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“Time”-parallel diffusion-based correlation operators

Abstract

Correlation operators based on the solution of an implicitly formulated diffusion equation can be
implemented numerically using the Chebyshev iteration method. The attractive properties of the al-
gorithm for modelling correlation functions on high-performance computers have been discussed in
a recent paper. The current paper describes a straightforward variant of that algorithm that allows
the matrix-vector products involved in the sequential pseudo-time diffusion process to be performed
in parallel. Contrary to the original algorithm, which requires solving a sequence of linear systems
involving a symmetric positive-definite (SPD) matrix, the “time”-parallel algorithm requires solving
a single linear system involving a nonsymmetric positive-definite (NSPD) matrix. The key informa-
tion required by the Chebyshev iteration for solving the NSPD problem is an estimate of the extreme
eigenvalues of the NSPD matrix. For the problem under consideration, the extreme eigenvalues of
the NSPD matrix are the same as those of the original SPD matrix, and can be pre-computed using a
Lanczos algorithm. The convergence properties of the algorithm are studied from a theoretical per-
spective and using numerical experiments with a diffusion-based covariance model employed with
a variational data assimilation system for the global ocean. Results suggest that time-parallelization
can reduce the run-time of an implicit diffusion-based correlation operator by greater than a factor of
two. It can be implemented practically using a hybrid parallelization approach that combines Mes-
sage Passing Interface tasks in the spatial domain with Open Multi-Processing threads spanning the
pseudo-time dimension. The sensitivity of the results to preconditioning, to the choice of first guess
and to the stopping criterion is discussed.

1 Introduction

Correlation operators are central to variational data assimilation. In three- and four-dimensional varia-
tional data assimilation (3D-Var and 4D-Var), they are required for modelling background error (Berre,
2015). In weak-constraint 4D-Var, they are needed for representing errors in the numerical model as well
as background error (Rabier and Fisher, 2015). Developing correlation operators, and inverse correlation
operators, for representing observation error is an area attracting increasing attention for improving the
use of satellite data in 3D-Var and 4D-Var (Desroziers, 2015). Correlation operators are also fundamental
to ensemble-variational assimilation (EnVar) where they are needed to localize low-rank sample covari-
ance matrices constructed from ensemble perturbations (Lorenc, 2015). For Monte Carlo applications,
the “square-root” of a correlation operator provides a practical tool for generating random samples that
can be used to perturb model input parameters. With these different applications comes the need to de-
velop general correlation operators that can represent diverse error structures, are appropriate for systems
with large state vectors, and can execute efficiently on high-performance computers.

Correlation operators derived from diffusion-like operators have been developed extensively over the
years for ocean and atmospheric data assimilation (Weaver and Courtier, 2001; Dobricic and Pinardi,
2008; Carrier and Ngodock, 2010; Purser et al., 2003a,b). Diffusion-based correlation operators have
also been developed in other fields, such as seismic inversion (Bui-Thanh et al., 2013), uncertainty
quantification (Gmeiner et al., 2017) and geostatistics (Lindgren et al., 2011). Diffusion operators can
be formulated using explicit or implicit discretization schemes, but implicit schemes are more flexible
and robust for correlation modelling (Mirouze and Weaver, 2010; Weaver and Mirouze, 2013). The
current study focuses on implicitly formulated diffusion operators and their application to variational
data assimilation in global ocean models.

Weaver et al. (2016) (hereafter WTP16) proposed the use of an iterative algorithm based on the Cheby-
shev iteration (CI) method (Gutknecht and Röllin, 2002) to provide an approximate solution of each
symmetric positive-definite (SPD) linear system in the M-step sequence of an implicitly formulated dif-
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fusion operator. CI has several attractive properties for the problem under consideration.

1. WTP16 show that the convergence properties of CI are similar, albeit slightly inferior, to those of
conjugate gradients (CG) for the implicit diffusion problem under consideration. CG requires the
evaluation of inner products on each iteration, for estimating the algorithm parameters and, possi-
bly, for re-orthogonalizing residual vectors to combat the effects of round-off error. In a parallel
domain decomposition, these inner products require costly global Message Passing Interface (MPI)
communications, in addition to the local MPI communications before each system matrix applica-
tion. CI requires only local MPI communications and is thus better suited for high-performance
computers.

2. CI has small memory requirements and is straightforward to implement as it only requires the
ability to perform matrix-vector multiplications with the implicit diffusion system matrix. This
can be a major practical advantage over other methods such as multigrid or direct solvers that
require structural knowledge of the system matrix and/or the availability of a hierarchy of grids.
This is the case for global ocean models where complex boundary geometry and non-standard
grids make these alternative methods less practical.

3. CI is a linear solver. Fixing the total number of CI iterations (K) and formulating the complete
correlation operator as a product UUT, where CI is used to solve the sequence of M/2 linear
systems in U and the adjoint of CI is used to solve the sequence of M/2 linear systems in UT, allows
the intrinsic SPD property of a correlation matrix to be preserved numerically regardless of the
desired solution accuracy (value of K). WTP16 show that adequate solutions can be obtained using
a modest convergence criterion (value of K). The SPD-preserving formulation is thus especially
convenient for reducing the cost of the operator without introducing numerical inaccuracies in the
gradient of the cost function required by the variational minimization algorithm.

CI is a parameter-dependent method that requires estimates of the extreme eigenvalues of the implicit
diffusion system matrix. These can be estimated prior to entering the variational minimization algorithm
using a Lanczos method (Saad, 2003, pp. 185–186). Alternatively, the simpler power method (Golub
and Van Loan, 1996, pp. 330–332) can be used to estimate the maximum eigenvalue, which is sufficient
since the minimum eigenvalue of the system matrix is approximately equal to one.

The implicit diffusion operator described in WTP16 is now a standard component of NEMOVAR (Mo-
gensen et al., 2012; Balmaseda et al., 2013; Waters et al., 2015), a variational data assimilation platform
for the Nucleus for European Modelling of the Ocean (NEMO) model (Madec, 2008). The new operator
produces more realistic correlations near complex boundaries and has improved scalability properties
compared to the previous implicit diffusion operator that was built from a product of one-dimensional
implicit diffusion (recursive filter-like) components. Nevertheless, further improvements are necessary to
reduce the computational cost of the correlation model for applications involving high-resolution models
or “large” correlation length scales. Large length scales are typical in a multi-scale covariance model
formulation (Mirouze et al., 2016), and are often required in the localization operator of EnVar, espe-
cially when using a large ensemble size (Ménétrier and Auligné, 2015) or scale-dependent localization
(Buehner and Shlyaeva, 2015). Large length scales combined with a high-resolution model will increase
the condition number of the system matrix, with the consequence of slowing down, possibly significantly,
the convergence rate of CI.

There are different ways the cost of the correlation operator can be reduced while still remaining within
the framework of CI. One possibility is to employ selective use of single precision in the CI solver.
Preconditioning is another possibility, with domain decomposition preconditioners, such as Additive
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Schwarz or Restricted Additive Schwarz (Cai and Sarkis, 1999), seemingly well suited for the problem
at hand. Furthermore, for large-scale correlations, the diffusion computations could be done more eco-
nomically on a grid with resolution comparable to the scale itself, which could be much coarser than the
resolution of the native analysis grid.

In this paper we explore another approach, which aims at improving the parallel aspects of the algorithm
to allow for faster execution of the correlation operator on high-performance computers. In particular,
we show how the implicit diffusion problem can be reformulated in a way that allows the costly matrix-
vector products involved in the M-step (pseudo-time) diffusion processes to be performed in parallel
on each iteration of the CI solver. The approach falls into the general class of time-parallel algorithms,
whose development is an active area of research in numerical modelling (for a review see Gander (2015))
and more recently in data assimilation (Rao and Sandu, 2016; Fisher and Gürol, 2017). The time-parallel
formulation of implicit diffusion presented in this paper builds on an idea described in (Zhu, 1994,
chapter 5), which first involves recasting the sequential M-step implicit diffusion operator in terms of
a single nonsymmetric positive-definite (NSPD) linear system. The new aspects in this paper are the
application of this technique to correlation modelling as well as the use of CI to solve the resulting
NSPD system. Furthermore, we complement the latter with a theoretical analysis of the convergence
properties of CI for this particular NSPD problem.

The structure of the paper is as follows. The formulation of a correlation matrix in terms of an im-
plicitly formulated diffusion operator is described in section 2. The beginning of this section contains
background material required to develop the NSPD formulation that is presented towards the end of the
section. The CI algorithm used to solve the NSPD problem is described in section 3. Different as-
pects of the algorithm are discussed, including its theoretical convergence properties, and the choice of
preconditioners and first guess. Numerical experiments using the NEMOVAR system are presented in
section 4. The NSPD formulation is evaluated in terms of convergence behaviour and solution accuracy,
and compared to the standard SPD formulation, which is the benchmark. Section 5 gives a summary and
discussion. Appendix A describes a minor correction to the CI algorithm that was derived and applied
in WTP16. Appendix B outlines the mathematical basis that ensures convergence of CI for the NSPD
problem under consideration. Appendix C describes the properties of a block-diagonal preconditioning
matrix that can be considered as a cheaper alternative to the ideal, block lower triangular form of the
preconditioning matrix used in the experiments.

2 Diffusion-based correlation operators

2.1 General formulation and background material

The starting point is the general factored form of a univariate N×N correlation matrix C constructed
from a self-adjoint filter L = L1/2 L1/2 (see WTP16):

C = ΓΓΓ
1/2 L1/2 W−1(L1/2)T

ΓΓΓ
1/2 (1)

where W defines the matrix of grid-dependent weights associated with the discrete inner product with
respect to which L is self-adjoint (L = W−1 LT W), and ΓΓΓ = ΓΓΓ

1/2
ΓΓΓ

1/2 is a diagonal matrix of normal-
ization factors to ensure that the diagonal elements of C are approximately equal to one. In this paper
we consider the class of self-adjoint filters built from an elliptic operator that describes implicit diffusion
over a pseudo-time step interval 0≤ m≤M, where m is an integer and M is taken to be even in order to
obtain a practical expression for the operator L1/2.
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For the implicit diffusion-based filters, L1/2 and
(
L1/2

)T
=
(
LT
)1/2 have the specific form

L1/2 =
(
A−1

)M/2(
L1/2

)T
=
((

AT
)−1
)M/2

 (2)

where the elements of the self-adjoint matrix A are associated with the discrete representation of the
operator 1−∇ ·κκκ∇ involving the gradient operator ∇, divergence operator ∇·, and diffusion tensor κκκ .
The elements of κκκ have physical units of length squared. The correlation functions described by the
implicit diffusion model are closely related to those from the Matérn family in Rd where d determines
the dimensionality of the gradient and divergence operators (Guttorp and Gneiting, 2006; Weaver and
Mirouze, 2013). If κκκ is constant and boundaries are ignored then the kernel (correlation function) of the
correlation operator C is given by

cd (r) =
21−M+d/2

Γ(M−d/2)
rM−d/2 KM−d/2

(
r
)

(3)

where r =
√

(x−x′)T κκκ−1 (x−x′) is a nondimensional distance measure between points x and x′ in Rd ,
KM−d/2(·) is the Bessel function of the second kind of order M−d/2, and Γ(·) is the Gamma function.
For this special case, the normalization matrix in Eq. (1) is simply ΓΓΓ = γd IN where IN is the N×N identity
matrix, and

γd = 2d
π

d/2 Γ(M)

Γ(M−d/2)

√
|κκκ|,

|κκκ| denoting the determinant of κκκ .

