kdkd® = E(Q, 6)dQd6; — E(k) = vg(K)E(Q, 8) /k

According to the marginal distribution lav21) the angular frequency spectrum follows from the integrati
of the wavenumber-frequency spectrum over the wave véctddowever, our interest is in the directional
frequency spectrunk (Q, 8) and we define it by integrating (k, Q) over the absolute wavenumbler= |K|
only, and by considering positive frequencies only (hehesfactor of two)

F(Q,6) :Z/kdk F(k,Q), Q> 0. (46)

A number of integrations in Eq.46) may be performed because of the presence of tdriactions in the
wavenumber frequency spectrum given in E28)@nd the directional frequency spectrum becomes after some
straightforward algebraic manipulations

17}

F(Q16) — E(Ql,el)—ﬁ—Q{E(Ql,el) [ d0ue; fl,zg,lE(Qz,ez)}

Q1/2
42 /0 dQ,d6; E(Q1 — Q2,61 — 62)E(Qa, 62) 42 5
+2/0 dQd6; E(Q1+ Q2,61+ 62)E(Q2, 62) %5 , 5 5

+2E(Q1,61) / 40206, E(Q2, 62) %1122 (47)
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This is the main result of this section. For given first-ordeze-wave spectruri(Q, 0) Eq. @7) gives the
second-order corrections to the free-wave spectrum. Hemv@évmust be emphasized that all wavenumbers
in the above mapping relation should be converted to andrdguencies using the inverse of the dispersion
relation Eqg. 14): For examplek, = k(Qz), while k12 = k(Q1 — Q2), andks;2 = k(Q1 + Q2). Although for
deep-water the expressions for these wavenumbers candiaaabexplicitely, for shallow water this can only
be done numerically using an iteration scheme.

It is instructive to compare the result for the frequenagediion spectrum with the one for the wavenumber
spectrum given in Eq. 3g). It is then clear that the fully nonlinear terms and the diasar term in Eg.
(47) have, regarding their form, a close resemblance to thegponding terms in the wavenumber spectrum.
However, the frequency-direction spectrum has an addititarm which is related to a Doppler shift of the
frequency by nonlinear effects (the so-called Stokes faqy correction). Note that this term involves minus
the derivative of the first-order frequency spectrum witbpect to frequency, and, therefore, in deep-water
where the Stokes frequency correction is positive the teglllbe a shift of the frequency spectrum towards
higher frequencies while in shallow waters where the Stdieguency correction is negative the frequency
spectrum will be shifted towards lower frequencies. For tithdl discussion of this effect on deep-water
single wave trains see Janssen and Komen (1982).

3.3.1 Deep-water waves in one dimension

For one-dimensional deep-water waves it is fairly strdayinard to obtain the interaction coefficients (see
Eqgns. @3) and @4) for o7, % and¥ respectively). Furthermore, the interaction coeffici€ 1 is given by
the simple expression (Zakharov, 1991)

1221 = k%kz, ko > Kj.

Substituting all this in EQ.47) the frequency spectrum for unidirectional waves becomes

2 0

F(Qi1) = E(Qi)- # o0,

NS
292

i 4 o
+Q%/o dQz E(Q1+Q2)E(Q2) (Q1+ ZQQ)Z)} - %E(Ql)/o dQ, E(Qy)

O 00
E(Ql){ﬂf /0 dQ, Q3E(Q2) + Qf /Q dQ, QZE(QZ)}
1

/2 2, 0212
|7 002 (01— 09E(@2) [(22 - 0:)2+03 (48)

Note that the fully nonlinear contribution to the secondesrfrequency spectrum is in complete agreement
with a result obtained by Komen (1980).

Let us study in more detail the angular frequency spectrutnraparticular the consequences of the nonlinear
corrections, for the realistic case of a JONSWAP spectrussgdimanret al, 1973) with peak frequency
Qo = 0.5, Phillips’ parameten, = 0.01, and overshoot parametge= 1. In Fig. 2 we show the frequency
dependence of the total increment to the first-order JONS\8f#detrum due to second-order effects and in
addition we show increments due to the fully nonlinear tettme, quasi-linear term and the Stokes frequency
correction separately as given by Ed@L7). The fully nonlinear term is always positive and with ineseg
frequency shows a sudden increase around twice the pealefreg while for large frequencies it has &in*

tail. The quasi-linear term is always negative and it ag@isminimum value arounfl = 1.5fy. This term also
has anf ~* tail which, as will be seen in a moment, cancels the tail ofifig nonlinear term in such a way that
in agreement with Eqg.40) the sum of the two terms has dn® behaviour. For deep-water waves the Stokes
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Figure 2: Second-order effects on the frequency spectrunmeasion of f/ fo. In addition, the effects of the fully nonlinear
term, the quasi-linear term and the Stokes frequency ctioreare given separately as well.

frequency correction gives rise to a shift of the wave spectrowards higher frequencies and therefore in Fig.
2 we see a typical negative-positive signature of this temthé frequency range ofafy < f < 2fg the Stokes
frequency correction compensates the effect of the gursesii term while for large frequencies it falls off more
rapidly than both the fully nonlinear term and the quasééinterm. Adding all contributions together it is seen
that the main effect is a shift of the low-frequency part @& tave spectrum towards higher frequencies, while
at high frequencies there is a small increase in spectralde®ne would conclude from Fig.that the Stokes

lOE T T T T
F 1o E

0.1

F(k/k_0)
F(f/f_0)

0.001

0.0001E-

F 0.001
1e-05- E

0.0001 I )

1le-0 L

flf_0

Figure 3: Comparison of wavenumber and frequency spectrudting second-order effects (red). For clarity the first-
order spectrum (black) and the second-order contributigre¢n) are shown as well. For deep water waves the Stokes
frequency correction is hardly visible near the peak of ttegfiency spectrum, while second order effects have a pro-
nounced impact on the high-frequency tail of the wave specttrHowever, second-order effects on the wavenumber
spectrum are not visible.

frequency correction plays an important role in the modiitceof the frequency spectrum, but the main change
is near the peak of the first-order spectrum which has mosteofariance. As a consequence, for the present
example the Stokes frequency correction only gives a smadlification of the first-order spectrum while
the small increments at high frequency give a relativelgdamodification of the first-order spectrum. This
follows from Fig. 3 where the right panel shows the first-order frequency spextthe contribution by second
order effects and the total spectrum. Therefore, as fareasotial spectrum is concerned, the main second-
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order effect is a somewhat fatter high-frequency tail. Clolyyoung, steep windsea (having an overshoot
parametety ~ 3, and a Phillips’ parameter, ~ 0.02) or, as will be evident in the next section, only in the
fairly extreme circumstances of shallow water a signifidamtact of the Stokes frequency correction on the
frequency spectrum is to be found.

