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Summary 

The paper investigates a method to represent model error in the ensemble data assimilation (EDA) system. The 
ECMWF operational EDA simulates the effect of both observations and model uncertainties. Observation errors 
are represented by perturbations with statistics characterized by the observation error covariance matrix whilst 
the model uncertainties are represented by stochastic perturbations added to the physical tendencies to simulate 
the effect of random errors in the physical parameterizations (ST-method). In this work an alternative method 
(XB-method) is proposed to simulate model uncertainties by adding perturbations to the model background field. 
In this way the error represented is not just restricted to model error in the usual sense but potentially extends to 
any form of background error. The perturbations have the same correlation as the background error covariance 
matrix and their magnitude is computed from comparing the high-resolution operational innovation variances 
with the ensemble variances when the ensemble is obtained by perturbing only the observations (OBS-method). 
The XB-method has been designed to represent the short range model error relevant for the data assimilation 
window. Spread diagnostic shows that the XB-method generates a larger spread than the ST-method that is 
operationally used at ECMWF, in particular in the extra-tropics. Three-dimensional normal-mode diagnostics 
indicate that XB-EDA spread projects more than the spread from the other EDAs onto the easterly inertia-gravity 
modes associated with equatorial Kelvin waves, tropical dynamics and, in general, model error sources.  

The background error statistics from the above described EDAs have been employed in  the assimilation system. 
The assimilation system performance showed that the XB-method background error statistics increase the 
observation influence in the analysis process. The other EDA background error statistics, when inflated by a 
global factor, generate analyses with 30-50% smaller degree of freedom of signal. XB-EDA background error 
variances have not been inflated.  

The presented EDAs have been used to generate the initial perturbations of the ECMWF Ensemble Prediction 
System (EPS) of which the XB-EDA induces the largest EPS spread, also in the medium-range, leading to a more 
reliable ensemble.  Compared to ST-EDA, XB-EDA leads to a small improvement of the EPS ignorance skill 
score at day-3 and 7.  

Keywords: Analysis uncertainty, Ensemble of initial conditions, Ensemble modelled background covariance 
matrix, Ensemble prediction  

 

1 Introduction 

Data assimilation systems combine observations and background state, usually a short-range forecast 
of 6 or 12 hours. Alternative approaches to a deterministic initial condition system based on ensemble 
methodologies such as the ensemble Kalman filter or the ensemble variational analysis are nowadays 
widely used in numerical weather prediction (NWP). They have the advantage of providing 
information on flow dependent background error covariances. Nevertheless, ensemble data 
assimilation systems (EDA) are usually implemented in the context of a perfect model and the failure 
of representing model error affects for example the computation of the background error variances, 
which tends to be underestimated. Different strategies have been tested to take model error into 
account  by rescaling  the ensemble of analyses with constant, isotropic factors (inflation), the multi-
model and multi-physical parametrization approach (Houtekamer et al. 1996; Houtekamer et al. 
2005), the stochastic physical tendency (Buizza et al 1999) and the backscatter stochastic kinetic 
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energy schemes (Shutts 2005, Berner et al. 2008). Comparison among different model error 
representations have been performed by Houtekamer et al. (2009), which indicates that the inflation 
approach has the largest contribution in their model error simulation. 

Several operational NWP centres such as Météo-France, UK Met-Office and Environment Canada 
have implemented an EDA system. Recently, Météo-France has implemented a 6-member EDA where 
not only the observation uncertainties are represented but also the model uncertainties are explicitly 
taken into account. This is done by inflating the background field with a latitude-level varying factor 
in the ensemble (see Raynaud et al 2009 and 2012). Their first operational EDA configuration (Berre 
et al., 2007) has been used in operations since July 2008. Flow-dependent background error variances 
for the operational 4D-Var assimilation system (Raynaud et al., 2011) were derived within a perfect 
model framework and the estimated variances were inflated ‘off-line’ (i.e. after the ensemble has been 
completed) by using a posteriori diagnostics (Desroziers and Ivanov, 2001). The inflation aims at 
representing model error contributions. Multiplicative inflation is in fact a simple and widely used 
technique to deal with unknown error sources. Because the off-line multiplicative inflation that was 
applied to the variances was not accounted for in the background perturbation update, the recently 
implemented operational EDA configuration includes the multiplicative inflation to enlarge the 
amplitude of forecast perturbations within the ensemble. 

The Environment Canada ensemble system is based on a Kalman filter (Houtekamer and Mitchell 
2005 and Houtekamer et al 2005) and has been used operationally since January 2005. It provides an 
ensemble of initial conditions for the medium-range EPS (Ensemble prediction System) and represents 
both observations and model sources of uncertainties. In particular the model error component has 
been extensively investigated. Initially a simplified and reduced amplitude form of the Canadian 3D-
Var background error covariance was used to perturb the ensemble of background fields (Houtekamer 
et al 2005). Then, different ways to determine the covariance for the additive model error component 
have been investigated (Hamill and Whitaker, 2005) and model error perturbations are added to the 
ensemble analysis rather than to the background ensemble (Houtekamer and Mitchell 2005) to account 
for the data assimilation weakness. More recently, each member has a different model version (Meng 
and Zhang, 2007; Fujita et al. 2007) to represent uncertainties in model representation of physical 
processes.  As already said above, Houtekamer and Mitchell (2005) concluded that the addition of 
isotropic model error perturbations to the ensemble of analyses is found to have the largest impact in 
terms of ensemble spread.  

An EDA has been operationally implemented at ECMWF in June 2010 (Isaksen et al 2010). The EDA 
ensemble consists of ten independent members of lower resolution (with respect to the high-resolution 
operational 4D-Var system) 4D-Var data assimilation systems with perturbed observations and 
perturbed model tendencies. In particular, the observation uncertainties are represented by perturbing 
the observations and the model uncertainties by adding stochastic perturbations to the model 
tendencies during the first 12-hour model evolution using the Stochastically Perturbed 
Parameterisation Tendency scheme (SPPT, see Palmer et al 2009 for a review).  
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The ECMWF EDA provides a flow-dependent or daily model background error covariance matrix that 
is supposed to improve the high resolution analysis system by better representing the daily dynamical 
synoptic features (Raynaud et al, 2008, 2009 and 2011; Buehner et al. 2010). Since its 
implementation, the EDA has been used together with the singular vectors to initialize the operational 
EPS (Molteni et al 1996; Buizza et al. 2007) and to improve the simulation of initial uncertainties 
(Buizza et al 2008), one of the fundamental aspects of the EPS design. 