The directional length scales of the correlation functions are controlled by κκκ , which is a d×d symmetric
positive-definite (and hence invertible) matrix. The fatness of the tails of the correlation functions, which
in spectral space is related to the decay rate of the correlation spectrum at high wavenumbers, is con-
trolled by the pseudo-time parameter M. There is a simple relationship between κκκ and the inverse of the
tensor DDD−1 describing the curvature of the correlation function (3) near its peak (Weaver and Mirouze,
2013):

κκκ =

(
1

2M−d−2

)
DDD. (4)

Michel et al. (2016) refer to DDD−1 as the local correlation tensor (LCT), while Weaver and Mirouze (2013)
refer to the inverse of the LCT (DDD) as the Daley tensor in view of its interpretation as a generalized length
scale following a conventional definition given in the classical textbook by Daley (1991). The LCT or
Daley tensor is of significant practical interest since it can be estimated from an ensemble of simulated
errors (Belo Pereira and Berre, 2006; Weaver and Mirouze, 2013; Yaremchuk and Nechaev, 2013; Michel
et al., 2016). Equation (4) then provides a way of defining the diffusion tensor given an estimate of DDD
and a specific value of M. Equation (4) can also be used approximately to introduce spatial dependence
in κκκ when spatially varying estimates of DDD are available.

In the rest of the paper, we are concerned with finding efficient algorithms for performing matrix-vector
multiplications with L1/2, and the corresponding adjoint operator

(
L1/2

)T. Using the self-adjointness
identity, A = W−1 AT W, it is possible to transform (2) into the equivalent form (see WTP16)

L1/2 = W−1/2 L̂1/2 W1/2(
L1/2

)T
= W1/2 L̂1/2 W−1/2

}
, (5)
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which involve symmetric matrices

L̂1/2 =
(
Â−1

)M/2
=
(
L̂1/2

)T
Â = W1/2 AW−1/2 = ÂT

}
. (6)

This alternative representation, which involves a single inversion of the SPD matrix Â instead of a pair
of inversions of self-adjoint positive-definite matrices A and AT, is more convenient for the iterative
algorithms considered in this paper.

2.2 Symmetric and nonsymmetric formulations

We will work primarily with the operator L̂1/2 in what follows, which will require frequent reference to
the half-interval parameter M/2. To lighten notation, we introduce the following definition:

M′ ≡M/2.

Let {ψψψ
m
}, m = 1, . . . ,M′, denote the sequence of N-dimensional vectors generated by the M′-step dif-

fusion operator L̂1/2 acting on a given input vector ψψψ
0
. To apply L̂1/2, WTP16 propose an iterative

approach to solve each of the SPD linear systems involved in the M′-sequence of implicit diffusion steps:

Âψψψ
1

= ψψψ
0

Âψψψ
2

= ψψψ
1

...

Âψψψ
M′

= ψψψ
M′−1

 . (7)

Note that Â itself depends on M through the parameterization (4) and that the condition number of Â
will increase when the value of M decreases (see Fig. 5a in WTP16). Apart from sharing the same N×N
SPD matrix Â, the equations in (7) are linked in the sense that the solution of one equation constitutes
the right-hand side (rhs) of the next equation in the sequence. The algorithm is purely sequential as the
equations need to be solved one after another, following the sequence of increasing pseudo-time steps.

Our goal in this paper is to break this temporal chaining between the consecutive solution steps of the
system in order to allow the matrix-vector products involving Â to be carried out in parallel. For this
purpose, we start by reformulating (7) as a single large linear system. Following Zhu (1994), this can be
done by recasting the system (7) as

Âψψψ
1

= ψψψ
0

−ψψψ
1

+ Âψψψ
2

= 0
...

−ψψψ
M′−1

+ Âψψψ
M′

= 0

 ,

or, in compact form,
AΨΨΨ = ζζζ (8)

where

ΨΨΨ =


ψψψ

1

ψψψ
2
...

ψψψ
M′

 , ζζζ =


ψψψ

0

0
...
0


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and

A =


Â
−IN Â

. . .
. . .

−IN Â

 . (9)

The system matrix (9) is NSPD and of size NM′×NM′. In what follows, and for reasons that will
become clearer later in the paper when discussing the actual solution algorithm, we will refer to Eq. (8)
as a parallel linear system.

The solution of Eq. (8) is a vector that concatenates the solutions of the individual equations in system
(7). The solution of interest is the final state ψψψ

M′
produced by the implicit diffusion process acting on the

initial state ψψψ
0
. To emphasize this point, we can write Eq. (8) explicitly as a transformation from ψψψ

0
to

ψψψ
M′

using the notation
AΨΨΨ = Eψψψ

0

ψψψ
M′

= FTΨΨΨ

}
, (10)

where
Eψψψ

0
= ζζζ ,

E and F being rectangular matrices of size NM′×N, given by

E =


IN

0N

...
0N

 and F =


0N

...
0N

IN

 .

From Eq. (10), the operator L̂1/2 in Eq. (1) can be formally identified as

L̂1/2 =
(
L̂1/2)T

= FTA−1 E. (11)

It is straightforward to show that A−1 has the following block lower triangular structure:

A−1 =


Â−1(
Â−1

)2 Â−1

...
...

. . .(
Â−1

)M′ (
Â−1

)M′−1 · · · Â−1

 . (12)

The action of the extension operator E and restriction operator FT in Eq. (11) is to extract the element in
the lower left-hand corner of the matrix (12), which shows that L̂1/2 defined by Eq. (11) is equivalent to
L̂1/2 in Eq. (6).

An important point for the iterative solution methods considered in the next section is that the NSPD
matrix A and SPD matrix Â have the same eigenvalues. This result follows from the particular block
triangular structure of A, which leads to a simple relationship between the characteristic polynomials of
A and Â:

det
(A−λ I

NM′

)
=
(
det(Â−λ IN )

)M′ (13)

where det(P) stands for the determinant of the square matrix P, and λ is an eigenvalue. Equation (13)
implies that the eigenvalues of A are identical to those of Â, with algebraic multiplicity at least equal to
M′.
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2.3 Hybrid time-sequential/time-parallel diffusion

It is possible to define L̂1/2 (and
(
L̂1/2

)T) as a combination of time-sequential and time-parallel opera-
tions using the formulation

L̂1/2 =
L

∏
l=1

(
FT

ml
A−1

ml
Eml

)
(
L̂1/2

)T
=

1

∏
l=L

(
ET

ml

(AT
ml

)−1 Fml

)
 (14)

where L defines the number of sequential steps (1≤ L≤M′), and ml is an integer (1≤ ml ≤M′) that
defines the block size of the mlN×mlN matrix Aml

and of the mlN×N matrices Eml
and Fml

. For a
given M, the values of ml and L must satisfy ∑

L
l=1 ml = M′. The purely time-sequential formulation

corresponds to L = M′ and ml = 1, l = 1, . . . ,M′, while the purely time-parallel formulation corresponds
to L = 1 and m1 = M′. Since the number of blocks can be different on each step, the order of the
operations is important and must be reversed in

(
L̂1/2

)T in order to maintain symmetry. This is ensured
in Eq. (14) by reversing the bounds of the multiplication index l in the expression for

(
L̂1/2

)T.

3 The solution algorithm

3.1 The Chebyshev iteration

The solution algorithm considered in this study is CI. WTP16 discuss its advantages over other methods
for solving the linear systems in (7) within the context of correlation modelling for variational data
assimilation. Here, we summarize the salient features of the method that are relevant to the current study.

First, consider the sequential system (7). The iterate ψψψ k
m

produced by CI at iteration k on the mth step
of the sequence is such that its error ek

m
= ψψψ k

m
−ψψψ∗

m
with respect to the exact solution on the mth step,

ψψψ∗
m
= Â−1ψψψ

m−1
, is

ek
m
= ϕk(Â)e0

m
(15)

where ϕk is the polynomial that is the unique solution of

min
ϕ(0) = 1

deg(ϕ)≤ k

max
λ∈[λmin,λmax]

|ϕ(λ )|.

In words, ϕk is the polynomial of degree at most k and with unit value at the origin, which has the smallest
maximum amplitude on the interval bounded by the minimum (λmin) and maximum (λmax) eigenvalues
of Â. The kth shifted and scaled Chebyshev polynomial of the first kind provides the unique solution of
this problem (Gergelits and Strakoš, 2014). Equation (15) can also be expressed as

rk
m
= ϕk(Â)r0

m
(16)

where
rk

m
= Âψψψ k

m
−ψψψ

m−1
= Âek

m

is the residual vector.
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The practical implementation of CI involves exploiting recurrence relations such that the polynomials
ϕk themselves never need to be computed explicitly (see appendix A in WTP16, and appendix A in this
paper which describes a minor correction to the algorithm presented in WTP16). All that is needed are
estimates θmin and θmax of the extreme eigenvalues λmin and λmax on which the parameters of CI depend.
The extreme eigenvalues can be estimated accurately using a Lanczos algorithm.

The convergence rate of CI is independent of the rhs. Exploiting this property, WTP16 recommend using
CI with a fixed number of iterations (K) to solve each of the M′ linear systems in L̂1/2 and using the ad-
joint of CI with the same number of iterations to solve the M′ linear systems in

(
L̂1/2

)T. A modest value
of K (e.g., chosen to achieve a 10−3 or 10−4 reduction in the norm of the residual) is generally sufficient to
obtain an acceptable representation of the correlation matrix (see Fig. 10 in WTP16). The fixed-iteration
implementation of CI, together with its adjoint, allows the SPD property of C to be preserved exactly
in numerical applications. This feature is especially convenient for reducing the computational cost of
CI without introducing numerical inaccuracies in the gradient-based minimization algorithms used in
variational assimilation. Furthermore, using a stopping criterion based on a fixed number of iterations
rather than the residual norm implies that CI is entirely free of scalar product evaluations. As such, in a
parallel domain decomposition, CI does not require any costly global MPI communications.

CI may be used to solve NSPD linear systems as well as SPD linear systems, provided that the eigen-
values lie in the open right half of the complex plane (Manteuffel, 1977). For the time-parallel implicit
diffusion problem, the eigenvalues are real and, as discussed earlier, identical to those of the SPD matrix
Â. For the augmented system, the iterate ΨΨΨk produced by CI at iteration k is such that (cf. Eq. (15))1

E k = ϕk(A)E 0 (17)

where E k = ΨΨΨk −ΨΨΨ
∗ is the error with respect to the exact solution ΨΨΨ

∗ =A−1
ζζζ . Furthermore, and in

analogy with Eq. (16),

ΞΞΞk = ϕk(A) ΞΞΞ0 (18)

where

ΞΞΞk = AΨΨΨk −ζζζ =

 ξξξ
k
1
...

ξξξ
k

M′


is the residual vector on the kth iteration.