The presence of a somewhat fatter high-frequency tail iffrfgiency spectrum has important consequences,
so let us discuss this aspect in more detail. A fit of the higlydency part of the spectrum from two times the
peak frequency until 10 times the peak frequency with a pdaveof the typef ~™ gives a slopen of about 4.
This is intriguing as this slope has been reported frequaemtbbservational studies (Toba, 1973; Kawetial.,
1977; Mitsuyastet al, 1980; Kahma, 1981, Forristall, 1981 and Doneddral,, 1985), but later experimental
studies suggest that at high frequencies there is a tramditom f—* to f° (e.g. Hara and Karachintsev,
2003) There are also a number of theoretical explanatiofavisur of anf~4 power law. These range from
the familiar concept of the Kolmogorov inertial energy @ caused by the resonant four-wave interactions
(Zakharov and Filonenko, 1967) to Doppler shifting of shwaves by the presence of the orbital motion of
the long waves (e.g. Banner, 1990), while Belcher and \iaesi1997) explain thé —* power law in terms

of the dominance of bound waves (associated with sharpeckdste gravity waves) over the high-frequency
free waves. Our explanation of a fatter high-frequencydaihes closest to the work of Belcher and Vassilicos
(1997). In the present approach the occurrence of shargedrasves is implicit in the choice of the high-
frequency tail of the first-order spectrum (a Phillips’ spem), but alternative choices of a first-order spectrum
will give rise to a fatter tail as well. Note that we have calesed unidirectional waves only and it would be of
interest to study effects of directionality (cf. E@L7§) on wave variance levels at high frequencies. This is left
for further study.

The presence of an enhanced tail in the high-frequencyrspeds also plainly evident in the following simple
example. For the Phillips’ spectrum E®)(converted to angular frequency space, hence,

E(Q) = apg?Q >, Q > Qo,

it is possible to evaluate all integrals in E48] explicitely, but the resulting analytical expressionkeanuch
more elaborate than the corresponding one for the wavenuspieetrum (c.f. )-(4)), so we will not present
these details. It is only mentioned that second-order ctams to the angular frequency spectrum play indeed
a much more important role than in case of the wave numbetrsipecTo be definite, from the exact solution
one may obtain an asymptotic expansion in powers of the sqpf&2 /Qy, valid for large frequencies

F(Q) ~E(Q) <1+ @g—z>,g>> Qo (49)

which shows that there is a considerable contribution tdresgpuency spectrum by the bound waves as it scales
with Q3. In sharp contrast, the contribution of the bound waves ¢owtavenumber spectrum scales apart
from a logarithmic dependence ks® which is a similar behaviour as the first-order spectrum Ed. (8)).
Therefore, bound waves give rise to a fatter high-frequdady while at the same time in the wavenumber
domain the contribution of the bound waves is small. Thidlistrated in the left panel of Fig3 where the
wavenumber spectrum shows hardly any change in the higlewember tail due to the bound waves while in
the right panel there are visible changes to the frequenegtapnm to be noted.

3.3.2 Aremark on moments of the spectrum

It can be readily verified that the zeroth moment of the seaodér spectrum for the case of one-dimensional
propagation vanishes. This follows from the numerical @atibns in deep water and also in shallow water
when the contributions to the wave spectrum at zero wave pumfe ignored. The question is therefore of

Technical Memorandum No. 579 21



ESCECMWEF 0On some consequences of the canonical transformation in téamiltonian theory of water waves

interest whether this conservation property can be provemianalytical manner. For deep-water waves this
follows immediately from an integration of the general te$or the wave number spectrum, EQ36], over
wavenumber with the result

n?) = / ok, Eq + / oky0koE1Ep [55 + B2+ 2611 2] (50)

and upon using the expressions for the interaction coefti€igiven in Eqns.43) and @4) the vanishing of the
second integral follows at once. Hence, in deep water thewasiance, even in the presence of bound waves,
is given by the integral over the first-order spectrum onlysidilar proof may be given for the second-order
frequency spectrum, while this also follows in a trivial wiagm the wavenumber-frequency spectrum and the
marginal distributions laws2(l). Note that | have been unable to obtain a proof of this pitypefrthe second-
order spectrum for two dimensional propagation in deep water shallow water waves only an analytical
proof is available in the case of a single wave train. To tinat @e uses the expression for the spectrum of a
single wave train given in Eq.AR0) and ignores the contribution at zero wavenumber. Upongu@i7) the
vanishing of the variance of the second-order spectruroM@llat once.

It should be clear, however, that all other moments of thetspm are affected by the presence of bound waves.
We will discuss this in some detail for the mean square sldmkep-water waves as this quantity is relevant
in satellite retrieval algorithms, the albedo of the sedaser and in air-sea interaction studies. It is important
to realize that in the presence of bound waves the mean sglapemssdoes not follow from the usual fourth
moment of the frequency spectrum. For free waves, obeyiadjribar dispersion relatio® = w(k) it can be
shown that indeed dk KF (k) = [dQ (Q*/g?)F (Q) and hence the fourth moment of the frequency spectrum
eqguals the mean square slope. However, bound waves do notrabdispersion relation from linear theory,
while also the frequency spectrum shifts towards higheyueacies because of the Stokes frequency correction.
This is most easily understood by considering the exampdesafgle wave train. Substitution of the expression
for the spectrum of a single wave train, i.e.

E(k) = mod(k—ko),
in Eq. (33) one finds for the wavenumber-frequency spectrum
FkQ) = 3m(1-Km) S(k—ko)5(0 — ) — Krfend(k— k)8 (Q - ) +
%k%n’éé(k— 2k0)3(Q — 2ap) + (k— —k, Q — —Q).

Here, the first term combines the linear term and the quasitieffect, the second term represents the effect of
the Stokes frequency correction while the third term givesgeneration of second harmonics. The wavenum-
ber spectrum follows immediately from an integration ovegaar frequency,

F(K) = [ 42 F(k.) = mo (1 kGmo) 8(k— ko) + KGmg(k - 20),
and hence the mean square slope becomes
mss= /dk KF (K) = kjmo (14 3kgmo) -
On the other hand, the frequency spectrum follows from theyimal distribution law 46), hence

F(Q) = mo (1— kgimp) 5(Q — awn) — 2kgMGand' (Q — o) + kGG (Q — 2a),

and the fourth moment of the frequency spectmgbecomes

. 4
m4:/d§2 %F(Q) = k§mo (1+ 23k5my) .
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Evidently there is a considerable difference betwegrandmss There are two reasons for this difference.
First, the frequency of the waves is subject to a Dopplet shifised by the Stokes frequency correction which
shifts the frequency spectrum towards higher frequen8esondly, the second harmonic has a frequenay 2
and a wavenumberkg, but according to the fourth moment the wave varianceugttias a wavenumbelikd as
k=w?/g= 4w§/g. Hence, for deep water waves the fourth monmapaind the mean square slopesswill be
different.

Returning now to Fig3 where a comparison of wavenumber and frequency spectrauwaslit is immediately
evident that also for a continuous spectrum the fourth manseiarger than the mean square slope as due to
the nonlinear corrections the level of the high frequenay giethe frequency spectrum has increased. This has
important consequences for the estimation of the mean elgpe from frequency spectra as obtained from
buoy time series. Assuming that buoys can observe only émcjas below a cut-off frequency, say of 0.5 Hz,
then well resolved sea states, corresponding to large weigats, are in particular prone to an overestimation
of the mean square slope. Using a JONSWAP spectrum the tiveaien due to the incorrect interpretation
of the fourth moment as a proxy for mean square slope may leendieted. For example for a wind speed of
20 m/s and a wave height of 10 m the means square slope may lestiveated by 30%, while a low wave
height case only gives an overestimation of 5%. Theref@tanates of the mean square slope from frequency
spectra may have considerable errors.