In this paper, a different way of representing model error in the operational ECMWF EDA is 
presented and compared to the standard SPPT method. The model uncertainties are represented by 
adding perturbations to the model background field. The magnitude of the perturbations varies with 
vertical level and with geographical latitude. They are estimated from a comparison between the 
innovation variance of the high resolution 4D-Var system, i.e. the difference between observation and 
background at the observation location, and the ensemble data assimilation variance (variance taken 
over an ensemble of assimilations over 3 weeks period)  in which only observation uncertainties are 
represented. The model error representation is therefore similar to the one introduced by Raynaud et al 
(2012) at Météo-France that is referred to as the multiplicative perturbation method. The method 
described here is denoted as an additive perturbation method. The error represented is not restricted to 
the model error in the usual sense i.e. the error that would be present in the forecast even if the initial 
condition were exact, but is related to any form of error for example errors  in the background 
covariance matrix coming from the operational ECMWF EDA. The present paper studies the EDA 
sensitivity to the different model error representations. The proposed method is compared to the 
operational one, which uses the stochastically perturbed parameterisation tendency scheme to simulate 
model uncertainties, and to the EDA obtained by representing only observation uncertainties. A fourth 
EDA has also been designed to just quantify the impact of background cycling in the EDA where only 
observations are perturbed. Observation uncertainties are always equally represented in all EDAs 
examined.  

Section 2 describes the methodology used to simulate model uncertainties. Section 3 analyses the 
spread characteristics of the investigated EDAs by using a variety of diagnostics and with an 
evaluation of the background error covariance matrix provided by the EDAs. The EPS performance 
sensitivity to the EDAs is also discussed. Conclusions are drawn in Section 4. 

2 Representation of uncertainties 

 The XB-EDA 2.1

An ensemble of analyses attempts to generate a representative sample of possible states of a dynamical 
system. The samples are generated by the same assimilation system. From the optimal solution of the 

analysis problem, ( , )a bfx x y , two input parameters can be identified: the observation vector y and 

the background vector xb obtained from a short-range forecast, respectively. An ensemble of analyses 
can be generated by perturbing both input vectors. In particular the observations uncertainties can be 
represented by perturbing vector y, whilst the model uncertainties (at least the short-range model 
error) can be represented by perturbing the model state vector xb. The perturbed analysis equation can 
be written as: 
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( , )a bf  x = x ζ y η
 (2.1) 

where ζ and η are perturbations defined as 

1/2

1/2
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 (2.2) 

with ( , , )f l x  being a function of latitude (λ), model level (l) and model parameters (x). ζ and η are 

samples of vectors drawn from a multi-dimensional Gaussian distribution with zero mean and identity 

covariance matrix. To achieve that the final perturbationsζ  and ηhave a covariance matrix specified 

by B and R, respectively, the square root of B and R, is applied to the sequence of normally distributed 

vectors ζ and η . B and R are the estimated background and observation and error covariance 

matrices; they are therefore only approximations of the true covariance matrices. When R is diagonal 
(i.e. uncorrelated observation errors) a simple multiplication by the observation error standard 
deviation σo is applied (Eq. 2.2). Only two sets of observations are perturbed with spatially correlated 
patterns. One is the Atmospheric Motion Vector (AMV) observation (Bormann et al. 2003) and the 
other set is the sea-surface temperature field (Vialard et al. 2005).  

The magnitude of the final perturbation ζ  is determined by ( , , )f l x  which is estimated by 

comparing the variance of the innovation vector d (over 3 weeks) with the ensemble data assimilation 
variance,  VAR(EDA) (estimated over an ensemble of assimilations over 3 weeks period), in the case 
the ensemble data assimilation is obtained by only perturbing the observations The coefficient 

( , , )f l x is meant therefore to compensate for the discrepancy between the background error as 

obtained from the innovation d on the one hand, and the a priori background error covariance matrix B 
on the other. The innovation vector is the difference between the observation vector y and the 
background counterpart of the observation computed by using the nonlinear observation operator 
(H(xb)). Under the assumption of un-biasedness of the errors and de-correlation between the 
background and observation errors, the background error variance, as obtained from the innovation, is 

2( ) oVar d . The scalar function ( , , )f l x  is hence defined as:  

2
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 (2.3) 

where σ0
2 is the prescribed observation error variance. If 2( ) oVar d  is less or equal to the EDA 

variance it is imposed that ( , , ) 0f l x  . The perturbation amplitude modulation hence varies in the 

interval [0,1]. The innovation variances have been computed for 10 hPa pressure layers for 
atmospheric measurements located between the surface and 50 hPa (wind observations), between 
surface and 5 hPa (temperature observations), and surface and 300hPa when humidity observations are 
considered. Three latitude bands, namely Northern Hemisphere (20°N, 90°N), Southern Hemisphere  
(20°S,90°S) and Tropics (20°S,20°N) and a three-week data set have been considered. For the u and v 
component of the wind all conventional observations (radiosondes, pilots, synops, aircrafts and  
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Figure 1 Perturbation modulation factor f as a function of latitude band (North Hemisphere 

solid black line, South Hemisphere dotted line and Tropics solid grey line) and vertical model 
levels (model level 1 is 0.01 hPa and 91 is on average ~1000hPa) for a) zonal wind, b) 
temperature and c) humidity. The modulation factor is estimated over a 3 weeks period. 
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profilers), Atmospheric Motion Vectors (AMV) and scatterometer  observations have been used to 
compute the innovation variance. For temperature conventional (radiosondes and aircrafts) and 
AMSU-A observations, for humidity radiosondes and All-Sky (SSM/I and TMI radiances) 
observations and, finally, for surface pressure all land and ocean stations have been used. The 

variation of f  with latitude band, model level and for model parameters u, T and q, is shown in Fig.1. 

Figure 1a shows that for the u-component f decreases in the troposphere, when pressure increases, 

down to zero in the tropics and down to 0.3 in the extra-tropics (level 1 at 0.01 hPa, identifies the top 
of the atmosphere). If observations are unavailable to estimate the innovation variance, the modulation 

factor f is kept constant i.e. from model level 1 to 30 for wind, from model level 1 to 18 for 

temperature and model level 1 to 55 for humidity. Similar results for the modulation factor are 
obtained for the v component of the wind (not shown). In the lower troposphere close to the surface 
the modulation factor globally increases on average up to 0.6. For temperature (Fig.1b) its magnitude 
increases with the increase of pressure on average for the three latitude bands from 0.3 to 0.5, the 
tropical modulation factor always being the smallest.  