The CI algorithm applied to the NSPD linear system is presented in Algorithm 1. This algorithm is
similar to Algorithm 2 in WTP16 but is written in terms of the NSPD matrix and with a corrected value
for the β1 coefficient (see appendix A for an explanation). The convergence properties of Algorithm 1 are
discussed in the next section, with mathematical details given in appendix B. When the stopping criterion
is based on a fixed number of iterations K, Algorithm 2 can be used to compute the αk and βk coefficients
prior to entering the main computational loop, which is convenient for constructing the adjoint of CI.
The resulting fixed-iteration version of CI is given in Algorithm 3. Further discussion about the adjoint
of the algorithm is deferred until section 3.5.

The application of A is the most costly step in Algorithm 3. This cost is dominated by the application
of the M′ block-matrices Â and by the local MPI communications that are required, before Â is applied,

1Note the notation here where a subscript (superscript) denotes the CI iteration counter k on vectors associated with the
NSPD (SPD) system. The subscript on vectors associated with the SPD system denotes the step counter m.

8 Technical Memorandum No. 808



“Time”-parallel diffusion-based correlation operators

Algorithm 1 Chebyshev Iteration

1: ΞΞΞ0 = AΨΨΨ0−ζζζ := initial residual (input)
2: p0 = −ΞΞΞ0

3: σ = (θmax +θmin)/2
4: δ = (θmax−θmin)/2
5: α0 = 1/σ

6: β1 = (δ α0)
2/2

7: k = 0
8: while stopping criterion not satisfied do
9: qk = Apk

10: ΨΨΨk+1 = ΨΨΨk + αk pk

11: ΞΞΞk+1 = ΞΞΞk + αk qk

12: pk+1 = −ΞΞΞk+1 + βk+1pk

13: k = k + 1
14: αk = 1/(σ −βk/αk−1)
15: βk+1 = (δ αk/2)2

16: end while

Algorithm 2 Chebyshev iteration parameters for fixed K

1: σ = (θmax +θmin)/2
2: δ = (θmax−θmin)/2
3: α0 = 1/σ

4: β1 = (δ α0)
2/2

5: for k = 1, . . . ,K−1 do
6: αk = 1/(σ −βk/αk−1)
7: βk+1 = (δ αk/2)2

8: end for

Algorithm 3 Chebyshev iteration with fixed K

1: Initialize parameters using Algorithm 2
2: ΞΞΞ0 = AΨΨΨ0−ζζζ := initial residual (input)
3: p0 = −ΞΞΞ0

4: for k = 0, . . . ,K−1 do
5: qk = Apk

6: ΨΨΨk+1 = ΨΨΨk + αk pk

7: ΞΞΞk+1 = ΞΞΞk + αk qk

8: pk+1 = −ΞΞΞk+1 + βk+1pk

9: end for
10: ΨΨΨK := solution (output)

Technical Memorandum No. 808 9
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to update the halos of the spatial subdomains in a parallel decomposition (see appendix C in WTP16).
The application of Â and the local MPI communications are applied separately to each subset of the
input vector that corresponds to a particular time level. These operations can be performed in parallel
to reduce the overall run-time. This is the key point that makes Algorithm 3 potentially advantageous
compared to the time-sequential diffusion algorithm based on CI which was studied in WTP16. In order
to be advantageous, however, Algorithm 3 must have adequate convergence properties for the NSPD
linear system under consideration. Furthermore, the matrix-vector products must be implemented in
parallel in a cost-effective way. This requires careful consideration of technical aspects of the parallel
computing environment and data assimilation system. The remainder of the paper will focus on the first
point (convergence properties). Some discussion of the second point (parallel implementation) is given
section 4.8.

3.2 Convergence properties

Algorithm 3 generates a sequence of residual vectors following relation (18). For a general polynomial-
based iteration, ϕk is chosen such that

‖ΞΞΞk‖ ≤ ‖ϕk(A)‖‖ΞΞΞ0‖ (19)

is small, where ‖ · ‖ denotes the 2-norm. If A is diagonalizable then ‖ϕk(A)‖ converges to zero uni-
formly as k→ ∞ if and only if |ϕk(λn) | → 0 as k→ ∞ for every eigenvalue λn of A (Manteuffel, 1977).
Since the NSPD matrix (9) is not diagonalizable, convergence of a polynomial-based method such as CI
is not ensured by only verifying convergence of the polynomials.

In order to understand the convergence properties of a nondiagonalizable matrix, we need to examine the
Jordan form of A. Theorem 2.2 of Manteuffel (1977) states that the convergence of a general polynomial-
based iteration applied to the nondiagonalizable matrix A requires that the M′− 1 derivatives of the
polynomials, as well as the polynomials themselves, converge to zero uniformly as k→ ∞ for every
eigenvalue λn of A. The shifted and scaled Chebyshev polynomials satisfy these conditions (Manteuffel,
1975, Theorem 2.12, p. 27). This ensures that Algorithm 3 will converge, despite the fact that A is
nondiagonalizable.

From Eq. (19), it can be seen that ‖ϕk(A)‖ gives a measure of the amount by which the norm of the error
is reduced after k iterations. A specific reduction is achieved by choosing k such that

‖ΞΞΞk‖ ≤ ε ‖ΞΞΞ0‖

where ε is the tolerance, and 0 < ‖ϕk(A)‖ ≤ ε < 1.

For the SPD system, the number of iterations (ks) required to reach a given tolerance ε is bounded by
(Axelsson, 1996, p. 181)

ks ≤
1
2
√

χ ln
(

2
ε

)
(20)

where

χ =
λmax

λmin

is the condition number of Â. Equation (20) is derived under the assumptions that ε � 1 and χ � 1.
Experiments presented in section 4, however, suggest that this equation provides a sharp upper bound on
ks even when these assumptions are only modestly satisfied.
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For the NSPD system, ‖ϕk(A)‖ behaves like
∣∣ϕ (M′−1)

k (λn)
∣∣/(M′−1)! as k→ ∞, rather than like |ϕk(λn)|

as in the SPD case, where the superscript ( j) on ϕk denotes the jth derivative of ϕk . This result is
derived in appendix B (see Theorem 2). The dependence of ‖ϕk(A)‖ on the derivatives of the Chebyshev
polynomials slows down the rate of convergence of CI for the NSPD system. Manteuffel (1975) shows
that

|ϕ( j)
k

(λn)| ≤ η(λn , j)k j |ϕk(λn)| (21)

where η(λn , j) is a constant that depends only on λn and the order of the derivative ( j). From the term
k j, it is clear that convergence will be degraded for increasing j.

3.3 Preconditioning

The convergence rate of CI may be accelerated using a preconditioning matrix P ≈A−1. It can be
applied to the augmented system either as a left preconditioner,

PAΨΨΨ = Pζζζ ,

or as a right preconditioner,
AP ΨΨΨ

′ = ζζζ

ΨΨΨ = P ΨΨΨ
′

}
.

Equation (12) suggests that P should have the block lower triangular matrix form

P =


P
P2 P
...

...
. . .

PM′ PM′−1 · · · P

 (22)

where P≈ Â−1. The ideal preconditioner is P =A−1, which corresponds to setting P = Â−1 in Eq. (22).
For this ideal case, the CI parameters are (σ ,δ ) = (α0 ,β1) = (1,0) since λmax = λmin = 1, and conver-
gence to the exact solution is achieved in a single iteration from an arbitrary first guess.

The preconditioned NSPD matrices PA and AP have the same eigenvalues. Moreover, their eigen-
values are multiples of those of the preconditioned SPD matrices PÂ and ÂP as can be readily deduced
by examining the characteristic polynomial of PA (or AP). This has two consequences. First, the ex-
treme eigenvalues of PA (or AP) required by CI can be computed by applying the Lanczos algorithm
to the simpler matrix PÂ (or ÂP). If P can be factored as P = P1/2

(
P1/2

)T then the eigenvalues can also
be computed by applying the Lanczos algorithm to the symmetric matrix

(
P1/2

)TÂP1/2. The second
consequence is that left and right preconditioning lead to identical iterates with CI. This occurs since CI
depends only on the (extreme) eigenvalues of the preconditioned matrix, which are identical for the left-
and right-preconditioned matrices. The right-preconditioned CI algorithm is presented in Algorithm 4.
The first guess in Algorithm 4 is defined as a transformation of the rhs, the details of which are discussed
in the next section.

The direct use of Eq. (22) in the preconditioning transformation ΨΨΨ =P ΨΨΨ
′ leads to operations of the

form
ψψψ

m
= Pm

ψψψ
′
1
+ · · ·+Pψψψ

′
m

for m = 1, . . . ,M′.

These computations can be expensive as they involve ∑
m
i=1 i applications of P and require accessing the

input states ψψψ ′
i
on all previous time levels 1≤ i≤ m. The recursive formula

ψψψ
m
= P

(
ψψψ

m−1
+ψψψ

′
m

)
for m = 1, . . . ,M′, (23)
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Algorithm 4 Right-preconditioned Chebyshev iteration
1: Initialize parameters using Algorithm 2
2: ζζζ := rhs (input)
3: ΨΨΨ0 := Gζζζ

4: ΞΞΞ0 = AΨΨΨ0−ζζζ

5: p0 = −ΞΞΞ0

6: for k = 0, . . . ,K−1 do
7: uk = P pk

8: qk = Auk

9: ΨΨΨ
′
k+1

= ΨΨΨ
′
k
+ αk pk

10: ΞΞΞk+1 = ΞΞΞk + αk qk

11: pk+1 = −ΞΞΞk+1 + βk+1pk

12: end for
13: ΨΨΨK = P ΨΨΨ

′
K

:= solution (output)

with ψψψ
0
= 0, provides a much more efficient algorithm to apply P . On a given time level, Eq. (23)

requires the input state on that level and only one application of P. However, whereas the application of
the M Â blocks in A (Eq. (9)) can be done in parallel, the application of the P blocks in P via Eq. (23)
is sequential since the state on time level m−1 must be evaluated before the state on time level m can be
evaluated. The application of P cannot be too costly if we are to benefit from applying the blocks of A
in parallel. For this reason, we consider only simple preconditioners in what follows.

We will use the subscript notation P
P−1 when we need to distinguish preconditioners P that have differ-

ent blocks P. Otherwise, we will omit the subscript to simplify notation. In section 4 we will examine
the effect of two simple preconditioners of the form (22). The first (PI) employs P = IN ; the second (PD)
employs P = D−1 where D is a diagonal matrix defined by the diagonal of Â.

Rather than preconditioning the augmented system directly, another approach is to precondition the
sequence of SPD systems in (7), using a left or right preconditioning matrix P≈ Â−1, and to form
the augmented system from the resulting preconditioned sequence. This procedure leads to a simpler,
block-diagonal form of the preconditioner:

P̃ =

 P
. . .

P

 . (24)

However, as shown in appendix C, Eq. (24) is not ideal in the sense that employing it with the ideal block
matrix P = Â−1 results in convergence of CI in M′ iterations (not one). This block-diagonal precondi-
tioner will be denoted by P̃

P−1 when we need to identify the block matrix P.

3.4 First guess

The first guess affects the residual vector used to initialize the CI algorithm. An appropriate choice of
first guess (initial residual vector) can improve the accuracy of the iterative solution (see Eqs (15)-(16)
and Eqs (17)-(18)), especially when the iterative algorithm is employed with a modest stopping criterion.
For the case where the linear systems in (7) are solved in sequence, the solution of each system may be
taken as a good initial iterate for the next system in the sequence. This corresponds to choosing the first
guess to be the rhs of each member of the sequence.
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For the augmented system, using the rhs as first guess results in only the first element of the augmented
system having a non-zero value. The preconditioners presented in the previous section can be used to
provide a potentially better guess. Since P is constructed such that P ≈A−1, it suggests that the first
guess can be chosen as

ΨΨΨ0 = G ζζζ =


Pψψψ

0

P2ψψψ
0

...