3.3.3 Shallow water effects

Let us apply now the general expression for the directioragjfency spectrund{) to the case of shallow water.
It was already mentioned that in order to evaluate the seoothel contribution to the frequency spectrum in
waters of finite depth the inverse of the dispersion relatiah is required. However, in the shallow water case
this inversion cannot be given in an analytical manner scefbee only numerical results will be presented in
thisg.

The examples that will be discussed here are taken from trRCCEanual on surf zone hydrodynamics,
Chapter 4, page I1-4-16. In this manual three examples oéwpectra in shallow water are shown for depths of
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Figure 4: Second-order effects on the frequency spectrufuradion of f/ fp. The effects of the fully nonlinear term, the
quasi-linear term and the shift by the Stokes frequencyection are given separately as well. The left panel shows the
case D=3 m (kD = 1.49), while the right panel shows the case-DL.7 m (khyD = 1.00). Note the pronounced difference
in the shift due to the Stokes frequency correction, beirsiymin the left panel and negative in the right panel. Alsten

the change of scale suggesting the sensitive dependerfeesdtond-order spectrum on depth.
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3,1.7 and 1.4 m, but only the first two cases will be consideethe most shallow example is in the surf zone,
where violent breaking occurs which is not taken into actduthe present context. As first-order spectrum
we take a JONSWAP spectrum with peak angular frequédgy- 2.1, a Phillips’ parametea, = 0.015, an
overshoot parametgr= 7, while the frequency widttr = 0.07. For depth® of 3 and 1.7 m the dimensionless
depthskgD at the peak of the spectrum are 1.65 and 1.06 respectivalyh&acase in the surf zone with= 1.4

m the dimensionless depth is 0.89 which is beyond the limitooivergence of the present approadh).(

Let us study the increments for the caBes 3 m andD = 1.7 m using the same first-order spectrum. They are
shown in Fig.4. First of all note the change of scale by a factor of 5 when gytinvards more shallow water
indicating that indeed the second-order spectrum depenalsénsitive manner on depth. Secondly, while the
increments for the nonlinear and quasi-linear term areitatigely similar, the increments due to the Stokes
frequency correction are markedly different. The cas&bf= 1.49 (D = 3 m) is similar to the deep-water
problem having a positive frequency shift, while gD = 1.00 (D = 1.7 m) the frequency shift is negative.
This is qualitatively in agreement with the well-known ritghat for a single wavetrain the Stokes frequency
correction is positive fokD > 1.363, while it is negative in the opposite case (Whitham, 1J&hssen and
Onorato, 2007). However, the present case is not quite wasemd and by trial and error it was found that
the transition from positive to negative shift occurred atightly lower value of dimensionless depth, namely
koD ~ 1.2. In contrast with deep-water waves the increments dueet&tbkes frequency correction are now

]-E T I T I T I T I T I T I T E
B = First-order| y
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N —— D=17m 1
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Figure 5: Variance spectra as function of frequency (Hz)tieo different values of depth obtained from the same first-
order spectrum, showing the sensitive dependence of tisemee of second harmonics and wave-induced set-down on
depth.
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quite significant and they are visible near the peak of thal teave spectrum. This is illustrated in Fid.
where for the same first-order spectrum the sum of first-acdrgkorder spectrum is shown for the two values
of depth. Comparing the first-order spectrum with the topscsrum it is clear that fob = 3 m there is
hardly any shift of the spectrum, while for the more shallageD = 1.7 m there is a definite down-shift of
the total spectrum, therefore once more supporting thatsendependence of the second-order spectrum on
depth. In particular, note the rapid increase of the lovgiency infra-gravity wave energy by a factor of 10
while dimensionless depth only decreases by about 60%ewalgb the second harmonic peak appears to be
sensitive to depth variations. Finally, the increased {iigquency levels caused by second-order nonlinearity
are evident in Fig5. In both cases the high-frequency part of the spectrumvislidosely af ~# power law in

the range between 1 and 5 Hz. Removing the quasi-lineart@ffadd, just as in the case of deep-water spectra,
result in a much more rapid divergence from the first-ordecspm. This is illustrated in Fig.6] where it is
clear that without the quasi-linear term higher levels ia tigh-frequency part of the spectrum are obtained.
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Figure 6: Impact of the quasi-linear term on the variancegfiency spectrum for a depth of 1.7 m, showing a much fatter
high-frequency tail when the quasi-linear term is remov@bservations obtained from Robert Jensen show a fairly good
agreement with the second-order spectrum when the quesailiterm is included.

Observations of the frequency spectrum were kindly digitiby Robert Jensen from the Cerc manual and they
are shown in Fig6 as well. A fair agreement between the theoretical spectmotu@ding the quasi-liner effect)
and observations is found, in particular for the high-fremgy part of the spectrum. Note that the generation
of second harmonics, both theoretically and experimgntadis been studied before by, for example, Norheim
et al. (1998). These authors investigated the consequences adleastic formulation of the Boussinesq wave
shoaling equations and a good agreement with observatfdhge avave spectrum was found. However, there
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was a tendency to overestimate the level of the high-freqyutail of the spectrum and this overestimate could
perhaps have been avoided by introducing the quasi-lirfést én their stochastic model.

Finally, it is seen from Fig6 that the low-frequency, infra-gravity part of the spectrisrmompletely determined

by the fully nonlinear term of Eq.4(7). An extensive discussion and verification of this aspeseabnd-order
theory has been presented by Herbetrral. (1994), who point out that the nonlinear term ) refers to

the forced part of the infra-gravity waves, which is usuality a small part of the total energy in the infra-
gravity range. However, using the observed Bi-spectrumctirgributions of the forced infra-gravity waves
from the observed directional wave spectrum may be isolateda good agreement between observed forced
and theoretical forced infra-gravity wave energy is okadinFor further recent work see Toffet al. (2007).

4 Skewness and Kurtosis for general wave spectra

Let us now try to determine the skewneSs and kurtosis parametdt, for general wave spectra. These
parameters measure deviations from the Normal distribwaiad this information is of relevance for certain
practical applications such as the determination of theadled sea state bias as seen by an Altimeter or the
detection of extreme sea states. Skewness and kurtosiw/fisdm the third and fourth moment of the surface
elevation pdf and they are defined in this paper as follows:

U3 Ha
CG=—5C=-—5—-1 (51)
by’ 3u3

wherepu, = (n"), n=2,3,4, are the second, third and fourth moment of the pdf of the sarédevation, while
the first momentn) is assumed to vanish. For a Gaussian pdf l@tandC, vanish.

In order to evaluate these moments the surface elevatiotpiegsed in terms of the Fourier integraB) and

the Fourier amplitudes are expressed in terms of the acgosity variableA. In the next step we apply the
canonical transformatiorl8) which is of the formA = ga+ £2b+ £3c. Hence, the moments may be expressed
in terms ofa, b(a,a*) andc(a,a*), hence these moments may be evaluated when the statistezarf® known.
The free action variabla satisfies the Zakharov equation, and thus in principle thtssital properties o&
may be obtained. We have seen that for weakly nonlinear wiavesound that in good approximation the
stochastic variable obeys Gaussian statistics, but as shown by Janssen (20@8)iates from the Normal
distribution are important for the dynamical evolution bétwave spectrum (due to four-wave interactions)
which may result in a significant contribution to the kurtosHowever, deviations from Normality are not
important for the skewness of the sea surface.

The evaluation of these statistical parameters is an engm®@ifort and as a first step, in Appendix A3 skewness
and kurtosis as obtained from the canonical transformatierdetermined for a single wave train. The single
mode result for skewness and kurtosis will serve as a referéar checking the general results for a spectrum
of waves. These will be derived in the followirg.