For humidity (Fig.1c) f rapidly grows with the atmospheric pressure level up to 0.8 (South 

Hemisphere) towards the surface. Concerning surface pressure, the correction (2.3) (not shown) is 

globally constant and around 0.4. During the cycling, f  has been re-computed for retuning purposes 

using Eq 2.3 every three days and by using the past 3-days’ variance sample. However, the modulation 
factor has stabilized rather fast after two days of cycling. 

The background is perturbed at the start of each assimilation window and the innovation vector d= (y-
Hxb) is computed along the trajectory starting from the perturbed background to correctly take into 
account the background changes (H is the non-linear model and observation operator) and to produce 
a balanced perturbed field. Figure 2 schematically represents the realization of the described XB-EDA 
 

 

Figure 2. Schematic diagram of the XB-EDA realization 
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ensemble. From a control (unperturbed) analysis the two set of perturbations, η  for the observations 

and ζ  for the background, are respectively added at the beginning of the 4D-Var assimilation window 

to create ten different initial conditions (members). The two sets of perturbations are recomputed and 
added to the observations and the background field at every analysis cycle. 

The ζ  perturbation accounts for the short-range model error sources including the fraction of the 

analysis error that is due to the model error. Sources of error are therefore not only related to physical 
parameterisations but also to the dynamics, the spatial and temporal discretization, the linearized 
physical process and the misspecification of the probability distribution of errors in the observations 
and the background model.   

 The other-EDA 2.2

In all EDAs presented here the observations uncertainties are represented by perturbing the 
observations whilst the model uncertainties are produced differently. Table 1 shows all the EDA 
configurations investigated. In particular OBS-EDA is the ensemble analysis where only observation 
uncertainties are represented (different observation values generate different background fields during 
the cycling process). The OBS-OBS ensemble is similar to the OBS-EDA one but the background 
fields are not cycled. At every cycle the 10-member background fields are replaced with the 
background field of the control i.e. unperturbed analysis (Fig. 2). OBS-OBS is performed to evaluate 
the impact of the cycling by the background. The model error representation in ST-EDA is based on 
the SPPT scheme (Buizza et al. 1999, Palmer et al. 2009). Since November 2009, the operational EPS 
uses SPPT and the stochastic back scatter schemes (SPBS, Shutts, 2005; Berner et al. 2008) to 
simulate model uncertainties. The SPBS scheme simulates the inverse energy cascade due to the 
interaction between the unresolved and the resolved scales, and aims to compensate for the over-
dissipation occurring in numerical models. The SPPT scheme, designed to simulate random model 
errors due to physical parameterisations, is still assumed to explain the largest source of model error in 
the EPS. The operational EDA configuration does not use the SPBS scheme but only the SPPT. In 
particular, SPPT model uncertainty is simulated using the 1-scale version of the stochastically 
perturbed parametrization tendency scheme, which perturbs the total parametrized tendency of 
physical processes. Since the 1-scale version use a time-scale of 6-hours, there is no need to cycle the 
model error perturbation across different data-assimilation cycles. In the 1-scale version of the SPPT, 
the perturbations to the physical tendencies are defined to have a spatial correlation length of 500 km 
and a time-correlation of 6 hours, as in the original SPPT scheme (Buizza et al 1999). 

EDA Methodology Inflation 

OBS Perturbation added to observations Y 

OBS-OBS Perturbation added to observations; Members background fields 
are from Control An.  

Y 

ST Perturbation added to observations; Perturbation added to 
physical parameter tendency 

Y 

XB Perturbation added to observations; Perturbation added to 
background 

N 

Table 1: Ensemble data assimilation configurations. 
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Because of the presumed ensemble analysis underdispersivity (to be confirmed later) a global inflation 
factor (=1.4)  has been applied to the background error standard deviation in the OBS, OBS-OBS and 
ST-EDAs methods to increase the ensemble spread and to penalize the model background further with 
respect to the observations in the assimilation process. The static background covariance matrix has, in 
fact, always been inflated in the ECMWF 4DVar assimilation system to avoid the excessive weight 
given to the background with respect to the observations. Indeed, studies on the observational 
influence in the analysis system have shown that globally and for a given assimilation cycle only 15% 
of the information was provided by the observations while the remaining 85% were due to the 
background (Cardinali et al 2004, Cardinali 2013). Unfortunately, the inflation is a constant that does 
not vary with respect to the parameters, with respect to the geographical location or weather situation 
and the resulting ensemble spread is simply globally amplified. 

3 Results 

In this section EDAs with different model error representations are compared and diagnosed. Each 
EDA includes 10 perturbed and 1 unperturbed 12-hour 4D-Var assimilations (Rabier et al. 2000, 
Janiskova et al. 2002; Tompkins and Janiskova, 2004; Lopez and Moreau, 2005) at the resolution of 
TL399L91 (spectral triangular truncation with 399 wave numbers and linear grid, and on 91 vertical 
levels) for the model forecast and TL159L91 for the minimization calculation, respectively.  

The 4 EDA schemes (Tab. 1) have been run for the period 20081001-20081115, with twice daily 12-
hour assimilation cycles using observations from (2100-0900] UTC and (0900-2100] UTC.  

 EDA spread 3.1

In Fig. 3 the averaged spread of the four data assimilation ensembles is compared for the zonal wind 
component. The average spread has been computed over the period 20081005-20081115 (the first 5 
days of the EDA computation have not been included in the evaluation to take into account ‘spin-up’) 
from 6-hour forecasts according to the expression: 

2

1

( )
( )

1

N

i
i

m m
Spread EDA E

N


 
 

 
 
 
 


 (3.1) 

where mi is the ith-ensemble member, N=10 and  is the ensemble mean. Expectation stands for 

averaging over longitude and over the selected period. 

