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Adjoint-based forecast sensitivity applied to observation error variances tuning

Abstract

This paper deals with the estimation of observation errors for Infrared Atmospheric Sounding Inter-

ferometer (IASI) radiances. We investigate the possibility of combining an established method based

on diagnosing errors from innovation statistics (so called Desroziers method) with guidance obtained

from adjoint sensitivity tools (that aim to minimise short-range forecast error). In a test version of the

European Centre for Medium-range Weather Forecasts (ECMWF) 4D-Var assimilation system that

uses in situ observations and IASI as the only source of satellite data, it is found that tuning the IASI

observation errors with a combined approach is beneficial (compared to using the innovation based

method alone). Fits to data within the analysis are improved and forecasts initiated from the retuned

analyses also show a moderate increase in skill.

1 Introduction

Accurate Numerical Weather Prediction (NWP) requires a high quality initialising estimate of the at-

mospheric state commonly produced by a data assimilation system which combines information from

a previous short-range forecast with new observations in an optimal way. The successful exploitation

of any observation in a data assimilation system requires an accurate description of the observation er-

ror covariance (R) and the background error covariance (B). Over the years a substantial amount of

research effort has been directed towards modeling these error statistics (Hollingsworth and Lönnberg,

1986; Daley, 1991; Parrish and Derber, 1992; Derber and Bouttier, 1999; Lorenc, 2003; Buehner et al.,

2005; Desroziers et al., 2005; Chapnik et al., 2006). While significant progress has been made, all of the

methods used to date have their difficulties and limitations, such that the estimation of background and

observation error covariance matrices remains today a challenging and active problem in state of the art

NWP systems.

The operational data assimilation system at European Centre for Medium-Range Weather Forecasts

(ECMWF) is based on a 4D-Var algorithm (Rabier et al., 2000) in a hybrid formulation, with flow-

dependent background error variances and structure functions estimated from an Ensemble of Data As-

similation (EDA; Bonavita et al., 2012). The system assimilates observations from in situ instruments

and satellite observations from more than 50 sensors (English et al., 2013). Recent Observing System

Experiments (OSEs) documented in McNally (2014) show that hyperspectral satellite radiance mea-

surements such as those from the Infrared Atmospheric Sounding Instrument (IASI) are one of the main

drivers of forecast skill. However, these data are assimilated with a rather crudely specified diagonal error

covariance matrix, with errors conditioned by inflation to mitigate the effect of unmodelled inter-channel

correlations.

More recently Bormann et al. (2010) and Weston et al. (2014) have applied the method developed in

Desroziers et al. (2005) to produce a more comprehensive specification of the IASI error covariance ma-

trix. Under certain assumptions the statistics of observation minus background (innovations) and obser-

vation minus analysis (residuals) are decomposed to yield a full description of the IASI error covariance

including inter-channel correlations. Unfortunately, these studies have generally found that using the

raw output from this approach produces rather poor results when tested in assimilation and an acceptable

performance can only be obtained if the error estimates are again conditioned with a condition being an

inflation along the diagonal.

Adjoint-based techniques provide tools for the assessment and optimization of data assimilation system

performance. Traditionally these have been applied to quantifying the information content of obser-

vations and the observation impact on short-range forecasts. The information content provides each

observation’s contribution to the analysis and the Degrees of Freedom for Signal (DFS) is defined
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as a measure of the amount of information extracted from the observations (Purser and Huang, 1993;

Cardinali et al., 2004; Chapnik et al., 2006; Lupu et al., 2011, 2012; Cardinali, 2013). The forecast sen-

sitivity approach to observation impact (FSOI) is used to estimate the reduction of the forecast error due

to the assimilation of the observations and to monitor the observation performance on short-range fore-

casts (Baker and Daley, 2000; Langland and Baker, 2004; Cardinali and Buizza, 2004; Morneau et al.,

2006; Errico, 2007; Gelaro et al., 2007; Zhu and Gelaro, 2008; Cardinali, 2009; Lorenc and Marriott,

2014). The computation of the FSOI involves a metric like total energy moist or dry, over a given area

(Rabier et al., 1996; Cardinali, 2009). Moreover, these adjoint techniques are influenced by simplified

adjoint model used to carry the forecast error information backwards and therefore limited by the validity

of the tangent-linear assumptions to short range forecasts (Janisková and Lopez, 2013).