4.1 Skewness calculation

Relatively little attention will be paid to the derivatioh skewnes&; as its general form for deep-water waves
is already known (cf. Longuet-Higgins, 1963; Srokosz, )98dowever, the present development is given
because it is a direct generalisation of the deep-watelttesvards shallow waters.
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Because of the assumption of a homogeneous sea the thirdmhggigecomes

ps = (n3) = / dk123(M1A2A3),

where the Fourier transform gf is related to the action variabkethrough Eq. 24). Using this last equation
in (51) one finds

Uz = /dk]_’z’g f1 f2 f3 { <A1A2A3> + 3<A]_A2A§> + C.C} .
In order to make progress we use the expression of the biescted action variable2@), which is an expansion

of the canonical transformation in terms of the small stespa. Realizing that only a result correct to fourth
order in¢ is required one finds

uz = &° / dk123f1f2fa{(a1aa3) + 3(auazas) } +
54/dk1’273 f]_ f2 f3 {3<a1a253> + 6<a1a§53> =+ 3<a1a25§>} + C.C.
Invoking now the Gaussian statistics of the free wave actatablea it is immediately evident that the third
moments such agyapaz) vanish. In addition, using the random-phase approximatiothe fourth moment
(cf. Eqg. @6)), the moments involvind can all be expressed in terms of products of the action dehkit

Eliminating then the action density in favour of the surfabevation spectrunk using Eq. 82) the eventual
result for the third moment becomes after setting 1

Hz = 3/dk1,2EzEs(£f1,2+e%’1,2),

wheres and% have been introduced in Eg34). Finally, the second momepp = (n?) follows immediately
from Eqg. 60) and as only the lowest order result is required one finds

Up >~ 0'2: /dkl E1,
and as a consequence the skewness becomes
3 .
Co = = [ ckioBos (ot H1a). (52)
Note that this expression for the skewness holds for both-tleter and shallow water waves. The skewness

of the sea surface is, as expected, entirely determinedégum interactions as measured 4> and the
difference interactions as weighted 4 ».

As a final check of the result the limit of a narrow-band waeéntin Eq. 62) was taken, i.eE; = 028 (k1 —Kko),
and it is straightforward to show that the result agrees thighexpression for a single wave given in Appendix
A.3 (see Eq. A24)).

4.2 Calculation of fourth moment
Using (L3) and (5) the fourth moment becomes for a homogeneous sea state

= (% = / 0K 1.2.3.4M12.3.4(A1A2AGA + AALAAGA; + BALAALAS) + C.C. (53)
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whereMs 234 = (wwpwsan) /2 /492,
Now substitute the canonical transformati@8)(into (53) and retain only terms up to sixth order én The
result is
Ha = / dk1234M1 234 {3e*(@raasa;) + €° [4(crapazau) + 12(Craa3a;)
+4(Cjapazas) + 12(crazakay) + 6(agahsbs) + 12(agabsb) + 12(agasbsbs)
+6(ajashsbs) + 12(agashsby)| +c.c.} (54)

Clearly, there is one fourth-order term while the remairtgrgns, all connected to the canonical transformation,
are only sixth order in the steepness parametdihe fourth-order term has already been discussed by Jansse
(2003), where it is shown that the deviations from Gaussiatisics, as induced by the nonlinear dynamics,
gives rise to a kurtosi€, which is proportional to the square of the Benjamin-Feirebad However, all the
other terms in Eqg.54) are small and therefore only the lowest order contributthe pdf, i.e. the Gaussian
distribution, is required to evaluate these terms. Forr#rason the fourth moment consists of two parts, namely

dyn

Ha = Hy"" + p5™

where a general expression {lmj’y” is given in Janssen (2003). Here we concentrate on the botitm of the
canonical transformation to the fourth moment. It is fastgaightforward to evaluate the correlations involving
¢, using the relevant symmetries and the random phase appatsn for the sixth moment, i.e.

(arapagajazag) = NiNaN3[01-4(0r-503-6+ 0p-603-5)+ 01-5(Op—ad3-6+ Or—603-4)
+01 6(02 403 5+ O 503 4)] + O(£8).

Introducing one additional matrix, namely

fo 1 4
D123 = T iots (Bg),i,z,s + B(fc)),l,zs)

which basically respresent the strength of the basic motrohorder and the third harmonic respectively and
expressing the action densityin terms of the wave variance, the c-terms become

" 1 1
12¢® / dk123E1EE3 {‘51,1,2,2 + 5-@1+2+3,1,2,3 + 5551+23,1,2,3} . (55)

The terms invoIving3 in Eq. (4) are a bit harder to deal with. The eventual result is

1 1
12¢° / dk123E1E2Es {»071,3»@72,3 + PB13P23+ 251 3523+ 5%2,3 + 5%3,3} (56)

Combining 65) and 66) the fourth moment becomes
psn = 3¢t / dky23E1Ep + 1268 / dk 1,2 3E1E0E3 {1 3.9 3+ PB13H2 3+ 2941 352 3
1 1 1 1
+§%%3 + Ee@§3 +C1122+ 591+2+3,1,2,3 + 5%”1+23,1,2,3} . (57)

Recall that the variance is given by E&Q], i.e.

<I’]2> — /dk1E1+/dk1dk2ElE2 [%2’2—1—%%24-2%1’172’2} s (58)
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then the kurtosis paramet€f2" can now be evaluated for small steepness. The result is safiege equal to
one,

4 1 1
csn = pe /dkl,z,gElEzEs { (A3+ PB13) (o3 + PBo3)+ 591+2+3,1,2,3 + 5‘51+23,1,2,3} (59)
and this result is in agreement with the general form foun®hgratoet al. (2008), but the coefficient inside

the curly brackets was not evaluated explicitely.

Here, we note that all the boldface terms &7 and 68) cancel each other, leaving a very simple expression
for C4 indeed. Note also that all the terms BBJ have a simple physical interpretation. The matsixcorre-
sponds to the second harmonic, the ma#igives the mean surface elevation respof#sgjves the third-order
correction to the amplitude of the free gravity waves wi#ilecorresponds to the amplitude of the third har-
monic. This interpretation becomes more clear when we takg9) the limit of a narrow-band wave train, i.e.
E; = 028(k1 — ko). The result is identical to EqAR3) of Appendix A3.

Finally, the total kurtosis is given by the sum of the canah@ontribution and the contribution by dynamics,
ie.

Ca=CP"+CE" (60)

whereCS""is given by Eq. (29) of Janssen (2003).

4.3 Anillustrative example

It is of interest to evaluate the expressions for the skesBgsand kurtosisCi2" for a given wave spectrum
and to compare the result with its narrow-band limit. It imigthtforward to do a numerical evaluation of the
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Figure 7: Skewness{Jleft panel) and kurtosis ££"(right panel) for a steepness= 0.1 as function of dimensionless
depth x= koD. Red line corresponds to the case of a Phillips’ spectruhilenthe black line corresponds to the case of a
single wave train with the same variance while the carrievemumber equals the peak wavenumber k

Egns. 62) and Eq. §9). For wave spectrum the very simple windsea spect@)rayggested by Phillips (1958)
was chosen. For this simple spectrum the significant stsspne kom(l)/2 = a,%/z/Z and a Phillips’ parameter
ap = 0.04 was chosen in order to match the choice of steepness irasieeot a single wave train discussed in

Appendix A.3. Fig.7 shows skewness and kurtosis as function of depth for twoscaBee first one has the
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spectrum given in) while the second one has a delta-function spectrum of time Exk) = 025 (k — ko) with

the same variance as the first case, and corresponds to ¢e wimve train case of Appendix A.3. It is clear
that these two cases give a significantly different skewaesskurtosis and hence knowledge of the spectral
shape is important in determining the value of the skewnedskartosis.