When only observation uncertainties are represented (u wind component OBS-EDA, Fig. 3a), the 
spread is mainly confined to the upper stratosphere (above model level 20 i.e. ~10 hPa) and to the 
troposphere (below model level 40 i.e. ~110 hPa) in the tropics. Very little spread is accomplished 
poleward of 40oN or 40oS. To understand how much of the spread is due to the cycling of OBS-EDA 
over successive assimilation windows, Fig. 3b shows the OBS-OBS spread. The OBS-OBS spread is 
mainly confined to the stratosphere and with a smaller amount to the tropical troposphere. When  
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Figure 3 Zonally averaged cross section for period 20081005 to 20081115 for the u-component of 
the EDA spread. a) OBS-EDA, b) OBS-OBS-EDA, c) ST-EDA and d) XB-EDA. Vertical 
coordinate is model level. Contours are in ms-1 

model errors are explicitly represented in the ensemble the spread increases according to the method 
applied. Compared to OBS-EDA, ST-EDA presents 10% larger spread in the tropics and the mid- 
latitudes (Fig.3c). The XB-EDA ensemble (Fig. 3d) shows the largest and more globally distributed 
spread. It amounts to ~1 ms-1 and 4 ms-1 larger than ST-EDA in the tropics and the stratosphere, 
respectively. It is also remarkably different in the high and medium extra-tropical troposphere and 
differences exceed 4-5 ms-1 in the mid-latitude.  Blank areas are values between 0 and 0.5. 

Figure 4a shows the difference of spreads in the OBS and OBS-OBS EDAs and visualizes the impact of 
cycling over successive assimilation windows. Figure 4b shows difference of spreads in XB and OBS 
EDAs and visualizes the impact of the perturbation of the background (first eq. of 2.2). Most of the 
former difference is located in the stratosphere and in the tropics while the second extends to a large 
part of the troposphere, especially in the Southern hemisphere. The figures also suggest that the 
differences are everywhere positive (blank areas are values between 0 and 0.5). 

Figure 5 shows the reduction of globally averaged spread of the OBS-, OBS-OBS and ST-EDAs 
relative to the XB-EDA for each model level and the u component of the wind. The spread in XB-EDA 
is a function of the amplitude of the perturbation applied to the background field. The spread loss with 
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respect to the XB ensemble is decreasing with the increase of model level for ST and OBS EDA 
whereas it is constant for the OBS-OBS EDAs. Close to the surface (i.e. model level 91) the first two 
EDAs lose 20% and 40% spread and close to the top of the atmosphere 40-50% on average at al 
latitudes, respectively.  

In all EDAs the largest spread is located in the stratosphere where also the largest loss with respect to 
XB is observed. Similar results are obtained for the temperature field but the magnitude of the spread 
loss is 25% smaller (not shown).  

 

Figure 4 Zonally-averaged cross section from 20081005 to 20081115 for the u-component of the 
EDA spread. a difference in spreads between the OBS-EDA and the OBS-OBS-EDA spreads, b) 
difference between the XB-EDA and the OBS-EDA spreads. Vertical coordinate is model level. 
Contours in ms-1 

 
Figure 5 Zonal wind field relative average spread loss of OBS, ST, OBS-OBS EDA with respect to 
XB EDA at every model level and for Northern (dashed line) and Southern (solid line) Hemisphere 
and Tropics (dotted line). 
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 Spread case study 3.2

An example of spread differences among the OBS-, ST- and XB-EDAs in physical space is presented 
for 20-21 October 2008 in Fig.6. In this period an intense baroclinic development took place over the 
northern west Pacific. In addition to a mature-stage cyclone moving toward the Gulf of Alaska, a deep 
cyclogenesis took place about 4000 km westward at about 50oN, 180oW (not shown). All methods 
produce spread associated with the two cyclones but differences exist in the structure and magnitude 
of the spread. The comparison of 6-hour forecast vorticity spread at 850 hPa valid on 21 October at 12 
UTC (Fig. 6) shows that the OBS-EDA spread associated with the western cyclone is not only smaller 
than in the other two EDAs but also located on the north and north-eastern side of the system (Fig. 6a). 
The ST- and XB-EDAs both contain spread over a larger area. For the mature-stage cyclone in the 
eastern Northern Pacific, the spread in all three experiments has the typical comma shape (East 
Pacific, around 45°N-150°W) of frontal systems associated with baroclinic development. The ST- and 
XB-EDAs are the most similar although XB-EDA (Fig 6c) has a larger maximal amplitude and 
occupies a larger area. It is worth noticing that XB-EDA is the only ensemble showing some degree of 
uncertainty in the polar region where only very few observations are available and consequently the 
analysis uncertainties should be larger.  

 

 

 

Figure 6: 6-hour forecast of vorticity field spread at 850 hPa valid on 21 October 2008 at 12 
UTC. a) OBS-EDA (top-left), b) ST-EDA(top-right) and c) XB-EDA(bottom-left). 

 Modal diagnosis of the ensemble spread 3.3

The discussion of the results in the previous sections is complemented hereafter with the diagnosis of 
the ensemble spread in terms of normal modes as described in Žagar et al. (2011). The ten members of 
the four ensemble experiments are projected onto a set of three-dimensionally orthogonal vectors 
which are eigensolutions of the Navier-Stokes equations linearized about an horizontally 
homogeneous stable state of rest. This projection allows the attribution of the ensemble spread 
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according to various horizontal and vertical scales as well as linearly balanced (quasi-geostrophic) and 
unbalanced (inertio-gravity, IG) parts of the flow. In Žagar et al. (2011), the method was applied to the 
analysis of the ensemble spread of the DART-CAM system whereas Žagar et al. (2013) used the 
method to study the balance properties of the ECMWF EDA system. In the ECMWF EDA for July 
2007, it was found that about 50% of the short-range forecast-error variance was associated with the 
IG modes and that the eastward-propagating IG component was dominant on all scales. Both results 
were associated with the majority of EDA variance being present in the tropics. On the other hand, the 
ensemble spread of the DART-CAM ensemble was characterized by a prevalence of the westward-
moving IG modes which was found to be related to the covariance inflation. These studies suggest that 
the normal mode function (NMF) expansion is a useful diagnostic of EDA systems. 

In the present study, we followed Žagar et al. (2013) to analyze model levels under 10 hPa (model 
levels 19 to 91, totaling 73 levels) in order to avoid very large spread in the mesosphere (see Fig. 3) 
that projects strongly on the leading vertical modes and can obscure the interpretation of the results. 
For the presented diagnostics, 6-hours forecast starting at 18 UTC in the period 20081018 to 20081116 
are used (30 samples) for 10 ensemble members. The analyzed data on the N64 Gaussian grid are 
projected onto 85 zonal wavenumbers, 50 vertical modes and 40 meridional modes for each motion 
type, namely balanced, eastward inertio-gravity (EIG mode) and westward inertio-gravity (WIG 
mode). 