More recently, the adjoint based methods have been extended (Daescu, 2008) to provide a framework

to assess forecast sensitivity with respect to the observation error covariance (R-sensitivity) and to the

background error covariance (B-sensitivity). These essentially provide guidance on how inflating or

deflating these errors will impact forecast errors and have been used successfully in Daescu and Todling

(2010), Daescu and Langland (2013) and Cardinali and Healy (2014). Unfortunately, these methods do

not provide quantitative estimates of what the errors should actually be.

The aim of this study was to evaluate the possibility of combining information from the Desroziers

approach based on decomposing innovation statistics with the guidance provided by adjoint sensitivity

methods, to hopefully exploit the advantages of both. The new estimate of the IASI error covariance

model is tested in a reduced version of the ECMWF 4D-Var assimilation scheme that uses conventional

(in situ) observations and IASI radiances on Meteorological Operational satellite-A (MetOp-A) as the

only satellite data. This simplified system allows us to attribute any changes directly to the modified

IASI observation errors without concerns over potentially complex interactions with other satellite data.

The paper is structured as follows. In section 2 details of the adjoint-based diagnostics used to tune

the specified covariance matrices by applying scaling factors to the background and the observational

error statistics respectively, are described. The method is applied in section 3 to a baseline assimilation

system to identify which IASI channels require their error variances to be modified. The details of the

Desroziers approach as well as how it is applied to generate new estimates of observation error for those

identified IASI channels are also described in section 3. The setup of and results of experiments used to

test the new IASI observation error is dealt with in section 4. The paper concludes with a summary and

discussion in section 5.

2 The adjoint observation and background error covariance sensitivities

The ability to perform forecast sensitivity to data assimilation system input parameters relies on re-

lationships established between the forecast sensitivity to observations (y), to background (xb) and to

the associated error covariances (R,B). Considering the forecast aspect of interest defined as the norm

of energy weighted 24-h forecast error (e24) initialized from an analysis (xa), the forecast R- and B-

sensitivities have been expressed by Daescu (2008) in terms of the forecast sensitivities to observations

(y) and background (xb) respectively, as:

∂e24

∂R
=

∂e24

∂y
(Hxa −y)T R−1

, (1)

∂e24

∂B
=

∂e24

∂xb

(xa −xb)
T B−1

, (2)
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where H is the nonlinear operator for calculating the equivalent of the state vector in the observation

space.

Because of the size of the matrices involved, the evaluation of the error covariance sensitivity matrices

from eqs.1-2 is not straightforward in an operational NWP system. In this context, a hypothesis is made

that the true covariance matrices can be obtained from the specified ones by applying scaling factors to

the observation- and background- error statistics respectively, so that R(so)=soR and B(sb)=sbB, where

so and sb are the scaling coefficients. Thus, the specified R- and B-covariance matrices correspond to all

scaling factors set to 1 (so=sb =1).

Different observation types are often assumed to have uncorrelated observation error, so the scaling can

be applied to individual sub-components (i =1:I) assumed to have the same observation error standard

deviation. In this context, instead of using a single scaling factor so, one can use multiple scaling factors

so
i such that Ri(s

o
i )=so

i Ri, i =1:I. Following Daescu and Todling (2010), the forecast sensitivities to the

scaling factors so
i , i =1:I and sb in the observation- and background-error covariance representations are

expressed to be:

∂e24

∂ so
i

= (Hixa −yi)
T ∂e24

∂yi

, (3)

∂e24

∂ sb
= (xa −xb)

T ∂e24

∂xb

, (4)

and the following relationship may be established:

I

∑
i=1

∂e24

∂ so
i

+
∂e24

∂ sb
= 0, (5)

For any subset of observations, the sensitivity of 24-h forecast errors to the scaling factor of observation

error covariance of that subset can be computed as the observation-minus-analysis residual (do
a=y−Hxa)

multiplied by the observation sensitivity vector to the corresponding observation subset, summed up over

all observations in that group (with the sign flipped, eq.3). Furthermore, from eq.5, an observation space

sb-sensitivity can be estimated as the sum of forecast sensitivity to observation error covariance scaling

factors (with the sign flipped).