In any evenC{2"is found to increase fairly rapidly as dimensionless degpitreiases when the waves approach
the coast. However, the total kurtosis also has a contabutiom the dynamics of the waves, see EGO)(
calledCI". According to Janssen and Onorato (20G§" becomes negative at around the value of dimen-
sionless depthyD ~ 1.3 which is the same point where the Stokes frequency cooregtinishes. Combining
the dynamical and canonical contribution to the kurtosis found that the dynamical contribution dominates
and the net result is that when waves approach the coast ttasisuis seen to decrease with depth. Hence
in shallow water the occurrence of extreme waves is lestylitkein in deep water. This perhaps surprising
conclusion is connected to the generation of a wave-induooeect and the associated mean sea level change
in shallow water. These processes cause the vanishing Stdkes frequency correctionlgD ~ 1.3 and slow
down the increase @32" with decreasing dimensionless depth (see Appendix A.3).

5 Conclusions

In the hamiltonian formulation of surface gravity waves & kele is played by the canonical transformation
that eliminates effects of nonresonant interactions oretlwdution of the free wave action variable as much
as possible. Therefore, the canonical transformationigesvus with an elegant method to separate the non-
resonant interactions (bound waves for example) from thgontant resonant interactions as described by the
Zakharov equation. In a wave prediction system the evalugiguation for the spectrum of an ensemble of
ocean waves is solved. This equation follows from the Zakhaquation and therefore gives the spectrum
of the free waves. In order to obtain the actual wave spectmenstill needs to take the consequences of the
canonical transformation into account.

Starting from the canonical transformation of surface igyawaves a general expression for wavenumber
and directional frequency spectrum has been obtained. eTdiagnostic relations are valid for general two-
dimensional spectra and may be applied both in deep andoshalaters kD > 1). For the wavenumber
spectrum it is found that there are two nonlinear corresti@me related to the generation of bound waves and
infra-gravity waves and one quasi-linear term giving aection to the energy of the free waves. In agreement
with Creameret al. (1989) when the general result is applied to the case of onertsional propagation,
the combination of the nonlinear and quasi-linear coroectesults in a small change to the first-order free
wavenumber spectrum. This contrasts with the Barrick andenEL977) result for the second-order spectrum
who only considered the fully nonlinear term. This term andtvn leads to divergent behaviour of the total
wave spectrum. In fact, for high wavenumbers the secondraatrection is more important than the first-order
one signalling that the perturbation approach would fail.

A key role in this development is played by the quasi-lineamtwhich removes the divergent behaviour of the
fully nonlinear term. In other words, a key role is played bg B(f%s ,-term of the canonical transformation.
On the hand, this terms assures that the Zakharov equaﬁtanidtbhian, on the other hand, this terms assures
the convergent behaviour of the second-order spectrura thierefore important to check that the form of this
term is correct. This is reported in Appendix A.1.

The result of this work on the wavenumber spectrum is relefgairestimation of the sea state bias as seen by an
Altimeter as was discussed by Elfouhadyal. (1999). These authors used the second-order theory of ledtngu
Higgins (1963), which is equivalent to disregarding thesifiaear term in Eq. 36). They basically used)
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to obtain the first-order spectruB(k) from the observed wave spectrunik). Because the quasi-linear term

is disregarded it is not a big surprise that the first-ordecspmE (k) is found to deviate to a large extent from
the observed spectrum. As a consequence there will be @vabld deviations from the 'classical’ sea state
bias results obtained by Jackson (1979) and Srokosz (18863use these authors assumed that the first-order
spectrum is approximately given by the observed spectruaweder, when retaining the quasi-linear term in
Eq. 25) the differences between the first-order spectrum and teerged are expected to be small. This work
therefore justifies the approach followed by Jackson anldSm

The directional frequency spectrum has, compared to themwawaber spectrum, an additional correction re-
lated to the well-known Stokes frequency correction. Inpdeater the effect of the Stokes frequency correction
is usually quite small. Nevertheless, we have seen thatthegreak of the spectrum this term compensates to
a large extent the effect of the quasi-linear self-intéoactin shallow water gravity waves are steeper and as a
consequence the Stokes frequency correction has a pragmimpact on the shape of the frequency spectrum.
Also, the fully nonlinear and the quasi-linear term have astderable impact. The fully nonlinear term will
give rise to forced infra-gravity waves while the combipatiof the fully nonlinear term and the quasi-linear
term determines the second harmonics and the level of thefféguency tail. These last two aspects of the
spectral shape in shallow water have been studied exténbefore (see for example Herbearsal,, (1994) and
Norheimet al,, (1998)) and a good agreement with observations of the wasetsim was obtained, although
perhaps a better agreement would have followed when thé-tjuear effect had been included.

Expressions of the skewness and kurtosis parameters wevedle/hich are extensions of known results for
deep-water narrow-band wave trains to the case of genezatrapgn waters of finite depth. These parameters
are fairly sensitive to effects of the shape of the wave spattand this should be relevant for statistical
distributions of wave crests and the envelope of a wave,tfainexample. It is also made plausible that
the kurtosis of the sea surface elevation decreases whessveaproach the coast, and this is caused by the
wave-induced mean sea level which for one-dimensional \yeweps is negative. Hence, for one-dimensional
waves extreme sea states are less likely to occur in waténseomediate depthkD ~ 1). Extension of this
work to the case of two-dimensional propagation is desirad it is already known that, for example, the
dynamical part of the kurtosis reduces considerably wheritectional width of the wave spectrum increases
(see Waseda (2006); Gramstad and Trulsen, 2007). Firstadss, using parametrizations of the directional
effect do suggest, however, that the conclusion that waeekess extreme in shallow waters still holds.
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A Appendix: Remarks on Zakharov equation

A.1 Canonical transformation

In order to obtain the coefficients in the canonical tramsfation A(a,a*), given in (18), we substitute the
transformation into the Hamilton equatioh7j and considering weakly nonlinear waves we evaluate the re-
sulting equation to third order in amplitude only. The tineridatives in the quadratic and cubic terms of the
transformation are evaluated by means of the anticipatdtr@9) for the evolution in time of the free wave
canonical variable(k,t). As only accuracy up to third-order in amplitude is requiveel may use the linear
approximationday /ot +iwa; = 0.