In modal space, the ensemble spread based on N ensemble members is defined as  
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(3.2) 

where  ,i    is a non-dimensional complex projection coefficient for an ensemble member i while  is a 

four-indices modal index which contains information about the zonal wavenumber, the meridional 
mode, the vertical mode and the wave type. The overbar stands for averaging over N ensemble 

members, i.e. 
is the ensemble mean,  

1

N
 ,i

i1

N

 . Each vertical mode is characterized by a value of 

‘the equivalent depth’ H which couples horizontal and vertical motions. The spread computed by Eq. 
(3.2) applies at a single 6-hr forecast range and the results are presented as time averages over 30 
samples. For details of the projection procedure see Žagar et al. (2011) and references therein. One 
difference between the normal-mode diagnostics and other spread evaluation methods consists in 
analyzing simultaneously the mass and wind fields allowing the physical interpretation of balance 
relations.   

Spectra of the balanced, EIG and WIG energy spread as a function of the zonal wavenumber are 
shown in Fig. 7. In agreement with what has been presented so far, the ensemble spread in the XB-
EDA dominates over the ST-EDA and OBS-EDA at all scales and for all three motion types. The ST-
EDA spread is closer to the OBS-EDA spread than to the XB-EDA spread. In all experiments, the EIG 
spread dominates over WIG at largest horizontal scales and in XB-EDA it is greater than the WIG 
spread on all scales due to the equatorial Kelvin modes (not shown). The XB-, ST- and OBS-EDAs 
have a smaller percentage of their spread in the largest scale with respect to OBS-OBS-EDA. Below 
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zonal wavenumber 10, there is around 30% of the total spread for all experiments, varying from 28% 
for ST-EDA to 34% for OBS-OBS-EDA (not shown).   

On average, the total spread in XB-EDA is between 1.7 and 1.6 times greater than the OBS-EDA 
spread. The ST-EDA spread is around 1.25 times of the OBS-EDA spread. Both XB- and ST-EDA add 
relatively more spread in the IG part than in the balanced part with respect to OBS-EDA. Instead, the 
experiment without cycling (OBS-OBS-EDA) counts only for 40% of the spread of OBS-EDA for all 
modes (not shown).  

 

 

Figure 7.  Time-averaged ensemble spread in the balanced and inertio-gravity modes for a) XB-
EDA, b) ST-EDA, c) OBS- and d) OBS-OBS EDA. Black curves correspond to the spread 
associated with balanced modes (ROT), red curves to spread due to easterly-propagating inertia-
gravity (EIG) modes whereas blue curves represent spread due to westerly-propagating inertia-
gravity modes (WIG). 
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When the spread is summed up across all scales, the percentages of ROT, EIG and WIG spread in the 
four experiments is 43, 28, 29 % for OBS-OBS-EDA, 41, 29, 30 % for OBS-EDA, 39, 30, 31% for ST-
EDA and 40, 31, 29 % for XB-EDA, respectively. Overall, the XB-EDA is the only experiment with the 
total EIG spread greater than the WIG spread. As can be seen in Fig. 8, which presents ratios between 
the balanced, EIG and WIG spread with the total spread as a function of the zonal scale, this applies 
for every zonal wavenumber. The dominance of the EIG spread in the XB-EDA is most likely 
associated with the larger tropical spread in this experiment (see also Fig. 3) and it is also in agreement 
with Žagar et al. (2013) who presented the same conclusion for the 3-hr and 12-hr forecast-error 
variances in an earlier model cycle. As discussed there, easterly propagating tropical modes represent 
the most important variability and largest forecast error source in the tropics.  

 

 
Figure 8. Ratios of the balanced (ROT), EIG, WIG and IG (EIG+WIG) spread to the total spread 
in each zonal wavenumber for (a) XB-EDA, (b) ST-EDA, (c) OBS-EDA and (d) OBS-OBS-EDA. 
The ratios are multiplied by 100. Black curves correspond to balanced modes (ROT), red to 
easterly-propagating inertia-gravity modes (EIG), dark blue to westerly-propagating inertia-
gravity (WIG) while light blue curves correspond to all inertia-gravity modes (IG=EIG+WIG). 
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Contrary to XB-EDA, the OBS-OBS-EDA and ST-EDA experiments contain more WIG spread than 
EIG spread for zonal wavenumbers greater than 6 and 11, respectively (Fig. 8). If the spread in each 
experiment is normalized by OBS-EDA, it is found that XB-EDA is characterized by an increased EIG 
spread on all scales with respect to OBS-EDA while ST-EDA increases more the WIG spread than the 
EIG spread with respect to OBS-EDA (not shown). This result may be a consequence of the variance 
inflation as found in Žagar et al. (2011) for an ensemble Kalman filter system DART/CAM.  

Figure 8 also shows that in all experiments the IG spread is dominant over the balanced spread for the 
zonal wavenumbers greater than 10. At the shortest analyzed scales, the IG spread makes about 70% 
of the total spread. Although differences in the EIG and WIG spread may seem small when expressed 
in percentages, they illustrate a sensitive balance affected either dynamically (larger growth of forecast 
errors in tropical easterly modes) or artificially (variance inflation) with potentially major impacts on 
subsequent forecasts.  

 Using EDAs to define background error covariance matrices for assimilation  3.4

Background error statistics, the static B covariance matrix, computed from the OBS-, ST- and XB-
EDAs are provided to the assimilation system and three TL399L91TL255 resolution analyses are 
computed for the period 20081005-20081115. Because at the time these experiments were performed, 
the operational configuration was still using the static B matrix, the use of a ‘flow dependent’ B matrix 
was not possible. Description of the computation of the static B matrix from an ensemble analysis can 
be found in Fisher (2003); see also Derber and Bouttier, 1999 for covariance modeling.The 
background error covariance matrix is modelled using coordinate transformations and spherical 
wavelet techniques (Fisher 2003). In addition, a non-linear, analytical balance is included in the 
covariance model (Fisher 2003). The OBS, ST and XB analyses use, respectively, OBS-, ST- and XB-
EDAs estimated B matrices. Diagnostics have been performed to assess the background error 
covariance impact on the assimilation system. The analysis experiments have the same name of the 
EDA experiments but bold fonts are used instead.  