The forecast sensitivity to the scaling factors s=[so
i , sb], i =1:I in the observation- and background-error

covariance representations are defined specifically to reduce the 24-h forecast error, as measured by a dry

energy norm. A negative sensitivity ∂e24

∂ s
<0 identifies those components where error covariance inflation

will be of largest forecast benefit, whereas a positive sensitivity (∂e24

∂ s
>0) point towards error covariance

deflation. It is proposed here that the forecast so
i -sensitivity, i =1:I summarized mathematically in eq.3

provides new insights for tuning the observation-error variance input.

3 Estimates of observation error variances

3.1 Set-up of the experiments

An assimilation experiment subsequently referred to as ‘Baseline’ has been run over a period covering

1 June - 31 July 2012 with a recent version of ECMWF 12-h 4D-Var system model cycle 38R2, with a
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spatial model resolution of T511 L137 (∼40 km horizontal linear grid and 137 vertical model levels with

the model top at 0.01 hPa). The ‘Baseline’ was initialized with the ECMWF operational analysis and the

initial fields on the first cycle contain the operational set-up and the bias coefficients from the operational

file. Ten-day forecasts were calculated from both the 00 UTC and 12 UTC analysis. The experiment

includes a depleted observing system in which only conventional observations and IASI on MetOp-A

radiances are assimilated, and no other observations. The conventional observation network consists of

near-surface observations (land stations, ships and buoys) and upper-air data. The latter include those

from radiosondes, dropsondes, aircraft, wind profilers and PILOTs (high-resolution radiosondes measur-

ing only wind and pilot baloon).

IASI is a hyperspectral infrared sensor providing high-quality temperature and humidity data in NWP

systems (Collard and McNally, 2009; McNally, 2009; Hilton et al., 2009). The assimilation of IASI

relies primarily on the use of clear data over sea from a selection of up to 191 channels including temper-

ature sounding channels in the long-wave region of the spectrum and a limited number of ozone and hu-

midity sounding channels (Collard and McNally, 2009; Han and McNally, 2010; Dragani and McNally,

2013). Prior to assimilation, cloud-contaminated channels are identified and rejected in cloud detec-

tion (McNally and Watts, 2003; Eresmaa, 2014). Observations are bias-corrected using a variational

technique with a standard set of eight predictors to account for scan-angle and air-mass dependent com-

ponents of the bias (Dee, 2004). The observation error standard deviations for IASI correspond to those

assumed in the operational system at ECWWF. They are a step function of spectral bands, giving equal

weight to all stratospheric sounding channels (1.0 K), equal weight to all tropospheric sounding channels

(0.4 K) and equal weight (2.0 K) for all other channels significantly sensitive to the surface emissivity or

to water vapour. While these values overestimate the true ones, currently correlated observation errors

are not taken into account and thus some degree of inflation is justified. Background errors are estimated

from the operational ECMWF EDA system.

3.2 The so
i -sensitivity guidance

An adjoint-based integration has been performed to evaluate the forecast sensitivity to the scaling factors

so
i , i =1:I of the observation-error variances according to eq.3. Figure 1a, shows the time-averaged fore-

cast error sensitivity to the observations error variance scaling factor for conventional observations and

IASI radiances. A positive value indicates that error variance deflation should be beneficial to reduce

the 24-h forecast error whilst inflation should be applied on observation error variance with negative

sensitivity. The sensitivity guidance in Figure 1a is that the information provided by IASI radiances, air-

craft (AIRCRAFT), radiosondes (TEMP) and near-surface observations (DRIBU and SYNOP) is under-

weighted in the assimilation system and deflation of the assigned observation error variances for these

observations is of potential benefit to the forecast. The sensitivity associated with IASI instrument is the

highest sensitivity among all the observation types.