The result is

J . .
o tiwar =i / dkoa { D12 AT 5+ ViZ5larasd1 2 3

2 - % 3 * ok
+ [A1+2—3A(1‘%73 + 2\/35’27)1]323351-4-2—3 + [A1+2+3A(17%’3 +V1(,—£)3] 3-23351+2+3}

—i / dk2,3.4 { [25,12),3,4 +W1(,12),3,4 + A1—2—3—45(12,3,4] 82832401234

+ [25,22),3,4 + W]E22)73,4 + A1+27374|3(12,3,4] 858384014234

+ [Zfz).sA + 3Wz£,22,1 + Al+2+3—4B(1?%73,4] 383240112434

+ [Zfz),u +W1(7‘;),374 + A1+2+3+4B(14273,4] a3a3a251+2+3+4} . (A1)
whereA; > 3=y — Wy — ws, A1123-4 = Wy + Wy — W — wy, etc. Furthermore, the coefficier®s) (i = 1,4)
are given in terms of the second-order coefficiarits) andA) as follows

(1 1) (=) 1)
Z12)34—2/3[ 121 2Ag+434+V131 3A(2+424+V1(41 4A2+323

- 3 - 3 - 3
+V3£1,)3— 1A(—%—472,4 + Vil,)tl— 1A(—%—372,3 + V2(,1,)2—1A(—:)J,—4,3,4} ) (A2)
while

2 1 1 1
Z§,2),3 2[\/1(3)1 3A£1%4 2+V1(4)1 4Ag%3 2+V351)3 1A(24)1,2—4

g

(=) (-) (1) () 3)
V14 1A2,3,273 —Vii212R30434— V1201283 434] (A3)

and

3 3 - —
21350 =2 M2 A 325 Vi210Aa s Vi3 15A4 2

- + (1 () 1)
+V‘£1747 1A2+3,2,3 - 1(,3,)7 173A2,z)1,274 -V 172,1,2Aé,4,374} ) (A4)

while, finally,
4
Z£2)34 =2/3 [ 1) 212Ag42434+v(1) 313A242424+V(1) 414A(242323

- (3 - 3 - 3)
+V1(+%,1,3Af%f4,2,4 + V1(+z>1,1,4Af%fs,2,3 + V1(+%,1,2A(7374,3,4} : (A5)

We comment on hoiZ() (i = 1,4) was obtained in a short while. Let us first simplify the seconder contri-
butions to Eq. Al). This is straightforward as for gravity waves there areggpnant three wave interactions.
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Then,A") can be chosen in such a way that the second order terms vanishs a consequence we obtain

- - +
123~ "o .. .0 123 DI = o
W — W — W3 W+ W+ W3

and the evolution equation fak,t) becomes

d
—a I =
ot 1+iwag

—l/dk234 Zl 34+W1(2)34+A1 2-3- 45(1%34]61233&451 2-3-4

7

+[21234+W1(2>34+Al+2 3- 455334]32&36\45”2 34

3
+[Z§,2),3,4 + 3Wz€,3>,2,1 + A1+2+3*4B(1,%,3,4]5‘2‘31351451+2+374

+ [25,2),3,4 + Wl(,z),3,4 + A1+2+3+4B(1,%,3,4] a2a3a451+2+3+4} .

Before we start eliminating a number of the third-order ®itis important to mention a number of 'natural’
symmetries. The second-order coefficiewt ~) only satisfies symmetry with interchanging of the last iedic
hence,\/l(’;)3 = Vl(?z while Vl(;“):; is symmetric under all transpositions of 1, 2 and 3. Furtfmean(712{374 is
therefore symmetric under the transpositions of 2, 3, 4;mwvl(‘234 is symmetric under transpositions of all
its indices. AIsoW1234 remains symmetric under transpositions within the groag®) @nd (3,4). In addition,
the coefficients should allow the Hamiltonian to be a realngiia For the Hamiltonian X6) this gives one
additional COI’]dItIOth(’Z)’&A should be symmetric under transpositions of the pairs @ng)(3,4).

The coefficients occuring in the canonical transformatioly @njoy a limited number of 'natural’ symmetries.
351;‘3 4 IS symmetric with respect to interchanges of 2, 3 and 4, V\B@;S 4= B(lzg 43 and B<13; 34= B(f%z 4
only. Finally, B(14%‘34 is invariant for interchanging the indices 2, 3 and 4. In tbastruction ofZ()(i = 1,4)

we have made sure that they enjoy the same symmetrig¥ és= 1,4).

Let us now eliminate those third-order terms that do not gise to resonant four wave interactions. These

are the terms involvin@; > 3 4, 0112:3 4, and &1, 2,3.4. These terms vanish when the correspondsag
coefficients satisfy

o _ 1 L) (1)
B 234 =~ G T o (2324 +W,254)
(3) 1 (3) (1)
Bi23a="— O+ Wt s — (21234 + 3W4,3,2,1> )
@) 1 @ (@)
Bi1234a=— Ot ot Wty <Zl 234+W1,2,3,4> .

As a consequence the evolution equationdfdr,t) becomes
0 «
st iwag = —i / dk234T1 2348583840112 34 (A6)

4These are symmetries that specify that the integrals ougimithe Hamiltonian 16) are unaffected by relabeling of the dummy
integration variables
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where we introduced the interaction coeffici@nas
2 2 2
Ti234= Z12),374 +W1(72),3,4 + Al+2—3—4|3(1,%,3,4 (A7)

Finally, the determination of the terf8® requires special attention, because surface gravity wengEs/
resonant interaction for the combinatiff, o 3 4 = w1 + wp — w3 — wy = 0. It is then not possible to simply
eliminate thed; o 3 4 term. InsteadB(? is determined from the requirement that also in terms of tae-f
wave action density we have a hamiltonian system. Hencegwdire thafT; 234 = Ta321 iS symmetrical.
AlthoughW® is symmetric,Z(? andB@ are not symmetric. Therefor&, andW may be eliminated from
(A7) by subtracting the (4,3,2,1) version &7). Observing thal\s, 3 » 1 = —A1,2 3 4 0ne finds

2 2 2 2
A3 4 (B(17%,374 + Bg,%,z;) = 24(1,312,1 - Z§,2),3,4v (A8)

so the asymmetry iZ(? drivesB(®. This still looks like a singular equation f&?, but the remarkable thing
is that for wavenumber quartets satisfying the resonaneditton k1 + k, = k3 + k4 the right-hand sideRHS
of Eq. (A8) is proportional td\;,»_3_4. In order to see this we evalua®H Sby using A3) with the result

) v 1 1
RHS= a1 Vize [ae tws—@ Wt W o wj

o) ) [ . _ 1 }
242-4Y313-1 | (o 0 o it wpa— o

o) e [ 1 B 1 }
1+212Y8+434 | (O 0y (34— s — G

vy [ 1 ~ 1 }
~1°212V-3"434 .
W2+ W+ 0y W34+ W3+

Now the terms involving the angular frequencies are all propnal toA; > 3 4. For example, the first term
becomes

1 1 DAiyp 3 4+ 2— w3

W+ 3—w O+ o—w (st w 3—w) W+ o— )

and for the resonance conditidn + k, = kz + k4 the termay_» — wy_3 vanishes! As a consequence the
singular termd\;, > 3 4 can be removed fromAB), leaving the regular equation

2 2
B34+ Biaoy = X234+ Y1234, (A9)
with
1) (1 (3 (3
X1234= —ZA(1+2,172A342473,4 + 2A-%-271,2A—%—473,4
and

_ oald) (1) (1 1
Y1234 = 2A2, ,274A3,1,371 - 2A1,3,173A4,2,472

| have grouped the terms i andY because of the different symmetry properties. The t¥rm@njoys the
‘natural’ symmetries and the Hamiltonian property, i.e.,

X1234=X4321, X1234 = X1243,

while Y has the Hamiltonian property but not the 'natural’ symmeimyperty as

Y1234 =Y4321, Y1243 = —Y2,134,
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but the relationY; 234 = Y1243 does not hold!. A solution ofA9) is now constructed respecting the 'natural’
symmetryB(f% 34= B(12;$43. Therefore, | tried a solution of the type

5(172%,374 =0a Y1234+ Y1243+ BX1243, (A10)

and substitution of this inX9) givesa = 1/2 andf3 = 1/2. Evidently, because EgA9) is only an equation for

the symmetric part 08(12;3 4, One can always add to the solution an arbitrary asymmetniction A1, 3 4 with
the property thal1234 = A1243 = —As321. Although this indeterminacy will affect the solution fatk) it
does not affeci(k) and therefore one might as well choose 34 = 0.