PM′ψψψ
0

 if G =P , (25)

or

ΨΨΨ0 = G ζζζ =


Pψψψ

0

0N

...
0N

 if G = P̃ . (26)

We distinguish G used to compute the first guess from the transformation P used for the preconditioner,
as we can choose them to be different. Likewise, for the SPD system, the first guess can be chosen as

ψψψ 0
m
= Gψψψ

m−1
for m = 1, . . . ,M′ (27)

where G is a preconditioner for the SPD system. In section 4 we will examine the effect of different
choices of first-guess fields for the SPD and NSPD systems (see Tables 1 and 2).

3.5 Adjoint of the Chebyshev iteration

A correlation model would typically employ Algorithm 4 for the solver in L̂1/2 and the adjoint of Al-
gorithm 4 for the solver in

(
L̂1/2

)T. The adjoint of Algorithm 4 is given in Algorithm 5. It is derived
by transposing each line of Algorithm 4 and reversing the order of the operations, as would be done fol-
lowing a standard automatic differentiation procedure. Algorithm 4 is initialized with the rhs, whereas
Algorithm 5 is initialized with the adjoint vector associated with the “solution”. The exactness of the
adjoint algorithm is checked numerically by verifying that, for vectors ψψψ

0
= W1/2v1 and ψψψ

1
= W1/2v2

with vectors v1 and v2 arbitrary and dimensionless, the inner product
(
L̂1/2ψψψ

0

)T
ψψψ

1
= ψψψT

0

(
L̂1/2

)T
ψψψ

1
is

satisfied to machine precision, where the left- and right-hand sides of the identity employ the forward
and adjoint solvers, respectively.

4 Numerical experiments

4.1 Experimental design

The experimental design is similar to that of WTP16. The methods described in this paper have been
implemented in NEMOVAR. Numerical experiments using this system are described in this section. The
ocean model configuration is global, with an average resolution of about 1◦ except within a few degrees
of the Equator where the meridional resolution is increased to around 1/3◦. The configuration is identical
to the one used by Balmaseda et al. (2013).

In this paper the iterative solvers are applied to a correlation model based on a fully 3D implicit diffusion
operator. This is the main difference between the experimental set-up here and that of WTP16 where
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Algorithm 5 Adjoint of Algorithm 4
1: Initialize parameters using Algorithm 2
2: ΨΨΨK := adjoint “solution” (input)
3: ΞΞΞK = pK = 000
4: for k = K−1, . . . ,0 do
5: ΞΞΞk = ΞΞΞk+1 − pk+1

6: qk = αk ΞΞΞk

7: uk = ATqk

8: sk = PTuk

9: pk = βk+1pk+1 + αk ΨΨΨK + sk

10: end for
11: ΞΞΞ0 = ΞΞΞ0 − p0

12: ΨΨΨ0 = ΨΨΨK +AT
ΞΞΞ0

13: ζζζ = −ΞΞΞ0 + GT
ΨΨΨ0 := adjoint “rhs” (output)

experiments were performed with a 2D implicit diffusion operator. The diffusion operator is formulated
in general orthogonal curvilinear coordinates and discretized using centred finite differences. Neumann
boundary conditions are applied at coastlines, at the ocean-atmosphere interface, and at the irregular
ocean bottom defined by bathymetry.

The diffusion tensor κκκ is taken to be diagonal. The diagonal elements κ1, κ2 and κ3 control the direc-
tional length-scales of the correlation function along the coordinate axes (horizontal and vertical). In the
orthogonal curvilinear coordinate system of the global model, the horizontal axes roughly correspond to
the geographical axes λ and φ on the (assumed) spherical Earth, except from mid- to high latitudes in
the Northern Hemisphere (NH) where they deviate from the geographical axes to account for the two
NH poles located over North America and Asia on the tri-polar grid. The vertical (z-)axis is everywhere
perpendicular to the sphere.

An idealized distribution of values for the 3D diffusion tensor elements is considered for the experi-
ments here. The diagonal elements are taken to be spatially dependent with their value at each grid-
point (i, j,k) defined according to Eq. (4) (with d = 3). Specifically, we take κ1(i, j) = D2

1/(2M−5),
κ2(i, j) = D2

2/(2M−5) and κ3(k) = D2
3/(2M−5), where D1 = ρ1 e1, D2 = ρ2 e2 and D3 = ρ3 e3 are di-

rectional length-scales; e1 = e1(i, j), e2 = e2(i, j) and e3 = e3(k) are the local scale factors associated
with the curvilinear grid; and ρ1, ρ2 and ρ3 are positive proportionality constants. For the experiments,
values of ρ1 = ρ2 = 5 and ρ3 = 1.5 are used. Within R = 500 km of coastlines, the horizontal length
scales are reduced according to D1 7→max(D1 rcoa/R, e1) and D2 7→max(D2 rcoa/R, e2) where rcoa is the
chordal distance to the nearest coastal point. The local grid-steps e1 and e2 define the minimum-allowed
zonal and meridional length-scales, respectively.

Algorithms 4 and 5 terminate after a fixed number of iterations K. In order to determine K, CI is first
applied using a stopping criterion based on a specified convergence tolerance on the residual norm (see
below). Unless stated otherwise, this stopping criterion will be used in the remainder of this paper to
study and compare the convergence properties of CI for the SPD and NSPD systems.

The stopping criterion for each member m of the sequence of SPD linear systems (7) is defined according
to the reduction of the ratio of the 2-norm of the residual on the kth iteration to the 2-norm of the initial
residual:

ε k
m
=

∥∥Âψψψ k
m
−ψψψK

m−1

∥∥
2∥∥Âψψψ 0

m
−ψψψK

m−1

∥∥
2

(28)

14 Technical Memorandum No. 808



“Time”-parallel diffusion-based correlation operators

where ψψψK
m−1

denotes the approximate solution of the linear system associated with the previous member
in the sequence. The stopping criterion for the NSPD system is also based on the reduction of the ratio
of the 2-norms of the kth residual and initial residual:

εk =

∥∥AΨΨΨk −ζζζ
∥∥

2∥∥AΨΨΨ0−ζζζ
∥∥

2

. (29)

Contrary to Eq. (28), which measures the convergence of a given member of the sequence, Eq. (29) is a
global measure of the convergence of all members in the pseudo-time interval. Sensitivity experiments
using alternative stopping criteria are described in section 4.6.

4.2 Convergence properties

We start by considering the convergence behaviour of CI when solving the SPD system

Âψψψ
1
= ψψψ

0
with ψψψ 0

1
= 0. (30)

Equation (30) can be considered as the first linear system (m = 1) in the sequence (7) associated with
the operator L̂1/2 (Eq. (5)). The rhs is defined as ψψψ

0
= W1/2v where v is a normally distributed ran-

dom vector with zero mean and unit variance. The first guess (ψψψ 0
1
) is a zero field. Figure 1 shows

the relative residual norm ε k
m

as a function of CI iteration for values of M′ ranging from 2 to 10.
The lowest value (M′ = 2 or M = 4) corresponds to a fat-tailed covariance operator and the highest
value (M′ = 10 or M = 20) to a near-Gaussian covariance operator. The operational implementations
of NEMOVAR at ECMWF and Met Office employ a value in between these extreme values (M′ = 5
or M = 10). The same rhs has been used for all the experiments that use different values of M′. The
convergence rate is linear and increases as M′ increases, consistent with the behaviour of the condition
number of Â, which decreases as M′ increases (cf. Fig. 5 in WTP16). The convergence curves resulting
from solving the remaining SPD systems in sequence,

Âψψψ
m
= ψψψ

m−1
with ψψψ 0

m
= 0; m = 2, . . . ,M′, (31)

are virtually identical to those for m = 1.

The solid lines in Fig. 1 show the corresponding values predicted by the rhs of the inequality (20). The
logarithmic identity ln(y/x) = log10(y/x) ln(10) has been used to express the rhs of (20) in terms of
log10(ε) in accordance with the vertical scale used in Fig. 1. The analytical estimates are in very close
agreement with the actual values. The inequality (20) thus provides a tight upper bound on the number of
iterations required to achieve a specified reduction of the relative residual norm. This suggests that, for
the SPD system, the rhs of (20) can be used directly to determine K for the correlation model, without
the need to apply CI first in a trial problem as recommended by WTP16.

The left panel in Fig. 2 shows the evolution of the relative residual norm εk as a function of CI iteration
when solving the NSPD system (10):

AΨΨΨ = Eψψψ
0

with ΨΨΨ0 = 0
ψψψ

M′
= FTΨΨΨ

}
(32)

where ψψψ
0

is the same vector used for the experiments with the SPD system. The first guess (ΨΨΨ0) is a
zero field as in the SPD case. The convergence of the NSPD system is slower than for the SPD system
as it depends on the derivatives of the Chebyshev polynomials as well as the Chebyshev polynomials
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Figure 1: The residual norm relative to the initial residual norm as a function of CI iteration. The
plotted symbols are the actual values obtained by solving the SPD system (30) for different values of M′.
The plotted lines are the values estimated from the analytical expression (20). The vertical axis uses a
logarithmic scale.

themselves (see Eqs (56) and (57) in appendix B). For increasing values of M′, it displays an increasingly
nonlinear behaviour in the early iterations, but a faster convergence rate in the later iterations. The
nonlinear behaviour in the early iterations can be understood from the inequality (21), which will be
influenced by the multiplicative term η(λn , j)k j, particularly when |ϕk(λn)| is not small as is the case in
the early iterations. The faster convergence rate for larger M′ when k is large is presumably related to the
fact that the conditioning of the block components Â improves as M′ increases, and this aspect becomes
dominant in determining the convergence behaviour in the later iterations.

The nonlinear behaviour is more clearly visible in the right panel in Fig. 2, which highlights the initial
convergence behaviour. The scale on the vertical axis covers four orders of magnitude, which is an
acceptable tolerance for a correlation model, as discussed earlier in section 3.1 and in WTP16. In the
remainder of the paper, we will focus on this range when discussing the convergence properties of the
solver.

Figure 3(a) shows the total number of CI iterations required to solve the sequence of M′ SPD systems
to a tolerance of ε k

m
< 10−4 (black triangle symbols). The total number increases as M′ increases even

though each individual system requires fewer iterations to solve as M′ increases. The corresponding
values required to solve the NSPD system (32) to a tolerance of εk < 10−4 are also shown (blue plus
symbols). The total iteration counts remain relatively stable for different values of M′, contrary to what
is observed with the SPD system.