The first diagnostic presented is based on the observation influence (OI) (Cardinali et al., 2004, 
Cardinali 2013) which quantifies the observational leverage in the analysis. The mean Observation 
Influence is the degree of freedom for signal, DFS, or total observation influence (Tukey, 1972; 
Velleman and Welsch, 1981; Wahba et al., 1995; Purser and Huang, 1993) divided by the total number 
of observation N  

( )TDFS tr
OI

N N
 

HK
 (3.3) 

H is the linear observation operator and K is the gain matrix. OI and DFS depend on the assigned 
accuracy of the observations and background as well as the model itself which is a space and time 
propagator. The DFS quantifies the number of statistically independent directions constrained by each 
observation. Differences in the OI or DFS in the three assimilation experiments reflect differences on 
the B-matrices. The OI is proved to be bounded between 0 and 1; 0 influence indicates that an 
observation has had not influence on the estimate but only the background counted whilst OI=1 means 
that an entire degree of freedom has been devoted to fit that observation point. The OI can be gathered 
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e.g. by observation type; in Fig. 9 the OI in OBS, ST and XB analyses is shown for different satellite 
and conventional observation types. Results indicate that XB shows the largest OI. 

In particular, the largest OI increase is noticed for wind reporting observations (0.3 OBS , 0.5 ST and 
0.7 XB), GPS-RO (0.2 OBS, 0.3 ST and 0.7 XB), AMSU-B radiances (0.2 OBS, 0.3 ST and 0.4 XB) 
and All-Sky SSMI radiances (0.1 OBS, 0.2 ST and 0.3 XB). The OI diagnostic indicates that when 
model errors are under-represented in the ensemble analysis, the background error statistics are also 
under-estimated and the observations have smaller leverage in the assimilation procedure. XB analysis 
provides better observations fit (not shown) in agreement with the higher OI. XB DFS is 50% larger 
than OBS and 30% larger than ST DFS. 

A measure of the consistency of the assimilation system is provided by the diagnostics on the 
background-error statistics computed in observation space (Talagrand 2002; Desroziers et al 2005). If 
the K gain matrix is consistent with the ‘true’ covariances for background and observation errors, the 
innovation d and the analysis errors should be de-correlated from a statistical point of view. It can be 
simply shown (Desroziers et al 2005) that the covariance between the analysis increment in 
observation space (Hxa - Hxb) and the innovation vector (d), quantities archived during the asimilation 
procedure, should satisfy   

[( ) ]T T
a bEHBH Hx - Hx d  (3.4) 

 

 
Figure 9 Global average observation influence (OI) for the different observation types assimilated 
in the XB (green line), ST (red line), OBS- (blue line) 4DVar analyses. AMSU-A and -B are 
microwave radiances, AIRS and IASI and HIRS infrared radiances, SSMI microwave imager 
radiance, GPS-RO satellite GPS radio occultation, OZONE retrieval, SCAT retrieved wind 
information from microwave scatterometer, Atmospheric Motion Vector (AMV) from 
geostationary cloud imagery and Vertical profiler consists of wind from  radiosonde, pilot, 
aircraft and wind profiler observations. 
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The assigned background error variances, HBHT (in observation space), are also archived; therefore 
the difference between the assigned and estimated background variances can be computed and 
averaged over the period of interest. In the context of linear estimation theory, a consistent unbiased 
analysis should result in no difference between the estimated and assigned background error variance. 
The following Variance Consistency Check (VCC)  

( ) ( )
s

( )

T T
estimated assigned

T
estimated

VarianceCon istencyCheck



HBH HBH

HBH
 (3.5) 

measures the difference between the background error variances estimated from the analysis residuals 
(Desroziers et al 2005) and the background error variances assigned from the ensemble analysis 
normalized with respect to the estimated ones.  

The VCC computed for the period 20081005-20081115 for OBS, ST and XB analyses shows small but 
non-zero values. . Figure 10 shows the VCC for AMSU-A and -B, HIRS, SSMI, SCAT, Vertical 
profilers and AMV: XB VCC is smaller than OBS and smaller or similar than ST. 

 
Figure 10. VCC for AMSU-A and -B, HIRS, SSMI, SCAT, Vertical profilers and AMV from XB 
(green line), ST (red line), OBS- (blue line) analyses. 

 

 EDA-only based Ensemble Prediction System (EPS) forecasts 3.5

Buizza et al (2008) proposed to use EDA-based perturbations in the ECMWF operational Ensemble 
Prediction System (EPS), and in June 2010 EDA-based perturbations have been introduced in the EPS 
to improve the simulation of initial uncertainties (Isaksen et al 2010). The replacement in the EPS of 
the evolved singular vectors with EDA-based perturbations improved substantially the EPS spread 
over the tropics, with a detectable impact in the early forecast range also over the extra-tropics. A 
positive impact was also detected on the EPS skill. 
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The three EDAs discussed in this work can be used to assess the sensitivity of EPS forecasts to the 
EDA configurations. Two types of ensembles were run: the first type included EDA-only 
perturbations, and the second type also included singular vectors (this is the configuration of the 
operational EPS). Since the impact of the EDA is more evident in the EDA-only type, attention will be 
focused mainly on them. EDA-only EPS have been run with the perturbations defined using the OBS-, 
ST and XB-EDAs. All three EPS configurations included 50 perturbed and 1 unperturbed members, 
with variable resolution TL399L62 between forecast day 0 and 10, and TL255L62 between forecast 
day 10 and 15 (in uncoupled mode). All forecast have been run with both the SPPT and the SPBS 
stochastic scheme as in the operational EPS (in other words, even the OBS- EPS that starts from the 
OBS-EDA-based perturbations that did not use any stochastic model, included stochastic perturbations 
in each of the 50-perturbed members). Forecasts have been run for 18 cases, with initial conditions 
from the 12th of October to the 14th of November 2008 every other day (with 12 UTC as initial time). 