In Figure 1b, forecast sensitivities to the scaling factors of the observation-error variances are displayed

for each of 191 IASI channels assimilated. It can be seen that, in particular, the long-wave upper

temperature-sounding channels and water-vapour channels display positive sensitivities of increased

magnitude. This is an indication that an improvement in forecast skill is expected by reducing the ob-

servation error variance for selected stratospheric to mid-tropospheric temperature sounding channels

between 173 and 254 and selected humidity channels between 2889 and 5480. However, the estimation

of how much the observation error variance should be diminished remains with this method problematic

(Daescu and Langland, 2013). Other diagnostics should be considered to provide quantitative estimates

of what the observation error variance should actually be.
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Figure 1: Sensitivity (time-mean value per assimilation cycle, Jkg-1) of the 24-h forecast error measure with

respect to the observation error variance scaling factor for June-July 2012: a) associated to ‘Baseline’ observing

instruments; b) associated to IASI channels.

3.3 Desroziers method

From the statistical analysis of the observation-minus-background (do
b) and observation-minus-analysis

(do
a) residuals it is possible to diagnose a posteriori the observation-error covariance matrix as:

R = E[do
a(d

o
b)

T ], (6)

where E[ ] is the statistical expectation operator, do
a and do

b
are the analysis and background departures,

respectively. Eq.6 is valid if the observation and background errors used to calculate the analysis, are

the exact observation and background errors (Desroziers et al., 2005). It has been shown that, provided

that the correlation length scales in B and R are sufficiently different, a reasonable estimate of R can

be obtained even if the observation and the background errors are not correctly specified. The method

can be further iterated to estimate R, but generally the first iteration provides a good estimate of the

result (Desroziers et al., 2009; Menard et al., 2009). However, as highlighted in Todling (2015), in the

case where both the observation and background error variances are unknown or mis-specified, the a

posteriori observation residual diagnostic may provide poor estimates of the true background error or

observation error covariances.

The method of Desroziers et al. (2005) is applied to IASI on MetOp-A radiances to assess the consis-

tency of the specified observation-error variances. Estimates of IASI’s observation error variances are

calculated over a 30 day period in June 2012 from clear sky and completely overcast observation residu-

als over oceans only. The diagnosed observation-error standard deviation are significantly lower than the

current operational ones, with an averaged ratio of 0.4 for IASI instrument (not shown). These results are

consistent with other a posteriori estimates shown in the work of Bormann et al. (2010) and Weston et al.

(2014).

Studies performed in recent years to estimate the observation error variances and their correlations for

clear-sky IASI radiances suggest a significant degree of correlation between humidity-sounding channels

and also between window channels (Bormann et al., 2010; Weston et al., 2014). Mid-tropospheric to

stratospheric IASI temperature sounding channels show little or no inter-channel or spatial observation-

error correlations, and estimates of the observation error variances are close to the instrument noise.

Observation-error variances for humidity channels are generally larger than the instrument noise. More-
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Figure 2: Standard deviation of first-guess departures for temperature-sensitive observations as a percentage

relative to the ‘Baseline’: a) temperature observations from radiosondes; b) temperature observation from aircraft.

Error bars indicate the 95% confidence range. The ‘Unscaled IASI’ experiment replicates the ‘Baseline’ except

that Desroziers estimates of observation errors variances for all assimilated 191 IASI channels have been used.

The area is global and the period is from 8 June to 31 July 2012. ‘Baseline’ is equivalent to 100% in these figures

and numbers less than 100% indicate beneficial impact.

over, the above results have been confirmed by comparing the error variances diagnosed with the Desroziers

technique with those derived using the Hollingsworth and Lönnberg method.