Figure 3(b) compares the total number of Â-matrix-vector products as a function of M′. From the per-
spective of Fig. 3(b), the NSPD formulation is of no interest compared to the SPD formulation especially
for large values of M′. However, if the Â-matrix-vector products can be perfectly parallelized in the
“time” dimension (m) on each CI iteration then the overall run-time can be reduced by a factor equal
to the ratio of the total iteration counts required by the SPD and NSPD formulations. Figure 3(a) then
suggests that the NSPD formulation can provide a potential speed-up by a factor with an upper bound
between two and three for the values of M′ considered. From this “time”-parallel perspective, there is a
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Figure 2: The residual norm relative to the initial residual norm as a function of CI iteration when solving
the NSPD system (32) for different values of M′. The rhs is ζζζ = Eψψψ

0
where ψψψ

0
is the same as that used

for solving the SPD system in Fig. 1. The vertical axis uses a logarithmic scale. The right panel shows
the same curves as the left panel but with a refined vertical scale to focus on the initial convergence
behaviour.

clear advantage with the NSPD formulation, as discussed further in sections 4.7 and 4.8.

4.3 Sensitivity to the initial residual

For the SPD systems, the CI convergence properties are insensitive to the initial residual. This is not the
case with the NSPD system, however, as illustrated in this section. The initial residual depends on the
rhs and the choice of first guess.

We consider initially the sensitivity to changes to the rhs, while continuing to use a zero field for the first
guess. Figure 4 shows the convergence curves when the NSPD system is solved with a rhs taken to be
the solution ψψψ

M′
= FTΨΨΨ of Eq. (32):

AΨΨΨ = Eψψψ
M′

with ΨΨΨ0 = 0
ψψψ

M
= FTΨΨΨ.

}
. (33)

The solution of Eq. (33) corresponds to the result of applying the complete diffusion operator L̂ = L̂1/2L̂1/2.
The plateau-like feature in the relative residual norm appears earlier in the iterative process and the total
iteration counts increase as a result (cf. right panel in Fig. 2).

Figures 5(a) and 5(b) show the evolution of the relative residual when CI is initialized with a first guess
taken to be a non-zero transformation PI of the rhs. The different panels are associated with each of the
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Figure 3: (a) The total number of CI iterations required to solve the M′ SPD systems (black diamond
symbols) and the single NSPD system with M′ time-blocks (blue plus symbols) in L̂1/2. A convergence
tolerance of ε k

m
< 10−4 (Eq. (28)) is used for the SPD system, and εk < 10−4 (Eq. (29)) for the NSPD

system. The first guess is a zero field. (b) The total number of Â-matrix-vector products associated with
the iteration counts in (a). Values are plotted as a function of M′. The ratio of the iterations required for
the SPD problem and those required for the NSPD problem in panel (a) indicates the potential run-time
speed-up that can be achieved by performing the M′ Â-matrix-vector products in parallel.

NSPD systems in the two-member sequence describing the complete diffusion operator L̂ = L̂1/2L̂1/2:

AΨΨΨ = Eψψψ
0

with ΨΨΨ0 = PI Eψψψ
0

ψψψ
M′

= FTΨΨΨ

}
, (34)

AΨΨΨ = Eψψψ
M′

with ΨΨΨ0 = PI Eψψψ
M′

ψψψ
M
= FTΨΨΨ

}
. (35)

Using the transformation PI to define ΨΨΨ0 amounts to initializing the state on each time level with the
non-zero rhs available on the first step of each sequence (see Eq. (25)). This choice of first guess results
in a systematic reduction in the number of iterations compared to the number required with a zero first
guess, for all values of M′ considered except for M′ = 2 which requires slightly more iterations for the
first NSPD system (cf. blue plus and red triangle symbols in Figs 6(a) and 6(b)). Other choices of first
guess were less successful in reducing the number of iteration counts (see Table 2).

Since the convergence behaviour of the NSPD system in the early iterations is sensitive to the initial
residual, it raises the question of how to define the value of the fixed iteration K in Algorithms 4 and 5.
For a fixed tolerance, the number of iterations required to solve the first and second NSPD systems in
the factored form of L̂ can differ by several iterations, with the second system generally requiring more
iterations than the first system for the stopping criterion (29) (see the values of K1 and K2 in Table 2). A
reasonable strategy is to choose K as the arithmetic mean of these two values, and to use this value of K
in both the forward and adjoint CI algorithms to enforce exact numerical symmetry of L̂. In variational
data assimilation, K must be diagnosed prior to entering the minimization (inner) loop.
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Figure 4: As the right panel in Fig. 2 but for the NSPD system (33) which has rhs ζζζ = Eψψψ
M′

where ψψψ
M′

is the solution of the NSPD system (32). This figure thus illustrates the convergence behaviour of the
NSPD system in the second component of the complete diffusion operator L̂ = L̂1/2L̂1/2.

4.4 Solution accuracy

The solution of interest is the final state ψψψ
M

obtained by applying the full L̂ operator to ψψψ0. To assess
the accuracy of the solution for a given stopping criterion, we examine the relative error norm

ε
∗ =

∥∥ψψψ
M
−ψψψ∗

M

∥∥
2∥∥ψψψ∗

M

∥∥
2

(36)

where ψψψ∗
M

is the “exact” solution on step M, obtained by solving each member of the SPD sequence to a
very high accuracy, here taken as ε k

m
< 10−15. Solving the corresponding NSPD systems to an accuracy

of εk < 10−15 results in a nearly identical solution to ψψψ∗
M

. It is more interesting to assess the solution
accuracy when a more moderate tolerance is specified, similar to one that would be used in practice for
the correlation model. Consider the case when the stopping tolerances ε k

m
and εk are set to 10−4. The

relative error ε∗ is shown for different M in Fig. 7 for both the SPD-based and NSPD-based formulations
of L̂. The results are displayed for two choices of the first guess: a zero field and a non-zero field
determined from the rhs (see figure legend). The non-zero first-guess fields that have been employed in
these figures correspond to the ones that gave best results of all those considered (see Tables 1 and 2).

Several features can be observed from these figures. With a zero first guess, the SPD formulation pro-
duces a more accurate solution than the NSPD formulation (cf. black triangle and blue cross symbols).
Whereas the solution errors with the NSPD formulation are relatively stable as a function of M, those
with the SPD formulation (and zero first guess) increase steadily with M, probably due to an accumu-
lation of errors affecting the rhs of the sequence of SPD systems. When M = 20 the SPD and NSPD
formulations have similar accuracy.

Compared to the results with zero first guess, the use of the rhs as first guess with the SPD system leads
to a significantly more accurate solution (up to an order of magnitude) and successfully counteracts the
accumulated-error effect that occurs with large values of M (cf. black diamonds and orange circles). The
accuracy of the iterative solution of the NSPD system is also significantly improved when using a first
guess that exploits information about the rhs (cf. red triangle with blue cross symbols). Here, results
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(b) ζζζ = Eψψψ
M′

Figure 5: (a) As in the right panel in Fig. 2 but with the first guess defined as ΨΨΨ0 =PIEψψψ
0

(see Eq. (34)).
(b) As Fig. 4 but with the first guess defined as ΨΨΨ0 =PIEψψψ

M′
(see Eq. (35)).

with ΨΨΨ0 = PI ζζζ are displayed; other choices of non-zero first guess were also beneficial but not to the
same extent (see Table 2).

For both the SPD- and NSPD-based formulations, these results suggest that the computational cost of
the algorithm can be reduced by relaxing the stopping tolerance (reducing the number of iterations),
while still achieving an acceptable solution accuracy using a non-zero first guess. This is evident from
Tables 1 and 2, which show that the solution error resulting from using an increased tolerance (10−3) and
rhs-based first guess is comparable to the error obtained using a reduced tolerance (10−4) and zero first
guess (cf. ε∗ in rows 1, 2 and 3 in Table 1 for the SPD formulation; ε∗ in rows 1, 4 and 5 in Table 2 for
the NSPD formulation).

4.5 Preconditioning

In this section we examine the impact of employing the simple preconditioners described in section 3.3.
First, consider the diagonal preconditioner D−1 for the SPD problem. This preconditioner does not
change the total iteration counts compared to the unpreconditioned case (see Table 1). The convergence
properties of CI for the SPD problem are linked to the condition number of the SPD matrix (Gergelits
and Strakoš, 2014). In the experiments, the condition number estimated from the extremal Ritz values
is unaffected by this preconditioner (not shown). This can be explained by the following simplified
analysis.

Consider the time-implicit discretization of the 3D diffusion equation with constant diffusion coeffi-
cients (κ1,κ2,κ3). Assuming that the spatial derivatives are discretized using centred finite differences
and that the grid steps (e1,e2,e3) are constant then it is straightforward to compute the eigenvalues of
the associated system matrix following the approach described in section 3.2 of WTP16. The extreme
eigenvalues are λmin ≈ 1 and λmax ≈ 1+4X where X = κ1/e2

1 +κ2/e2
2 +κ3/e2

3. The condition number
is then χ ≈ 1+4X . When the system matrix is preconditioned by D−1, the extreme eigenvalues become
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G P ε k
m

ε∗ K Â-prod

0N IN 10−4 8.0×10−4 18 180

IN IN 10−4 1.1×10−4 18 180

IN IN 10−3 9.7×10−4 14 140

D−1 IN 10−4 5.6×10−4 18 180

IN D−1 10−4 6.0×10−4 18 180

Table 1: A summary of results from experiments with the SPD formulation of L̂ (Eq. (7)) and different
first-guess fields, as defined by the transformation (27) acting on the rhs (first column), and different
preconditioners (second column) for the case M = 10. The third column gives the convergence tolerance
(Eq. (28)). The fourth column gives the solution accuracy ε∗ achieved after the final (Mth) diffusion step
(Eq. (36)). The fifth column gives the number of iterations required to satisfy the tolerance indicated
in the third column. The sixth column gives the total number of Â-matrix-vector products (= K×M)
required by L̂.

G P εk ε∗ K1 K2 Â-prod

0
NM′ I

NM′ 10−4 2.3×10−3 37 44 405

I
NM′ I

NM′ 10−4 0.5×10−3 36 38 370

P̃D I
NM′ 10−4 1.3×10−3 38 44 410

PI I
NM′ 10−4 0.3×10−3 33 37 350

PI I
NM′ 10−3 4.7×10−3 25 34 295

PD I
NM′ 10−4 0.9×10−3 39 45 420

PI P̃D 10−4 0.3×10−3 33 37 350

PI PI 10−4 0.1×10−3 61 67 640

PI PD 10−4 0.2×10−3 33 36 345

PI PD 10−3 1.8×10−3 26 34 300

Table 2: A summary of results from experiments with the NSPD formulation of L̂ (Eq. (10)) and different
first guess fields, as defined by the transformations (25) or (26) acting on the rhs (first column), and
different preconditioners (second column) for the case M = 10. The third column indicates the specified
convergence tolerance (Eq. (29)). The fourth column gives the solution accuracy ε∗ after the final (Mth)
diffusion step (Eq. (36)). The fifth (sixth) column gives the number of iterations required to reach the
specified tolerance for the first (second) NSPD system associated with the square-root factors of L̂. The
last column gives the total number of Â-matrix-vector products (= (K1 +K2)×M′) required by L̂.
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(a) NSPD systems (32) and (34)
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(b) NSPD systems (33) and (35)

Figure 6: The total number of CI iterations required to solve (a) the first NSPD system and (b) the second
NSPD system in the factored operator L̂ = L̂1/2L̂1/2 where each NSPD matrix has M′ time-blocks. A
stopping criterion of εk < 10−4 is used. Values are plotted as a function of M′. The different symbols
correspond to different choices of the first guess as indicated by the transformation in the legend (see
Eq. (25)).