In all ensemble configurations, following the methodology used in the ECMWF EPS operational at the 
time when the experiments were conducted (for more details, please see Isaksen et al (2010) and 
references therein), the EDA-based component of the 50 EPS initial perturbations have been 
constructed by (a) defining 10 EDA-based perturbations by computing the difference between each of 
the 10 EDA perturbed members and the unperturbed (control) member and by (b) adding and 
subtracting these EDA-based perturbations from the un-perturbed analysis, defined by the ECMWF 
operational high-resolution 4D-Var system. Since this procedure provides only 20 perturbations, EPS 
members 21-40 have the same initial EDA-based perturbations as members 1-20, and EPS members 
41-50 have the same as members 1-10. The fact that up to 3 EPS members can use the same EDA-
based perturbations is not a problem in the ensembles run with initial perturbations generated using 
both EDA-based perturbations and singular vectors (as it is the case of the operational EPS), since 25 
different SV-based initial perturbations are also used to generate the 50 positive and negative SV-
based perturbations. For the EDA-only ensembles, the EPS members starting with the same EDA-
based perturbation diverge, albeit in a slower way than the ensembles initialized by blending EDA- 
and SV-based perturbations, since each EPS member is integrated with different model error 
perturbations generated by the stochastic physic schemes. 

The performance of an ensemble prediction system is usually measured by a range of metrics that 
compare, in a statistical sense, the forecast probability distribution function with the verification 
(either the analysis, or observations). Skill metrics that are routinely used include the ranked 
probability score and skill score, the Brier score (Brier 1950), the area under a relative operating 
characteristic and the ignorance skill score (Roulston and Smith 2002). The reader is referred to Wilks 
(1995) for a general overview, and e.g. to Palmer et al (2007) for a review of metrics used to assess the 
skill of the ECMWF Ensemble Prediction System.  

In this work, attention has been focused on three aspects: firstly the ensemble reliability, i.e. the 
consistency between forecast probabilities and observed frequencies of occurrence, measured by the 
agreement between ensemble spread and ensemble-mean error, secondly the error of the ensemble-
mean forecast, and thirdly the skill of probabilistic forecasts measured by the continuous rank 
probability skill score (CRPSS) and the ignorance score. Considering the first aspect, in a reliable 
ensemble, on average the spread of the system measured by the standard deviation should be equal to 



 

Representing model error in ensemble data assimilation 

 
 

 

Technical Memorandum No.726 19 
 

the average error of the ensemble-mean. This property follows from the fact that in such a system, one 
ensemble-member can be considered as the verification (Buizza et al 2005, Palmer et al 2006). Figure 
11 shows the EPS spread (measured by the standard deviation) and the root-mean-square-error of the 
ensemble-mean forecast for the zonal wind at 850-hPa (verified against the operational high resolution 
analysis), computed over the Northern Hemisphere (20°-80°N, Fig 10a), over the Southern 
Hemisphere (20°-80°S, Fig 10b) and over the Tropics (20°S-20°N, Fig 10c). 

 

 
Figure 11 Averaged spread measured by the standard deviation (solid lines) and error of the 
ensemble mean (lines with symbols) of the EPS run with EDA-only perturbations generated from 
OBS-EDA (black), ST-EDA (blue) and XB-EDA (red). Results refer to the zonal wind component 
at 850 hPa over the a) Northern Hemisphere (20°-80°N), b) Southern Hemisphere (20°-80°S) and 
c) Tropics(20°S-20°N). The average has been computed considering 18 cases, each with 51-
Members EPS forecast with initial condition from 12 to 14 November 2008, every other day (12 
UTC only).  

Figure 11 shows that for all configurations the ensembles are underdispersive, especially over the -
tropics, indicating that EDA-only perturbations, if used as generated by the EDA and not re-scaled, are 
not sufficient to produce reliable ensemble forecasts. Among the EDA configurations, the XB- EPS 
has the largest spread, with differences evident up to about forecast day-10. Considering the error of 
the ensemble-mean, Fig. 11 shows that the ensemble-mean forecasts are very similar, almost 
undistinguishable for most of the forecast times, with the XB-EPS showing the smallest error for the 
forecast times when the spread is closer to the ensemble-mean root-mean-square error level (e.g. 
between forecast day 5 and 8 over the SH and between forecast day 5 and 10 over the tropics). 
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Figure 12 Average CRPSS (a) and Ignorance Score (b) of EPS run with EDA-only perturbations 
generated from OBS-EDA (black), ST-EDA (blue) and XB-EDA (red) for temperature at 850 hPa 
over the Southern Hemisphere. The average has been computed considering18 51-Members EPS 
forecast with initial condition from 12 to 14 November 2008, every other day (12 UTC only).    

 

Considering the skill of probabilistic forecasts, all the metrics mentioned above have been considered, 
and since results are all consistent, only CRPSS and ignorance skill scores will be shown. The CRPS 
is the equivalent of the mean squared error for single forecasts, and give a measure of the average 
distance between the forecast and observed distributions; the corresponding skill score, the CRPSS 
have been computed using a climatological probabilistic forecast as reference (thus a perfect 
probabilistic forecast would score 1, and a forecast as skillful as climatology 0). The ignorance skill 
score is a logarithmic score defined using information theory (Roulston and Smith 2002), based on the 
information deficit (or ignorance) in the forecast. According to Benedetti (2010), for probabilistic 
forecast systems the ignorance score and skill scores are more fundamental scores than the Brier score 
and skill scores, given that these latter are second-order approximations of the former. A clear 
advantage of these two scores compared to the Brier score and skill score, or the area under a relative 
operating characteristic, is that both the CRPSS and the ignorance skill score consider the whole 
forecast probability distribution function of forecast states, and not simply some specific event (e.g. 
the probability of a variable exceeding a certain threshold). Thus, they provide a more complete 
assessment than these latter two (Wilks, 1999). 

Figure 12a shows that in terms of CRPSS, the three EPSs have a similar performance. The same 
conclusions can be drawn from the ignorance skill score (Fig. 12b). However, it is worth to notice that 
the small but consistent improvement at day-2 and 3 and day-6 as shown in Fig 12 a) and b) is 
observed for all parameters at different levels. Similar conclusions could be drawn by considering 
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different performance metrics for these variables e.g. the Brier skill score or the area under the relative 
operating characteristic (ROC) for the probabilistic prediction of dichotomous events such as ‘wind 
anomalies above or below the climatological standard deviation’ (not shown).  

Concluding, these results based on EDA-only ensembles indicate that the use of the XB-EDA in the 
EPS would lead to a slightly better match between spread and error, i.e. a better reliability, and to 
similar forecast skill than the use of the ST- and OBS-EDAs The EPS experiments based on EDA-
based perturbations and singular vector perturbation indicate smaller spread differences, detectable 
only up to forecast day 5 instead of day 10, and practically no differences in skill (not shown). 