Using (A10) and the expressions for andY one finds forB(l’zé&4

5(1,2%,3,4 =1/2[M1234+ Y1243 +1/2X1243

1 1
= A(z,z)172—4Aé7i,3—1 - 51,%74—2A(1,:)a,1—3
1) 1) 1) 1)
+ A(273,2—3A5171,4—1 - Aé,z,s—zA(174,1—4 (A11)

1) 1) 3) 3)
- A(1+2,1,2Aé+4,3,4 + A£172,1,2A£374,3,4-

while using @A11) in the expression fofy > 34 from Eq. (A7) one finds

2
Ti234= Wl(,2)73,4

VoM oo s taTaa

Vi M | aTo e o Ta—a

VN e o et eTe e

~Vaaz 151 | g+ wzl_4 "o ot wsl_l — ]

N M [ ]
1 1

vy, VY { + .
—1—271,2 —3—473,4 O-)lJrZ + (A).L _|_ 0)2 a‘)\g+4 _|_ 0.)3 _|_ 0)4
while the energy density in terms of the 'free wave’ actiorialale a becomes

* 1 % Ak
E= / dklMa1a1+§ / dk1234T123481858384012 3 4.

In summary, | find exactly the same results as Krasitskii £19¢ should be emphasized that | have not made
explicitely use of the specific form of the coupling coeff'ruiis;zvl(fg‘)3 z;del(‘iz)’&4 (i=1,4). | have only utilized
their symmetry properties, and, therefore, the presentitresfairly general. The succes of this approach
depends entirely on the observation that it is possible tainla non-singular answer for tlBé 234 coefficient

of the canonical transformation. In other words, there rhastome deep reason why the rlght hand side of Eq.

(A8) is proportional td\1 2 3 4, giving a regular equation chB(l %’34, but | haven’t been able to figure out the
reason why.

Finally, an important remark regarding the canonical ti@msation for resonant interactions. Consider once
more Eq. A9) which determinesB(f% 34- Itis emphasized that strictly speaking we only have a dandi
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2 :
on B(133.4 for non-resonant waves, namely wh&q,, 3 4 # 0. Therefore, for resonant waves the canonical

transformation is arbitrary. For a continuous spectrum wray apply, however, a continuity argument to

determine the canonical transformation. CIeaAQ)(determineB(f% 3.4 away from the resonance surface, but,
nevertheless, the relation holds arbitrarily close to #smnance. Insisting on continuity of the transformation

therefore givesB(f%‘3 4, at the resonance surface. This has implications for theefamtplitude expansion for
a 'single’ wave. Taking the narrow-band limit of a contingagpectrum will therefore give a different answer
than when one starts from a discrete wave from the outset.

A.2 Nonlinear transfer coefficients

Definingq = w?/g the second-order coefficients become

1 ges \ 2
VAL = = {ky kot <—> +
123 {[ 1-K2 £ 0107 W

1/2 1/2

gy gwy

ki-kz+ — )  +ko-ks+ —
[k1-ks q1q3]< ]> k2 ks qzq3]<:”> }

with ki = |Ki|, @ = w(k;). The third-order coefficients become

v _1
Wizsa = 3U2a-14+V24-13+Us4-12-U-1234—U-1324— U 1423

2
W1(72%374 =U_1 234+Uz4 1 2-Uz > 14—U_13 24—U_143 2—Us _23_1
wé. — Ly U U U U U
1234 = 3[V1234+ U324+ U423+ V2314 +U2413+Usa12]
with
1 (3001 1/2
Ui234= 16 (m) [Z(quz +k501) — OhG2 (43 + o3+ Oura+ O244)] -

A.3 Results for a single wave train

Here, we study the case of a single wave, and we will deriveesgons for the wave spectrum, skewness and
kurtosis for both deep and shallow water waves. We also siésthe relation between the canonical transfor-
mation and the well-known Stokes expansion.

Let us apply the present formalism to the special case ofghesimave. We therefore write
a; = 35(k1 — k())7 (A12)

and the Zakharov equatioA§) becomes

%aJr ica = —iTolal%a (A13)
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with To = To 00,0, Where for arbitrary deptfip 00 was derived by Janssen and Onorato (2007). It reads

OT¢—10T2+9 1 | (2vg—co/2)?
Too00/k = —2 0 - g +15%.
8T03 koDo C%— Vé

wherecy = uyp/Ko is the phase speed amgl= dw/dk is the group velocity.
The differential equationX13) may be solved with the Ansatz= apexp(—iQot) and as a result one finds that
ag is a constant while the angular frequery reads

Qo = o+ Tolao|%,
which corresponds to the Stokes frequency correction. €Regtep is to evaluate the canonical transformation
A=A(a a"). Substitution of A12) into (18) gives

AL = ATolalS(ke) +ad(ki —ko) + A ga’d(ky — 2K) + A a3y + 2Ko) +

Bi%00lal?ad (ki — ko) + B o olal’a 8k +ko) + (A19)

By 0023 (k1 — 3ko) + B{ ) 002" 33 (ki + 3ko).

Eg. (A14) shows that, apart from a mode at wave nunmdeA; has contributions dt = +2kp, atk = +3kg and

a nonlinear correction to the linear modekat +kp. In second-order one also finds in general a wave-induced

mean elevation contribution (cf. Janssen and Onorato,)208ich for deep water can be shown to vanish. The
surface elevatiom then follows from substitution ofA14) into

/dk\/7 k) €+ c.c.

and the result is, upon introduction of the surface elenagimplitudea according tcag — (g/2ap)Y?a
n =A0a®+a(1+ ya?) cosd + aa’cos D + Ba’cos P + ..., (A15)

wherea, B, y, andA are known functions of wavenumber and depth and they follmmfan extension of the
second-order result of Janssen and Onorato (2007). Theusp#tficients read:

g g 2 3
= L'TO 2 fe ( .(s c))o + Aﬁi 0 o) y= 200 [B((),c)),o,o + B(fc)),o,o,o} ,

12 1/2
gw, 3 w3 9 4
~(%2) o+ A%ad- 5= (2) 52 [ebhos 8%aco]

whereA(i>(i = 1,3) andBU)(j = 1,4) are the matrices that naturally occur in the present Hanidtoapproach
and they are explicitely given in the Appendix A.1 and A.2.réleve introduced a slight abuse of notation as
the index 2" now refers to wavenumbekg? etc. It is a straightforward (but laborious) task to eviduthe
coupling coefficients. In deep water they become:

1 33/4 k() 1 kg 3 1 kg
Bé,o, (1+ \/é) oooo 2w B(fc)),o,o,o ey
and
4 33/4 kg
B 000 T(l_ 3)—,
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while

1/2 2 1/2 2
W _1<29> 1 kKo A _1<29> kg
=== +v2)2 AY =2 (= 1-v2)2.
A2,070 4\ wp ( )C‘-b 2,0,0 4\ wp ( )C‘-b
Using the expression for the coupling coefficients the feilfy canonical transformation for a single wave is
found:

2
n/a= (1—%) cos@+%ecosﬂ9+gszcosa9 (Al6)

wheree = kopa is the wave slopef = kox— Qot + @, @is the arbitrary phase of the wave afg= wy (1+ 82/2)
is the nonlinear dispersion relation.