λmin ≈ 1/(1+2X) and λmax ≈ (1+4X)/(1+2X), which are identical to those of the unpreconditioned
system up to a constant scaling factor 1/(1+2X). The condition number, however, remains unchanged.

For the NSPD problem, the results with different preconditioners for the case M′ = 5 are summarized
in Table 2. The diagonal preconditioner P̃D has no impact as might be expected in view of the results
above for the diagonally preconditioned SPD problem. The simple block lower triangular preconditioner
PI has a detrimental impact as can be seen by the increased number of iterations required to satisfy the
specified tolerance. Nevertheless, the solution is more accurate than the solutions obtained with the other
preconditioners, which suggests that the stopping criterion is inappropriate with this preconditioner. This
point will be revisited in the next section.

The block lower triangular preconditioner PD has only a small impact for the case M′ = 5 considered in
the table. Contrary to PI , however, it does not degrade performance. In this respect, it is likely that the
block matrices D−m′ , for m′ < m, in PD are important for properly scaling (downweighting) the contri-
butions from the components ψψψ

m′
on previous steps m′ in determining the effect of the preconditioner on

the component ψψψ
m

on the current step m.

The impact of PD for other values of M′ is examined in Figures 8(a) and 8(b), which show, as a func-
tion of M′, the total number of iterations required to solve each of the coupled systems associated with
L̂ = L̂1/2L̂1/2:

APD ΨΨΨ
′ = Eψψψ

0
with ΨΨΨ

′
0
= P−1

D
PI Eψψψ

0

ψψψ
M′

= FTPD ΨΨΨ
′

}
, (37)

APD ΨΨΨ
′ = Eψψψ

M′
with ΨΨΨ

′
0
= P−1

D
PI Eψψψ

M′

ψψψ
M
= FTPD ΨΨΨ

′

}
. (38)
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Figure 7: The relative norm of the error in the solution on the final step (Eq. (36)) when solving the
sequence of M SPD systems with a stopping criterion of ε k

m
< 10−4 (Eq. (28)), and when solving the

sequence of two NSPD systems with a stopping criterion of εk < 10−4 (Eq. (29)). The different symbols
correspond to different choices of the first guess as indicated by the transformation in the legend (see
Eq. (25)). The true solution is obtained by solving the sequence of M SPD systems to a very high
accuracy (εk

m
< 10−15). Values are plotted as a function of M. The vertical axes use a logarithmic scale.

These are similar to systems (34) and (35) but are right-preconditioned by PD . The inverse transformation
P−1

D
has been introduced so that the first guess is ΨΨΨ0 =PIEψψψ

0
, as desired. Notice, however, that P−1

D
is

not required by Algorithm 4 since this algorithm is initialized directly with the residual ΞΞΞ0 . Figures 8(a)
and 8(b) indicate that PD is particularly beneficial for values of M′ > 5 and somewhat neutral for values
of M′ ≤ 5. Figures 9(a) and 9(b) show that the convergence curves with PD are noticeably more linear
than the corresponding curves for the unpreconditioned problem for all values of M′ considered (cf.
Figs 5(a) and 5(b)).

4.6 Stopping criterion to determine K

Results from the previous section suggest that there is no clear relationship between the residual 2-norm
and the solution accuracy as defined by ε∗ in Eq. (36). As such, a stopping criterion based on the residual
2-norm might not always be appropriate for estimating the number of CI iterations K required to solve
the NSPD system to a desired accuracy. In particular, results showed that it is clearly inappropriate with
the (albeit poor) right-preconditioner PI .

Other stopping criteria are possible. For the preconditioned problem, it is possible to define the stopping
criterion based on the PTP-norm of the residual instead of the 2-norm of the residual. This is a natural
stopping criterion with the left-preconditioner since∥∥PAΨΨΨk −Pζζζ

∥∥
2
=
∥∥AΨΨΨk −ζζζ

∥∥
PTP

(39)

where ‖( ·)‖
PTP

=
√
( ·)TPTP ( ·). If P =A−1 then ‖AΨΨΨk −ζζζ‖

PTP
= ‖ΨΨΨk −ΨΨΨ

∗‖2 where ΨΨΨ
∗ =

A−1ζζζ is the exact solution. This limiting case shows that the PTP-norm is an approximate measure of
the 2-norm of the solution error. Another possibility is to use a stopping criterion based on the 2-norm of
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(a) NSPD systems (34) and (37)
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Figure 8: As Figs 6(a) and 6(b) but with preconditioning (red triangles). For comparison, the values
without preconditioning (P = INM′) are also shown (blue crosses). In both experiments, the first guess is
defined according to the rhs transformation G =PI . The blue crosses are equivalent to the red triangles
in Figs 6(a) and 6(b).

the actual solution error, which first requires an accurate solve of the system to estimate ΨΨΨ
∗. Since we

are only interested in the solution on the final step M′, we may also consider the targeted variant of the
solution error,

∥∥ψψψ k
M′
−ψψψ∗

M′

∥∥
2
.

The different choices of the stopping criterion that have been considered are summarized in Table 3.
They are distinguished by the expression for the tolerance ε

(n)
k = a/b where the argument of the norm in

a is based on either the residual or solution error. For the residual-based norms, the argument of the norm
in b is either the initial residual or rhs. For the solution-error-based norms, the argument of the norm
in b is either the initial solution error or the exact solution. With a zero first guess, the initial residual
(initial solution error) and rhs (solution) are equivalent. With a non-zero first guess, measuring a relative
to the initial residual norm or initial solution error norm is consistent with the minimization properties
of CI (see section 5), while measuring a relative to the norm of the signal (rhs or solution) would seem
preferable when the first guess is already “close” to the solution.

Table 4 summarizes the results from using the different stopping criteria to solve Eqs (37) and (38) to
a tolerance of ε

(n)
k < 10−3. The basic experiment is the same as the one associated with the last row

in Table 2 that uses the baseline stopping criterion (Eq. (29)). Those results have been repeated in the
first row of Table 4 for easy reference. The different stopping criteria produce different total iteration
counts, with those based on the solution-error norm leading to fewer iterations than those based on the
residual norm (cf. cases n = {1,3,4} and cases n = {2,5,7}). Satisfying the targeted solution-error norm
(case n = 8) requires the most iterations and as a result leads to the smallest error ε∗. Note that for this
experiment, ε∗ is equivalent to the stopping criterion itself.

When the normalization factor b is defined by the initial residual norm (cases n = {1,3}) or initial error
norm (cases n = {5,7}), fewer iterations are required to solve the first system than the second system
(K1 < K2). The opposite (K2 < K1) occurs when b is defined by the norm of the rhs (cases n = {2,4}) or
the norm of the exact solution (cases n = {6,8}), presumably since the first guess for the second system,

24 Technical Memorandum No. 808



“Time”-parallel diffusion-based correlation operators

ε
(n)
k = a

/
b

(n) a b

(1)
∥∥AΨΨΨk −ζζζ

∥∥
2

∥∥AΨΨΨ0−ζζζ
∥∥

2

(2)
∥∥AΨΨΨk −ζζζ

∥∥
2

∥∥ζζζ
∥∥

2

(3)
∥∥AΨΨΨk −ζζζ

∥∥
PTP

∥∥AΨΨΨ0−ζζζ
∥∥

PTP

(4)
∥∥AΨΨΨk −ζζζ

∥∥
PTP

∥∥ζζζ
∥∥

PTP

(5)
∥∥ΨΨΨk −ΨΨΨ

∗∥∥
2

∥∥ΨΨΨ0−ΨΨΨ
∗∥∥

2

(6)
∥∥ΨΨΨk −ΨΨΨ

∗∥∥
2

∥∥ΨΨΨ
∗∥∥

2

(7)
∥∥ψψψ k

M′
−ψψψ∗

M′

∥∥
2

∥∥ψψψ 0
M′
−ψψψ∗

M′

∥∥
2

(8)
∥∥ψψψ k

M′
−ψψψ∗

M′

∥∥
2

∥∥ψψψ∗
M′

∥∥
2

Table 3: A summary of the stopping criteria that have been used for determining the number of fixed
iterations K for solving the NSPD system with CI. Note that ε

(1)
k = εk in Eq. (29).
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(a) ζζζ = Eψψψ
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Figure 9: (a) As Figs 5(a) and 5(b) but with PD used as preconditioning matrix (see Eqs (37) and (38)).

which is based on the solution after M/2 steps, is already a decent estimate of the solution of the full
M-step diffusion problem. Interestingly, however, the average values of K1 and K2 are the same or similar
with both types of normalization. For the practical purpose of determining K for the correlation model,
both types of normalization can then be expected to give similar results.

4.7 Hybrid time-sequential/time-parallel formulation

Equation (14) describes a hybrid formulation of L̂1/2 involving a combination of time-sequential and
time-parallel operations. Results using the allowable hybrid combinations when M′ = 5 are displayed
in Table 5, where the second column indicates the number of time-blocks ml in the NSPD matrices Aml
on each of the l = 1, . . . ,L sequential steps. In order to quantify the potential run-time improvement that
can be achieved by parallelizing the Â-matrix-vector products in the different formulations, we define
the following average speed-up factor:

speed-up =
1
L

L

∑
l=1

(
ml Ks

K̂ml

)
(40)

where Ks is the number of iterations required to solve the system with the SPD matrix (Ks = 18 in
Table 5), and K̂ml

is the number of iterations required to solve the system with the NSPD matrix Aml
. The

speed-up factor is bounded below by 1 with the purely time-sequential formulation and bounded above
by M′Ks/K̂

M′ with the purely time-parallel formulation. The maximum speed-up factor for M′ = 5 is 2.7
and reaches 2.9 when K̂

M′ is determined using the solution-error stopping criterion ε
(5)
k (in this case the

solver terminates after 31 iterations instead of 34 iterations when using the residual stopping criterion
ε
(1)
k ). Table 5 shows that useful speed-up factors can also be achieved with the hybrid formulations

1 < L < M′.

Figure 10 shows the reduction of the relative residual norm for the systems with different values of ml .
The convergence behaviour is very similar during the first 5 iterations, which results in a one-order of
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ε
(n)
k ε∗ K1 K2 K Â-prod

ε
(1)
k 1.8×10−3 26 34 30 300

ε
(2)
k 1.2×10−3 34 26 30 300

ε
(3)
k 2.7×10−3 25 30 27 275

ε
(4)
k 4.3×10−3 33 22 27 275

ε
(5)
k 4.3×10−3 24 27 25 255

ε
(6)
k 2.6×10−3 30 24 27 270

ε
(7)
k 2.3×10−3 26 28 27 270

ε
(8)
k 0.8×10−3 35 27 31 310

Table 4: Results from solving Eqs (37) and (38) (where G =PI and P =PD) for the case M = 10,
using the different stopping criteria described in Table 3. A tolerance of ε

(n)
k < 10−3 has been used in

all n = 1, . . . ,8 cases. Columns 2-4 and 6 are as described in the caption for Table 2. Column 5 is the
average of K1 and K2.