4 Conclusions 

In this paper, the representation of model error in the ECMWF 4DVar Ensemble Data Assimilation 
(EDA) system by additively perturbing the background field is shown. The method follows the idea 
used in the Meteorological service of Canada  (MSC) Ensemble Kalman Filter (Houtekamer et al 
2005) and in the ARPEGE 4D-Var system (Raynaud et al 2012) to account for model uncertainties in 
the EDA by perturbing the model background field. In the MSC Ensemble Kalman Filter the 
perturbation magnitude is globally constant (but the representation of other errors is also considered) 
whilst at Météo-France the perturbation, as a function of latitude band and model level, is multiplied to 
the background field (multiplicative approach). Here, the additive approach is presented.   

The idea behind it is that a large fraction of model error is represented by the short-range forecast 
error. Thus perturbing the 12 hour model forecast would include error sources introduced by 
dynamics, spatial and temporal discretization and, in the case of assimilation, linearized physical 
processes and the misspecification of the probability distribution of errors in the observations and the 
numerical background model.  The proposed methodology, contrary to the stochastically perturbed 
parameterization tendency scheme, does not require routine diagnostic and tuning. 

Ensembles of data assimilation with different representations of model error have been compared. In 
particular, two more EDAs are examined, all with the same methodology to represent the observation 
uncertainties but different techniques to account for model uncertainties. One model error 
representation technique is based on the assumption that random model errors due to the physical 
process parameterizations are the main model error source (ST-EDA). In the ST-EDA, stochastic 
perturbations are added to the physical model tendency at each model time-step. The other ensemble 
considered (OBS-EDA) only includes an observation error representation, which implicitly modifies 
the background fields in the assimilation cycling process. In the additive XB-method, the magnitude of 
the perturbation is calculated by comparing the variance of the innovation vector of the high resolution 
analysis system with the ensemble data assimilation variance in which the ensemble data assimilation 
is produced by only perturbing the observations. The perturbation is a function of latitude band, 
vertical model level and the model parameter. 

Results have shown that the EDA generated using XB-method accounts for the largest spread, 
followed by the ST-EDA with stochastically perturbed parameterization tendencies and the OBS-EDA 
with observation only perturbations. The increase of spread depends on the location: the stratosphere 
accounts for the largest increase of spread. In the tropics, the increase occurs mainly in the mid-
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troposphere, while in the extra-tropics spread enhancement is detected at all model levels and in the 
Southern hemisphere in particular. The largest difference compared to other EDA configurations is 
found in the extra-tropics where all but the XB-EDA are not able to produce significant spread. 
However, the spread structure is quite similar among the different methods confirming that a large part 
of the model error sources are affecting the short-range forecast. Comparison with respect to the un-
cycled ensemble analysis (OBS-OBS EDA) shows that the background perturbation adds spread from 
high to low levels in the troposphere and into the extra-tropics in both Northern and Southern 
hemispheres. Normal-mode diagnostics compare the percentage of balanced and unbalanced spread in 
the four ensembles XB- , ST- OBS-OBS and OBS-EDA. It was found that various experiments contain 
around 40% of their spread in the balanced modes with ST-EDA being the least balanced. Both ST- 
and XB-EDA add both balanced and IG spread homogeneously at all scales when compared with OBS-
EDA. An interesting difference between XB- and ST-EDA is found in the distribution of the added 
easterly IG spread relative to the westerly IG spread. XB-EDA adds more EIG spread on all scales 
whereas the ST-EDA increases the WIG more than the EIG spread when compared with OBS-EDA 
spread. Overall, XB-EDA is the only experiment which contains more spread in the easterly 
propagating IG modes than in the westerly IG component. It is believed that this is due to the tropical 
flow properties which are strongly influenced by the easterly-propagating Kelvin waves. Although 
more investigation is needed to confirm this interpretation, the increase of spread in the westerly IG 
mode for the ST is likely to be related to the inflation of the model background error variances (as was 
found by Žagar et al. (2011) for the DART-CAM ensemble). In fact, it should be kept in mind that 
OBS- and ST-EDAs include a global inflation factor of the background error variances that penalizes 
the model background further with respect to the observations. The inflation is a spatial and temporal 
constant that does not depend on synoptic weather developments but only intends to introduce larger 
ensemble spread.  

The covariance matrices produced by the three ensemble analysis have been provided to a higher-
resolution data-assimilation system. The diagnostic performed on the three resulting analyses show 
that the largest Observation Influence (OI) is obtained from the assimilation system with XB-EDA 
background statistics. This is due to the larger background error variances. When the analysis residual 
diagnostic is applied to investigate the consistency of the assimilation systems considered, 
systematical smaller differences are found with XB showing closer agreement between the assigned 
and estimated background error variances. 

Finally, the three EDAs have been used in ensemble prediction mode. Since June 2010, EDA-based 
perturbations have been used with singular vectors to simulate initial uncertainties in the ECMWF 
Ensemble Prediction System (Buizza et al 2008, Isaksen et al 2010). Results have indicated that the 
use of the XB-EDA in the EPS would lead to the largest spread, with differences evident up to about 
forecast day-10 and with the smallest error for forecast times from day-5 to 8 over Southern and from 
day-5 to 10 over the tropics when the spread is closer to the ensemble-mean root-mean-square error. In 
terms of EPS forecast skill, very small but consistent improvements up to day-7 have been detected 
when, in particular, the ignorance score is used.  

In conclusion, the XB-method discussed in this work is shown to be a valuable alternative of the 
method used in the current ECMWF EDA to simulate model uncertainty in the ensemble analysis. It 
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accounts for different sources of error coming from the dynamics, the parameterizations, the 
linearization and interpolation schemes and it is easier to tune and maintain. The tuning of the 
perturbation is performed automatically every 3 days from a three-day sample of the high resolution 
operational innovations. A possible extension of the work presented would be to combine the 
background perturbation method with the stochastic physical tendency perturbation method or other 
methodologies that are considered to simulate longer range random model error sources. The 
estimation of the background perturbations magnitude should, in this case, be achieved by comparing 
the innovations of the high resolution analysis system with the EDA in which not only the 
observations are perturbed but also e.g. stochastic perturbations are added to the physical model 
tendency, that is, the ST-EDA. 
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