The present weakly nonlinear expansion of the surface w@bevin terms of the steepnesds an example of a
Stokes expansion. However, it should be noted that the S&kgansion is not unique. This can be checked by
obtaining the expansion of the surface elevation from tigiral Hamilton equationsl(7), and it can be shown
that there is a whole family of solutions, parametrized @y itfitial condition of the first-harmonic amplitude
at third order in wave steepness. The solutidi®) belongs to this family, and clearly this is the one that
is relevant to establish a connection between the singleemeslilts and the narrow-band limit of the result
for general wave spectra. Also note that the family of Stad@ations can be generated from the canonical
transformation by using a slightly more general startinmpmamely Eq. A12) with a = a® + £2a(? with

a? arbitrary.

For arbitrary depth the canonical transformation for amarband wave train can be evaluated as well. After
some tedious but straightforward algebra all the matrimelets can be eliminated in favour of wave number
ko andTp = tanhx. Hence,

ko g [21-T§) 1] ko )
=1 B e Tl
_ 3k(2) 2\3 15
B — oars [8+(1—T0) ] y=—3a? (A17)

wherex = koD, T = tanhx, ¢ = gD, Vg = dw/dK, w = (gkoTo)"/?. These results were checked against
calculations of the matrix elements on the computer. Fumbee, the deep water limit is in agreement with
the known results given in EQAL6).

In order to derive expressions for the wave spectrum, theewaviance, skewness and kurtosis of a random,
narrow-band wave train we have to make the assumption thateh state is Gaussian and homogeneous. For
a narrow-band wave train normality of the pdf of the lineavgvamplies that the phase is uniformly distributed
while the amplitudea obeys the Rayleigh distribution. Hewill be scaled witho = /Mg so that the pdf of
abecomes simply

p(a) =ae %,
while the phase is uniformly distributed, hence
pa ) =L ae ¥,

Because of the presence of the wave-induced mean levelyvétage ofn is not zero. In agreement with
experimental practice, we substract the mean léygl In addition, in Eq. A15) we scale amplituda with o
and we treatr as a small parameter. Hence the surface elevation becomes

n =Ac%(a® — (a%)) + oa(1+ yo?a®) cosb + ao’a’cos B + fo’a’cos P + ..., (A18)
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and now(n) vanishes. Nevertheless, nonlinear quantities such astimmd momentn?) will depend on the
parameted (which measures the strength of the wave-induced mean sei &s form > 1 ((a% — (a?))™)
does not vanish.

Let us first evaluate the wave spectrum for a homogeneousvieh is essentially a quadratic quantity. To
that end we evaluate the spatial correlation functigii(x+r)n(x)) assuming homogeneity. The spectrum
F (k) then follows by taking the Fourier transform with respeatlistancer. Now, since(a?) = 2, (a*) = 8 and
(a®) = 48, the spectrum becomes up to fourth-ordegijn

F (k) = 102 (1+802y) 5(k— ko) +20% [A25(K) + a25(k— 2ko)] +k — —k (A19)

and it can be verified that in the deep-water limit this resgjtees with the narrow-band limit of the spec-
tral approach, cf. Eq.3@). In the general case we see that the canonical transfameaiill give rise to a
second harmonic peak, a correction to the energy of the fshdnic and also a contribution to zero mean
wavenumber. It is left as an exercize for the reader thatiitefdepth the general resuk19) also agrees with
the narrow-band result obtained from E@6). Just like in the main text, the determination of the fratpye
spectrum requires special attention. In particular th&e&tdrequency correction will affect spectral shape and
for a discussion on this see Janssen and Komen (1982).

The skewnes€s and the kurtosi€, are defined as

Cs=(n%/(n?¥?.Ca=(n")/3(n)* -1, (A20)

hence we need to evaluate the third and fourth moments ofdhe p
(n%) = [ n® p(a.6)dade, (n*) = [ n* p(a, 6)cade

up to the required order ia?, while we also need the second moment. The latter followsédiately from an
integration of the wavenumber spectrum, and as a result ndg fi

(n?) = 0®+40* (2y+a®+14?%). (A21)

In order to determine the skewness parameter we need taaévahe third moment up the ordef. Using the
espression for the surface elevati@d8) one finds

n®=o0°{a’cos’ 6 + 30a’ [aa?cos P cos 6 + A(a — (a%)) cos 0] } + 0(a”).
We perform the averaging over the an@léirst. With (cos’6) = 1 and(cos 2 cog 6) = % one finds
(n®) =30°[Fa(a") + 30 ((@") — (@)?)].

Now, since(a?) = 2 and(a*) = 8 the third moment becomes

(n°) =60°(a +1),
and to lowest significant order the skewness becomes

Cs=60(a+A4). (A22)

In a similar vein the kurtosis parameter can be obtainedrderao get non-trivial results an evaluation of the
fourth moment up t@® is required. Now,

n* = o%a* (1+4yo?a?) cos 0 + 40°a>cos’ 0 [A(a® — (a?)) + aa’cos D + oPa’cos P
+60°%% cos’ 6 [A%(a — (a%))® + 2aha?(a® — (a?)) cos D + a’a’ cos' 20] + O (a”).
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Figure 8: Skewnessfand kurtosis @ related to the canonical transformation for a steepness 0.1 as function of
dimensionless depth=xkoD. Black line with wave-induced set-down, red line withoat@rinduced set-down.

Perform the averaging ovéxfirst. To that end we need to know some additional integrals:
(cod' 0) = 2, (cos’0) = 0, (cos’ Ocos B) = 0, (cos’ O cos P) = £, (cos Ocos20) = 1.
This gives

= 0%+ 0| (@) { 305 + v+ )+ 0+ o) | - ) e8) (07 + 300) + 0%

Now, since(a?) = 2, (a*) = 8, and(a®) = 48, one finds
(n* =30*+240° [B+3(y+ a?) + 307 + a4 .
Finally, by means of the expression for the variang21( the kurtosis becomes to lowest significant order
Cs=80% [B+y+2(a+D0)7]. (A23)

Hence, referring toA17) we have now explicit expressions for the skewness and sisrtaf a narrow-band
wave train in terms of the wave variance, wave number anchdeéptparticular, for deep water one finds (see
e.g. Mori and Janssen, 2006)

C3 =3¢, Cs = 6¢2, (A24)

wheree = kg0 is the 'significant’ steepness.

Finally, it is of interest to study the importance of the wawduced mean level on the statistical properties of
the sea surface. As for a wave group one typically has a setrdnd as for the range of dimensionless depth
x~1|A| < a itis seen from Eq. A22) and (A23) that a set-down will give rise to a reduction of skewness
and kurtosis. This is illustrated in Fi§.for both skewness and kurtosis plotted as a function of daiosthess
depthkgD. First of all we see that there is a dramatic increase of thigger order statistics when moving into
shallower water, but this increase is significantly slowedid when effects of the wave-induced set-down are
included.
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