It is worth mentionning that at ECMWF, attempts to use unscaled observation-errors standard deviation

estimates from Desroziers approach for all assimilated 191 IASI channels (subsequently referred to as

‘Unscaled IASI’ experiment) resulted in a degradation of the analysis and forecast. This is demonstrated

in Figure 2 in terms of the standard deviations of the first-guess departure statistics, given as a percentage

relative to the ‘Baseline’, for conventional observations. There is 0.5-2% degradation in the fits to ra-

diosondes (Figure 2a) and aircraft temperature observations (Figure 2b) and 1-2% degradation in the fit to

wind observations (not shown). All diagnostics exclude the first week because of possible spin-up effects

caused by lack of realistic initial bias correction coefficients. Each experiment run is verified against a

control run, which is based on the full operational set-up in terms of conventional and non-conventional

data usage and T511 L137 resolution. The forecast impact on headline scores (root-mean-square of 500

hPa geopotential forecast errors) displays strong degradations at both shorter and medium ranges in the

midlatitudes (Figure 3).

4 Tuning IASI observation errors: a combined approach

With these considerations in mind, in this article we study the possibility of combining information from

the Desroziers diagnostic with the guidance provided by the adjoint-based sensitivity tool to re-estimate

the observation error variances for IASI channels. In section 3.2, the adjoint-based forecast sensitivity

tool provided guidance on the IASI channels where the observation error variances should be decreased

to reduce the norm of energy-weighted 24-h forecast error. Among 191 IASI channels, 33 IASI channels

displaying the largest sensitivity values have been selected, as illustrated in Figure 4a. These include

25 temperature sounding channels in the range 173-254 and 8 humidity sounding channels in the range

2889-5480. The Desroziers approach is then used to provide estimates of the observation-error standard

deviation for these selected channels. Figure 4b illustrates the results of Desroziers estimates of the
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Figure 3: Normalised change in root-mean-square (RMS) geopotential error at 500 hPa between ‘Unscaled IASI’

and ‘Baseline’ experiments for: a) Southern and b) Northern extratropics, based on a maximum of 107 forecasts

(8 June - 31 July 2012). Error bars indicate the 95% confidence range. Verification is against the control run.
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Figure 4: a) Pressure [hPa] of the Jacobian peak for a subset of 33 IASI channels (25 long wave CO2 temperature

sounding channels in the range 173-254 and 8 water-vapor channels in the range 2889-5480). b) Diagnosed IASI

error standard deviations from ‘Baseline’, IASI instrument noise and operational values for a subset of 33 IASI

channels.

observation-error standard deviation together with IASI instrument noise and the assigned operational

values for each of the 33 selected IASI channels. For the long wave CO2 temperature sounding channels

in the range 173-254 the size of the Desroziers diagnosed observation-error standard deviation is close

to the instrument noise, while for IASI water-vapour channels is considerably larger than the instrument

noise. However, the Desroziers diagnosed observation-error standard deviation for all 33 selected IASI

channels were found to be lower than the corresponding values assigned in the ‘Baseline’ assimilation.

A new experiment (subsequently referred to as ‘Retuned-IASI’) was then run for the same period to in-

vestigate the performance of the modified observation-error standard deviation in selected IASI channels

and to evaluate the analysis and forecast system performance. The usage of observations is kept similar

to the ‘Baseline’, except for the 33 selected IASI channels where unscaled observation-error standard

deviation relative to the Desroziers diagnosed ones are used.
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Exp. Observation number (p) DFS OI

Baseline 2411956 222015 0.092

Retuned-IASI 2418318 250104 0.103

Table 1: DFS and mean observation influence.

4.1 Analysis impact

An indication of the impact of ‘Retuned-IASI’ experiment on the quality of analyses and short-range

forecasts is provided by the first-guess departures. Figure 5 shows the normalised standard deviations of

first guess (FG) departures statistics for temperature observations from radiosondes, and aircraft, and in-

situ wind observations (from aircraft, radiosondes, pilots and profilers) and IASI observations. The stan-

dard deviations are normalised with respect to the standard deviations used in the ‘Baseline’ experiment.