L ml K̂ml
speed-up

5 1,1,1,1,1 18,18,18,18,18 1

4 1,1,1,2 18,18,18,21 1.2

3 1,2,2 18,20,21 1.5

3 1,1,3 18,18,23 1.6

2 2,3 20,23 2.1

2 1,4 18,28 1.8

1 5 34 2.7

Table 5: A summary of results from experiments with the hybrid sequential/parallel formulation of L̂1/2

for the case M′ = 5. The first guess and preconditioning transformations are G =PI and P =PD . The
first column indicates the number of sequential steps (Eq. (14)). The second column indicates the number
of time-blocks in the NSPD matrix on each of the l = 1, . . . ,L sequential steps. The third column gives
the number of iterations required to satisfy the tolerance εk < 10−4 on each of the sequential steps. It is
taken as the average of the number of iterations required on the corresponding sequential step of each
square-root component L̂1/2 of L̂. The fourth column indicates the potential speed-up factor that can be
achieved with time-parallelization (Eq. (40)).
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magnitude reduction in the residual norm. The curves are approximately linear for values of ml ≤ 3.
Note that modifying ml affects the structure of Aml

but does not affect the conditioning of the block

components Â of Aml
as they depend on the diffusion tensor (4) which is a function of the fixed value M

(not ml ). This explains why fewer iterations are required to solve the Aml
-matrix systems in the hybrid

formulation, for the cases 1 < ml < M′, than the systems with the equivalent number of time-blocks
associated with Figs 8(a) (cf. total iteration counts for values of M′ = 2, 3 and 4).

10−4

10−3

10−2

10−1

100

0 5 10 15 20 25 30 35

R
el

at
iv

e
re

si
d
u
al

n
o
rm

Iterations

ml = 1
ml = 2
ml = 3
ml = 4
ml = 5

Figure 10: The residual norm relative to the initial residual norm as a function of CI iteration when
the NSPD matrix Aml is composed of identical Â blocks but different number of time levels ml . The
Â blocks are associated with the diffusion operator with M = 10. The first guess and preconditioner
transformations are defined by G =PI and P =PD . The rhs is the same in all experiments.

4.8 Parallel implementation in NEMOVAR

The NSPD formulation of an implicitly formulated diffusion equation employed to model a correlation
operator has been demonstrated to provide a potential speed-up of up to a factor between two and three.
Considering that the time spent on the execution of the correlation operator in the current ECMWF
operational 3D-Var (NEMOVAR) system with horizontal grid resolution of 1/4◦ amounts to approxi-
mately two thirds of the total run-time, this would translate to a potential application speed-up of up to
1.8, assuming a perfect parallel implementation. Such improvement can be considered to be critical for
enabling production of a future high-resolution eddy-resolving ocean analysis in an operational environ-
ment with tight run-time constraints. Here, we limit ourselves to a discussion of possible implementation
strategies of the time-parallel scheme.

The implicitly formulated SPD diffusion operator Â is parallelized in the spatial dimension. The global
domain is decomposed into a structured grid of ms sub-domains with each block belonging to one MPI
task. The operator Â is applied in parallel on each sub-domain and message passing is employed for
exchanging halos during each Chebyshev iteration (see appendix C in WTP16). It should be noted
that message passing is also used for both local and global communications in other components of the
3D-Var system, which are also parallelized. The parallel implementation of A could be considered in
combination with the scheme used to parallelize the Â operator in the spatial domain. The total number
of tasks p would be split between the spatial ms and temporal mt dimensions such that msmt = p. In
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practice, there would be both computational and communication overhead associated with the parallel
implementation in the pseudo-time and space domains. This becomes apparent when one considers the
sub-diagonal block of A or the implementation of the preconditioner. This strategy for implementing
time-parallelization would lead to the problem of determining the optimal pair (ms,mt) of space-time
sub-domain decomposition that maximizes the computation-to-communication ratio. The pairs (p,1)
and

(
p/M′,M′

)
correspond, respectively, to the limiting cases of no parallelization and complete paral-

lelization in the pseudo-time domain. This approach would be fairly straightforward to implement, but
far from optimal for other components of NEMOVAR, where the processors allocated in the pseudo-time
dimension would be idle. This may still be acceptable for specific applications, such as the estimation
of normalization factors using a Monte Carlo (randomization) technique (Weaver and Courtier, 2001),
which are dominated by the cost of the diffusion operator.

An alternative parallel implementation would require introducing a hybrid parallelization model com-
bining MPI tasks in the spatial dimension with Open Multi-Processing (OpenMP) threads spanning the
pseudo-time dimension. In practice, this would amount to adding an outer dimension to the arrays em-
ployed by the diffusion operator and corresponding to the pseudo-time. OpenMP directives would need
to be inserted only at a high level in loops over this new parallel dimension. A practical advantage of
such approach becomes apparent when considering preconditioning or the operations associated with the
sub-diagonal block of A. Since all the time-levels are visible to a given MPI task assigned to a spatial
sub-domain, no message passing would be required in their implementation. Attention would need to
be paid to the MPI communications between OpenMP threads. If the message passing for each time
level was to be performed in parallel, a thread safe MPI implementation would need to be available.
Alternatively the message passing would have to be performed by the master thread and would become a
sequential operation. A hybrid implementation also opens up the possibility to parallelize other compo-
nents of the data assimilation system, allowing for a potentially more uniform acceleration of the code.

5 Summary and Discussion

In this paper we have shown how a diffusion-based correlation operator can be formulated implicitly
in a way that avoids the sequential “time”-stepping of conventional diffusion. The advantage of this
approach is that it opens the way to perform in parallel the costly matrix-vector operations required
on each step of the diffusion process. The new formulation requires solving a single linear system
involving a nonsymmetric positive definite (NSPD) matrix. Following WTP16 who advocated the use
of the Chebyshev iteration (CI) to solve the symmetric positive-definite (SPD) matrix systems of the
sequential diffusion-based correlation operator, we have proposed here to use the same algorithm to
solve the NSPD system. Linearity and the absence of global communications are the two properties of
CI that make it an attractive algorithm for the problem under consideration. In this paper, however, the
problem is complicated by the nonsymmetric and nondiagonalizable properties of the system matrix that
must be inverted. Understanding the convergence properties of CI for this problem is therefore vital to
determine whether a “time”-parallelized NSPD-based system can be a viable alternative to the sequential
SPD-based system. This has been the main purpose of the paper.

The new formulation of the correlation operator has been implemented in the NEMOVAR global ocean
variational data assimilation system. Based on numerical experiments with that system and supported by
theoretical results, we can summarize the main findings of this study as follows.

• Convergence. Even though the NSPD matrix is nondiagonalizable, CI is guaranteed to converge
(Manteuffel, 1975, 1977). For the SPD system, the convergence rate depends on the properties of
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the shifted and scaled Chebyshev polynomials. For the NSPD system, the convergence rate also
depends on the properties of the derivatives of the shifted and scaled Chebyshev polynomials. As a
result, CI applied to the NSPD system converges more slowly than CI applied to the SPD system.

• Practical convergence. A high-precision solution is not required to obtain an adequate representa-
tion of correlation functions for data assimilation. Reducing the 2-norm of the residual or solution
error by three- to four-orders of magnitude is generally adequate. Therefore, in the numerical ex-
periments, we focused on evaluating the convergence properties of CI for achieving an accuracy
in this range.

• Eigenvalues. The NSPD matrix under consideration has a special structure such that its eigenvalues
are real and given by those of the SPD matrix with algebraic multiplicity of M where M is the
number of implicit iterations. The extreme eigenvalues required by CI can therefore be estimated
using an eigenvalue algorithm (e.g., Lanczos) applied to the simpler SPD matrix.

• Initial residual. When CI is applied to the NSPD system, it has a nonlinear convergence behaviour,
especially in the early iterations, and strong sensitivity to the initial residual, contrary to what
occurs when CI is applied to the SPD system. The nonlinear behaviour increases as M increases.
For the SPD system, the number of iterations required to reduce the residual 2-norm (relative to the
initial residual 2-norm) can be accurately estimated using an analytical relationship from Axelsson
(1996). For the NSPD system, no such simple relationship exists to the best of our knowledge.

• First guess. For the SPD problem, defining the first guess to be the right-hand side instead of a zero
field results in nearly a one-order of magnitude improvement in the accuracy of the solution when
seeking a four-order of magnitude reduction of the residual 2-norm relative to its initial value. A
similar relative improvement in solution accuracy can be obtained for the NSPD problem using a
first guess whose value at each “time” level is equal to the right-hand side of the SPD problem.
For the NSPD problem, this simple choice of first guess also results in a reduction in the number
of iterations for the modest convergence tolerance considered.

• Preconditioning. The structure of the exact inverse of the NSPD matrix suggests that a precondi-
tioner should have a block lower triangular form where the block matrices involve powers of the
approximate inverse of the SPD matrix. Defining the block matrices as powers of the inverse of the
diagonal of the SPD matrix results in an inexpensive preconditioner that is particularly effective
for accelerating convergence when M > 10. Results with the preconditioner for values of M ≤ 10
can also accelerate convergence, although the gain is less clear and may not offset the extra cost of
applying the preconditioner. For the SPD problem, the diagonal preconditioner has no impact.

• Stopping criterion. To preserve symmetry, the correlation model should be formulated in “square-
root” factors where each factor represents M/2 steps of the diffusion operator and involves the
solution of an NSPD system. CI should be employed with the same fixed number of iterations, K,
when solving each NSPD system. To determine an appropriate value of K, CI is first applied to a
trial problem with a particular stopping criterion. Here, we proposed to define K as the arithmetic
mean of the number of iterations required to solve each NSPD system in succession; i.e., to apply
the full M-step diffusion operator. While the 2-norm of the residual mostly gave an adequate
measure of the solution error, it was argued that a more reliable stopping criterion should be based
on the 2-norm of the actual solution error, especially in the presence of a general preconditioner.
With a non-zero first guess, measuring the reduction of the 2-norm of the solution error with respect
to either the 2-norm of the initial solution error or the 2-norm of the solution itself was shown to
lead to a similar value of K, when computed as an average of the values required for solving each
system.
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• Parallel speed-up. In terms of the total number of applications of the SPD matrix, solving the
single NSPD system with CI is more costly than solving the sequence of SPD systems with CI.
However, solving the NSPD system requires fewer iterations than solving the sequence of SPD
systems, thus providing scope for reducing run-time by performing the matrix-vector computa-
tions in parallel. In particular, in the case of a perfectly “time”-parallelized NSPD system, we have
shown that there is potential to reduce the diffusion operator run-time by a factor between two
and three. Different possible ways of implementing a “time”-parallel diffusion operator have been
discussed within the context of NEMOVAR. Most promising is the use of a hybrid paralleliza-
tion approach that combines MPI tasks in the spatial domain with OpenMP threads spanning the
pseudo-time dimension. This will be investigated with NEMOVAR in future work.
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Appendix A: Correction to the CI algorithm presented in WTP16

Orthogonal polynomials like the shifted and scaled Chebsyhev polynomials satisfy a general three-term
recurrence relation (Eq. (A1) in WTP16):

ϕ−1(t) = 0,
ϕ0(t) = 1,

ϕk+1(t) =

(
t−µk+1

νk+1

)
ϕk(t)−

(
τk+1

νk+1

)
ϕk−1(t),

(41)

where k ≥ 0. The coefficients νk+1, µk+1 and τk+1 are related to the step sizes αk and βk+1 in the CI
algorithm according to (Eqs (A4), (A13) and (A14) in WTP16)