Globally, retuning the observation error variances for selected IASI channels marginally improves the

temperature, humidity and wind fits to conventional observations in the troposphere. In the stratosphere

around 30 hPa statistically significant degradations are noticed in the temperature fit (from radiosondes,

Figure 5a) and in the winds fit (from conventional wind data, Figure 5c). The fit to IASI observations

is analysed through Figure 5d). Consistent reductions of standard deviation of the FG departures were

confirmed globally across the channels spanning the troposphere and to a lesser extent the stratosphere

(e.g., O3 band channels). We found approximately up to 2% significant improvements in the standard

deviation of FG departures for several temperature sounding channels, significant improvements of about

3% in the FG fit to humidity IASI channels and significant degradations by around 2% in the FG fit to

ozone sensitive channels.

The analysis impact of the individual observation types can be illustrated using the observation influence

(OI: defined as the degrees of freedom of signal DFS normalized by the total observation number). OI

varies between 0 and 1: OI=0 would imply that there has been no contribution from the observations in

the analysis, with the analysis equal to the background, whilst OI=1 would imply that there has been no

contribution from the background in the analysis. Table 1 shows the globally averaged OI for ‘Baseline’

and ‘Retuned-IASI’ experiments. The mean observation influence estimated over the globe in ‘Base-

line’ is 0.092, which implies that the analysis extracts 9.2% of its information from the observations and

90.8% from the background, which contains also observation information from the previous analysis

cycles. In the ‘Retuned-IASI’ experiment, the total number of assimilated observation increase, the total

DFS increase and the global OI per assimilation cycle has been found to be 0.103. Thus, on average

the information in the analysis that comes from the observation is larger in ‘Retuned-IASI’ experiment

compared to ‘Baseline’. The contribution to the global observation influence for each observation type is

shown in Figure 6a for both experiments. IASI provides the largest contribution to the mean observation

influence among the different observation types, followed by aicraft, radiosondes and SYNOP observa-

tions. OI is proportional to the analysis error variance and inversely proportional to the observation error

variance. Therefore, IASI’s OI is larger in ‘Retuned-IASI’ experiment than in ‘Baseline’ because of the

variance deflation of 33 selected IASI channels (Figure 6b).

It is worth noting that the conventional OI is unchanged, which provides a consistency check on the ro-

bustness of the IASI applied variance tuning. In fact when the variances are tuned by applying Desroziers

method on all channels, that is the adjoint-based sensitivity guidance is not jointly used for channel se-

lection, the increased IASI OI is detrimental to conventional OI (decreased conventional OI, not shown).
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a) Z: −90° to −20°, 500hPa b) Z: 90° to 20°, 500hPa
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Figure 7: Normalised change in RMS geopotential error at 500 hPa between ‘Retuned-IASI’ and ‘Baseline’ ex-

periments for: a) Southern and b) Northern extratropics, based on a maximum of 107 forecasts (8 June - 31 July

2012). Error bars indicate the 95% confidence range. Verification is against the control run.

4.2 Forecast impact

Forecast scores have been calculated in terms of normalised difference of root mean square errors be-

tween ‘Retuned-IASI’ experiment and ‘Baseline’, verified using a control run. Headline forecast scores

are shown in Figure 7. It can be seen that ‘Retuned-IASI’ experiment improves by 2% the standard

500 hPa geopotential height forecast scores up to day 3 in the Southern extratropics. In the Northern

extratropics the impact is positive but smaller. Overall, the forecast performance of the ‘Retuned-IASI’

assimilation scheme is encouraging, essentially showing a consistent positive impact in the geopotential

height at different tropospheric levels (not shown). The verification of temperature and wind forecasts

from the two systems is generally consistent with the height results and shows improved forecast scores

as compared with the ‘Baseline’ run (not shown). These changes are statistically significant in many

areas, meaning that, tuning IASI observation error makes an improvement to the quality of geopoten-

tial height, temperature and wind forecasts at different tropospheric levels, areas and range forecast. A

negative impact of retuning IASI observations, is noticed in layers higher in the stratosphere. Though

in the Southern extratropics between 10 hPa and 50 hPa, the root mean square errors in temperature and

vector wind between ‘Retuned-IASI’ experiment and ‘Baseline’ increase by up to 2% with statistical

significance out to day 3. The signal was present also on Figure 5.