αk = − 1
νk+1

, (42)

βk+1 =
τk+2

νk+1
, (43)

τk+1 = −
(
µk+1 +νk+1

)
. (44)

Here, we are interested in the specific case k = 0, which was overlooked in WTP16. For k = 0, the third
equation in (41) becomes

ϕ1(t) =
t−µ1

ν1
. (45)

The shifted and scaled Chebyshev polynomials are given by

ϕk(t) =
Tk
(
χt
)

Tk
(
χ0)

(46)
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where

χt = χ(t) :=
t−σ

δ
, (47)

and σ and δ are the CI parameters defined in lines 1 and 2 of Algorithm 2. Since T1(t) = t, equating
Eqs (45) and (46) for k = 1 gives

t−µ1

ν1
=

T1
(
χt
)

T1
(
χ0)

=
(t−σ)/δ

−σ/δ
=

t−σ

−σ
,

implying that µ1 = σ and ν1 =−σ , and hence from Eqs (42) and (44) that

α0 =
1
σ
, (48)

β1 = −τ2

σ
. (49)

To determine τ2, we use the third expression in (A29) from WTP16 with k = 2:

τ2 =
δ

2

(
T0(χ0)

T1(χ0)

)
=− δ 2

2σ
(50)

since T0(t) = 1. Substituting Eq. (50) in Eq. (49) and using Eq. (48) gives

β1 =
(δ α0)

2

2
. (51)

The βk+1 coefficients for k > 0 are the same as given in WTP16:

βk+1 =

(
δ αk

2

)2

. (52)

Comparing Eqs (51) and (52) shows that the correct β1 coefficient is a factor of 2 larger than the coeffi-
cient used in WTP16. The corrected algorithm is consistent with Algorithm 5 in Gutknecht and Röllin
(2002).

The impact of the correction is minor in terms of total iteration counts, but does lead to a more consistent
convergence behaviour of the solver between steps in the m = 1, . . . ,M′ sequence and better agreement
with the theoretical bound ks (Eq. 20).

Appendix B: Convergence properties of the Chebyshev iteration

The N×N SPD matrix Â can be written in terms of its n = 1, . . . ,N eigenpairs (λn ,vn) as

Â =
N

∑
n=1

λnvnv
T
n
.

The eigenvalues are assumed to be ordered from smallest λ1 to largest λN . The M′N/2×M′N/2 NSPD
matrix A (Eq. (9)) can be expressed in Jordan block form as (Saad, 2003, pp. 15–16)

A = ZJZ−1 (53)
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where J = diag(J1 ,J2 , . . . ,JN ), the M′×M′ matrix Jn being the Jordan block associated with eigenvalue
λn , n = 1, . . . ,N:

Jn ≡ Jn(λn) =


λn 1

λn

. . .

. . . 1
λn

 . (54)

Note that although A is nonsymmetric, and hence possesses potentially complex eigenvalues, its specific
structure gives rise to a spectrum of real eigenvalues, given by those of the SPD matrix Â with algebraic
multiplicity of M′.

From Eq. (53), a general polynomial of A (here the Chebyshev polynomial ϕk(A)), can be expressed as
(Higham, 2008, p. 3, Definition 1.2)

ϕk(A) = Zdiag
(
ϕk(Jn)

)
Z−1 (55)

where

ϕk(Jn)=


ϕk(λn) ϕ ′

k
(λn) · · · 1

(M′−1)! ϕ
(M′−1)
k (λn)

ϕk(λn)
. . .

...
. . . ϕ ′

k
(λn)

ϕk(λn)

,

ϕ
(m)
k (λn) denoting the mth derivative of ϕk evaluated at λn . Since these derivatives exist, ϕk(A) is said to

be defined on the spectrum of A (Higham, 2008, p. 3, Definition 1.1).

From the analysis above, it is apparent that the convergence of CI for a nondiagonalizable matrix requires
convergence of the derivatives of the polynomial as well the polynomial itself, as stated by the following
(Manteuffel, 1977, Theorem 2.2):

Theorem 1 If λn is an eigenvalue of A with invariant subspace of dimension dn, then ‖ϕk(A)‖ → 0 as
k→ ∞ if and only if ϕ( j)

k
(λn)→ 0 as k→ 0 for every j < dn, for each eigenvalue λn .

In our case, dn = M′. Manteuffel (1975) shows that Theorem 1 is indeed satisfied by the shifted and
scaled Chebyshev polynomials.

By exploiting the special structure of A in our problem, the matrix Z can be shown to be a unitary matrix
(Z−1 = ZT) of the form

Z =
(

Z1 Z2 · · · ZN

)
where the block NM′×M′ matrix Zn is associated with the eigenvector vn of Â:

Zn =


(−1)(M′−1)vn

. .
.

−vn

vn

 .
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Using Eq. (55) and properties of the 2-norm (Meyer, 2000, p. 283), we can then write

‖ϕk(A)‖= ‖Zϕk(J)ZT‖= ‖ϕk(J)‖ (56)

where
‖ϕk(J)‖= max

n
‖ϕk(Jn)‖, n = 1, . . . ,N.

The next theorem states some convergence properties for ‖ϕk(J)‖.

Theorem 2 Let the Jordan block Jn associated with eigenvalue λn, n = 1, . . . ,N, be defined by Eq. (54).
Then,

lim
k→∞

‖ϕk(Jn)‖∣∣∣∣ϕ
(M′−1)
k (λn )

(M′−1)!

∣∣∣∣ = 1. (57)

Proof. ϕk(Jn) can be expressed as a Taylor series (Higham, 2008, p. 4):

ϕk(Jn) = ϕk(λn)In + ϕ
′
k
(λn)Nn + · · · + ϕ

(M′−1)
k (λn)

(M′−1)!
NM′−1

n
(58)

where Jn = λnIn +Nn . From Eq. (54), the matrix Nn has zero elements except for a superdiagonal of 1s,
and satisfies NM′

n
= 0. Dividing Eq. (58) by the coefficient of the last term in the series gives(
(M′−1)!
ϕ

(M′−1)
k (λn)

)
ϕk(Jn) =

(M′−1)!ϕk(λn)

ϕ
(M′−1)
k (λn)

In +
(M′−1)!ϕ ′

k
(λn)

ϕ
(M′−1)
k (λn)

Nn + · · ·

+
(M′−1)!ϕ( j)

k
(λn)

j!ϕ
(M′−1)
k (λn)

N j
n
+ · · ·+ NM′−1

n
.

Taking the norm of the above expression and noting that ‖N j
n
‖= 1 for j < M′, and |ϕ( j)

k
(λn)/ϕ

(M′−1)
k (λn)| → 0

as k→ ∞ for j < M′−1, we obtain the result (57). �

Appendix C: Block-diagonal preconditioning of the NSPD system

Consider the sequence of SPD systems in (7) where each member in the sequence is preconditioned
to the left by P≈ Â−1. An augmented NSPD system can be formed from the resulting preconditioned
sequence as

P̃AΨΨΨ = P̃ζζζ , (59)

where P̃ is defined by Eq. (24). As with PA, the eigenvalues of P̃A are multiples of the eigenvalues
of PA. Compared to the block lower triangular preconditioner P , the block-diagonal preconditioner P̃
has the advantage that its M blocks can be applied in parallel.

An obvious drawback with Eq. (24) is that employing it with the ideal preconditioner for the SPD matrix
(P = Â−1) does not result in an ideal preconditioner for Eq. (59). To see this, it is instructive to examine
the update equation on the first iteration of Algorithm 3 with P̃ as a preconditioner. Given a first guess
ΨΨΨ0 , the update equation for ΨΨΨ is

ΨΨΨ1 = ΨΨΨ0−α0

(P̃AΨΨΨ0− P̃ ζζζ
)
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where the term in parentheses corresponds to the initial search direction (p0). The update equations for
the individual elements of ΨΨΨ1 are

ψψψ 1
1

= ψψψ 0
1
− α0

(
PÂψψψ 0

1
− Pψψψ

0

)
ψψψ 1

2
= ψψψ 0

2
− α0

(
−Pψψψ 0

1
+ PÂψψψ 0

2

)
...

ψψψ 1
M′

= ψψψ 0
M′
− α0

(
−Pψψψ 0

M′−1
+ PÂψψψ 0

M′

)

 .

It is easy to see that with P = Â−1, and hence α0 = 1, only the first component ψψψ 1
1

converges to the exact
solution (ψψψ 1

1
= Â−1 ψψψ

0
). The exact solutions for the other states ψψψ

m
, m = 2, . . . ,M′, will be retrieved

successively after M′ iterations. This number is related to the special structure of the preconditioned
system matrix, as explained below.

The matrix P̃A has block-matrix form similar to A:

P̃A =


PÂ
−P PÂ

. . .
. . .

−P PÂ

 .

When P = Â−1, the eigenvalues of the matrix P̃
Â
A are all equal to 1 with algebraic multiplicity of

N×M′. Furthermore, P̃
Â
A− I

NM′ is a nilpotent matrix; i.e.,

ρ(P̃
Â
A) ≡

(P̃
Â
A− I

NM′

)M′
= 0,

implying that M′ is the degree of the minimal polynomial of P̃
Â
A. Algorithm 3 will then stop at iteration

M′ since

‖ΞΞΞ
M′‖ ≤ ‖ϕM′ (P̃Â

A)‖‖ΞΞΞ0‖ ≤ ‖ρ(P̃Â
A)‖‖ΞΞΞ0‖= 0.
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Fisher M, Gürol S. 2017. Parallelization in the time dimension of four-dimensional variational data as-
similation. Q. J. R. Meteorol. Soc. 143: 1136–1147.

Gander MJ. 2015. 50 years of time parallel time integration. In: Multiple Shooting and Time Domain
Decomposition Methods, Carraro T, Geiger M, Körkel S, Rannacher R (eds), Springer: New York,
NY, pp. 69–113.
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Gutknecht M, Röllin S. 2002. The Chebyshev iteration revisited. Parallel Comput. 28: 263–283.
Guttorp P, Gneiting T. 2006. Miscellanea studies in the history of probability and statistics XLIX: on the

Matérn correlation family. Biometrika. 93: 989–995.
Higham N. 2008. Functions of Matrices. Society for Industrial and Applied Mathematics: Philadelphia,

PA.
Lindgren F, Rue H, Lindström J. 2011. An explicit link between Gaussian fields and Gaussian Markov

random fields: the stochastic partial differential equation approach. J. Roy. Stat. Soc.: Series B Stat.
Method. 73: 423–398.

Lorenc A. 2015. Four-dimensional variational data assimilation. In: Advanced Data Assimilation for
Geosciences, Blayo E, Boquet M, Cosme E, Cugliandolo LF (eds), Oxford University Press: Oxford,
UK, pp. 31–73.

Madec G. 2008. NEMO Ocean Engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace
IPSL), France, No 27, ISSN No 1288-1619: France.

Manteuffel TA. 1975. An iterative method for solving nonsymmetric linear systems with dynamic esti-
mation of parameters. Technical Report UIUCDS-R-75-758, Department of Computer Science, Univ.
of Illinois, Urbana, IL.

Manteuffel TA. 1977. The Tchebychev iteration for nonsymmetric linear systems. Numer. Math. 28:
307–327.
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