To summarize the results, the integrated total dry energy norm (Rabier et al., 1996) over the entire model

atmosphere has been examined. The normalized difference of the integrated total dry energy of the

forecast error (verified against the control run) between ‘Retuned-IASI’ experiment and ‘Baseline’ for

forecast days 1-5 for the Northern Hemisphere extratropics and Southern Hemisphere extratropics is

shown in Figure 8. A beneficial impact is one that results in a reduction of forecast error (negative

normalised difference). It is found that ‘Retuned-IASI’ experiment has smaller forecast error up to day

5.

4.3 Sensitivity guidance and observation impact

It was found earlier that re-estimating the observation error variances for 33 IASI channels in ‘Retuned-

IASI’ experiment yields an overall positive impact on both analyses and forecasts. The adjoint-based

integration has been again performed to assess the forecast sensitivity to the scaling factors of the

observation-error variances of the ‘Retuned-IASI’ experiment.

It is worth noting that if the error statistics are perfectly specified then each of the values of the forecast
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Figure 9: Sensitivity (time-mean value per assimilation cycle, J kg-1) of the 24-h forecast error measure with

respect to the observation error variance scaling factor and background error covariance weight factor in June-

July 2012: a) associated with various observation type; b) per instrument channel for IASI.

sensitivity to the observation-error variances scaling factors associated to various observing instruments

and the complementary value of the sensitivity to the background error statistics are expected to be zero.

Compared to ‘Baseline’ assessment (Figure 9a), the forecast sensitivity to observation error variance

scaling factor for IASI instrument has been halved. The information provided by the observing system

as a whole is under-weighted in ‘Retuned-IASI’ runs with still positive sensitivities for IASI and aircraft

data. This points also to a suboptimal assimilation of these data and suggests further deflation of the

observation error variances, in particular, for the IASI channels shown in Figure 9b and for temperature

and wind measurements from aircraft observations between 200-300 hPa (not shown). Similarly, a re-

duced negative background error sensitivity is noticed, suggesting that the EDA based background error

variances are less overweighting the background in ‘Retuned-IASI’ experiment. The combined forecast

sensitivity results indicate that ‘Retuned-IASI’ consistently outperforms the ‘Baseline’ run. Neverthe-

less, the sensitivity guidance applied to ‘Retuned-IASI’ identifies further forecast error reduction which

may be obtained either by decreasing some observation-error variances or by increasing the background-

error variances. One can use these diagnostics to further tune the specified covariance matrices, so that

zero sensitivity gradients will be obtained with respect to the new error statistics.

The forecast sensitivity approach to observation impact (FSOI) of all the observing system components

has been evaluated for both ‘Baseline’ and ‘Retuned-IASI’ experiments and are shown in Figure 10a. In

both experiments all observation types are estimated to reduce the 24-h forecast error on average over

the global domain, with the largest contribution provided by IASI observations. In fact, most of the

Technical Memorandum No. 753 11



Adjoint-based forecast sensitivity applied to observation error variances tuning

0 5 10 15 20 25 30 35 40 45 50

DROP

PROFILER

PILOT

DRIBU

SYNOP

TEMP

AIRCRAFT

IASI

FSOI (%)

Baseline Retuned-IASI

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

ch
 1

7
3

ch
 1

7
6

ch
 1

7
8

ch
 1

7
9

ch
 1

8
0

ch
 1

8
3

ch
 1

8
5

ch
 1

8
7

ch
 1

8
9

ch
 1

9
1

ch
 2

0
5

ch
 2

1
2

ch
 2

1
7

ch
 2

1
9

ch
 2

2
4

ch
 2

2
6

ch
 2

3
0

ch
 2

3
2

ch
 2

3
6

ch
 2

3
9

ch
 2

4
1

ch
 2

4
6

ch
 2

4
9

ch
 2

5
2

ch
 2

5
4

ch
 2

8
8

9
ch

 2
9

5
8

ch
 2

9
9

3
ch

 3
0

0
2

ch
 3

0
4

9
ch

 5
3

8
1

ch
 5

3
9

9
ch

 5
4

8
0

F
S

O
I(

%
) 

Selected IASI channels 

Baseline Retuned-IASI 

a) b)

Figure 10: Average observation impact relative to: a) each subset of observations; b) each of 33 selected IASI

channels.

IASI channels have positive impact on the forecast and contribute to the total forecast error reduction.

In particular, the subset of channels from 193 to 232, primarily located in the long-wave CO2 band

has a relatively large positive impact, while channels in the O3 band (1574 to 1626) show a very small

but negative impact (not shown). Overall, the average impact of the observations as a whole in the

data assimilation scheme is beneficial in both experiments and the 24-h forecast error is reduced by an

average of 23.06% in ‘Baseline’ and by an average of 23.12% in ‘Retuned-IASI’ experiment. Tuning of

the observation error in selected IASI channels will produce a forecast improvement as shown in Figure

10b.

5 Conclusions

In a test version of the ECMWF 4D-Var assimilation system that uses in situ observations and IASI as the

only source of satellite data the possibility of tuning the IASI observation error variances using combined

information from the adjoint-based sensitivity tools and from the Desroziers approach has been studied.

For each observation type, the adjoint forecast sensitivity with respect to the observation error variances

tool provides guidance on how inflating or deflating these errors will impact the 24-h forecast error, but

does not provide a quantitative estimate of what the errors should actually be. Other diagnostics, such

as Desroziers method based on diagnosing errors from innovation statistics might be used in addition to

provide new estimates of the observation error variance.

It is found that tuning the IASI observation errors in selected IASI channels with a combined approach

yields a positive impact on both analyses and forecasts. First-guess fits to conventional observations

within the analysis are improved and forecasts launched from the retuned analyses also show a moderate

increase in skill in the geopotential height, temperature and wind at different tropospheric levels, areas

and range forecast. Assessing the information content of observations before and after tuning we demon-

strated that the information content in the analysis attributable to the assimilated observations increased

from 9.2% to 10.3%, whereas the complementary background information decreased from 90.8% to

89.7%. The ‘Retuned-IASI’ experiment has been constructed specifically to reduce the 24-h forecast

error as measured by a dry energy norm and we did find that the improvements in the dry energy norm

are propagated up to day 5. The average impact of the observations as a whole was beneficial in each

analysis cycle and reduced the 24-h forecast error. Both, the observation influence and the FSOI are

proportional to error variance reduction and inversely proportional to the observation accuracy, and so a

large observation influence in selected IASI channels produced a large FSOI.

12 Technical Memorandum No. 753



Adjoint-based forecast sensitivity applied to observation error variances tuning

The evaluation of adjoint-based forecast sensitivities to error covariance parameters provides new in-

sights for tuning the observation-error variance input. Systematic non-zero forecast sensitivities in the

observation- and background-error covariance representations point towards mis-specification of the er-

rors. The approach in this article was to optimise mostly the estimation of the error statistics of the IASI

observations. IASI channels were identified where reducing the observation error variances yielded an

overall positive impact in both analyses and forecasts, without accounting for observation error correla-

tions. The results also suggest that the EDA generated background errors are too small. The reason lies

in the representation of the model error in the ensemble data assimilation, which is not able to charac-

terise the model uncertainities, especially in the extratropics at any atmospheric level and in the tropics

in the mid-troposphere (Cardinali et al., 2014). This study encourages further investigation on the 50-

10 hPa background error variances provided by the EDA, as well as the observations sensitive at that

atmospheric pressure.

Although this study was performed with a reduced observation network, it tested a process for obser-

vation error variances tuning, that could be be applied in the operational ECMWF context. Given the

various components of the observing system assimilated in the ECMWF operational run, it is anticipated

that it might be hard to tune the observation error variances in a much larger parameter space. How-

ever, this study does support further effort to better specify the observation error statistics and to take

the error correlations into account in the assimilation. An interesting area of future development could

be to estimate the off-diagonal terms in the observation error covariance using this approach to assess

whether modeling the observation error correlations in the data assimilation system will entail substantial

improvements in the model forecast skill.
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